metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ4-5-bromo­pyridine-3-sulfonato)­silver(I)]

aCollege of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, People's Republic of China
*Correspondence e-mail: yblu@fjirsm.ac.cn

(Received 27 November 2011; accepted 22 December 2011; online 7 January 2012)

The silver(I) complex, [Ag(C5H3BrNO3S)]n, was obtained by reaction of AgNO3 and 5-bromopyridine-3-sulfonic acid. The AgI ion is coordinated by an O3N donor set in a slightly distorted tetra­hedral geometry. The AgI ions are linked by μ4-5-bromo­pyridine-3-sulfonate ligands, forming a layer parallel to (100). The layers are further connected via C—H⋯Br hydrogen-bonding inter­actions into a three-dimensional supra­molecular network. The Ag⋯Ag separation is 3.0159 (6) Å, indicating the presence of argentophilic inter­actions.

Related literature

For background information on pyridine­sulfonato ligands, see: Chandler et al. (2002[Chandler, B. D., Cote, A. P., Cramb, D. T., Hill, J. M. & Shimizu, G. K. H. (2002). Chem. Commun. pp. 1900-1901.]); Makinen et al. (2001[Makinen, S. K., Melcer, N. J., Parvez, M. & Shimizu, G. K. H. (2001). Chem. Eur. J. 7, 5176-5182.]); May & Shimizu (2005[May, L. J. & Shimizu, G. K. H. (2005). Chem. Commun. pp. 1270-1272.]). For similar C—H⋯Br hydrogen bonding, see: Lu et al. (2011[Lu, Y.-B., Cai, L.-Z., Zou, J.-P., Liu, X., Guo, G.-C. & Huang, J.-S. (2011). CrystEngComm, 13, 5724-5729.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C5H3BrNO3S)]

  • Mr = 344.92

  • Monoclinic, C 2/c

  • a = 20.103 (3) Å

  • b = 5.0634 (9) Å

  • c = 16.036 (3) Å

  • β = 110.142 (2)°

  • V = 1532.5 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 8.08 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.512, Tmax = 0.746

  • 4188 measured reflections

  • 1310 independent reflections

  • 1204 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.152

  • S = 1.01

  • 1310 reflections

  • 109 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −1.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯Br1i 0.93 2.92 3.832 (3) 168
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As bridging ligands, sulfonate ligands and their derivatives have drawn much attention owing to their diverse coordination modes, forming numerous coordination complexes. In this paper, we report the new title compound 1, which displays a two-dimensional layer structure.

X-ray diffraction analyses reveal that the title compound crystallizes in the C2/c group space. In the asymmetrical unit of 1 (Fig. 1), there is one crystallographically independent Ag+ ion and one 5-Bromopyridine-3-sulfonato ligand. The Ag1 atom is in a distorted tetrahedral coordination environment and coordinated by one O1 atom, one O2 atom, one O3 atom and N1 atom from four different 5-Bromopyridine-3-sulfonato ligands. As shown in Figure 2, the Ag1 ions are linked by three oxygen atoms from sulfonate groups to form 1-D chain. Interestingly, the Ag···Ag separation in the [Ag1]2 dimers is 3.0159 (6) Å, which is much shorter than the sum of van der Waals radii for silver (3.4 Å), suggesting significant silver-silver interactions. These chains are further connected through N1 atoms from µ4-5-Bromopyridine-3-sulfonato ligands to generate a two-dimensional layer. The layers are connected via C3—H3A···Br1 hydrogen bonding interactions (Lu et al., 2011) into a three-dimensional supramolecular architecture (Fig. 3 and Table 1).

Related literature top

For background information on pyridinesulfonato ligands, see: Chandler et al. (2002); Makinen et al. (2001); May et al. (2005). For similar C—H···Br hydrogen bonding, see: Lu et al. (2011).

Experimental top

AgNO3 (85 mg, 0.5 mmol) and bromopyridinesulfonato ligands (103 mg, 0.5 mmol) were dissolved in 20 ml water, stirring for 2 h. The resulting solution was filtrated and allowed to evaporate slowly at room temperature. Colorless block crystals appeared after 1 week. Yield based on Ag: 15%.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 Å (aromatic), and refined in riding mode with Uiso(H) = 1.2Ueq(C). The abnormal reflections (-7 1 2), (-4 2 3), (8 0 0), (1 1 6) (-4 0 2), (-2 06) and (-5 1 3) have been omitted during the refinement. The "delu 0.005 C1 N1 Ag1 O1" has been employed during the refinement to modify the small difference of anisotropic displacement parameters along chemical bonds.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of 1 with 50% thermal ellipsoids with hydrogen atoms being omitted for clarity. (Symmetry codes: A: x, 1 + y, z; B: 1/2 - x, 3/2 - y, - z; C: x, 1 - y, -1/2 + z; D: x, 1 - y, 1/2 + z;).
[Figure 2] Fig. 2. View of two-dimensional layer of 1 along the a axis. The yellow–green bonds represent the 1-D chain originating from Ag and SO3 groups of 5-Bromopyridine-3-sulfonato ligands. The silver-silver interactions are represented as orange dashed lines (H atoms are omitted for clarity).
[Figure 3] Fig. 3. Three-dimensional supramolecular network of 1 showing C3—H3···Br hydrogen-bonding interactions (green dashed lines).
Poly[(µ4-5-bromopyridine-3-sulfonato)silver(I)] top
Crystal data top
[Ag(C5H3BrNO3S)]F(000) = 1296
Mr = 344.92Dx = 2.990 Mg m3
Monoclinic, C2/cMelting point: not measured K
a = 20.103 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 5.0634 (9) Åθ = 2.2–25°
c = 16.036 (3) ŵ = 8.08 mm1
β = 110.142 (2)°T = 296 K
V = 1532.5 (5) Å3Blcok, colorless
Z = 80.20 × 0.18 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1310 independent reflections
Radiation source: fine-focus sealed tube1204 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 2323
Tmin = 0.512, Tmax = 0.746k = 66
4188 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.132P)2]
where P = (Fo2 + 2Fc2)/3
1310 reflections(Δ/σ)max = 0.009
109 parametersΔρmax = 0.88 e Å3
2 restraintsΔρmin = 1.72 e Å3
0 constraints
Crystal data top
[Ag(C5H3BrNO3S)]V = 1532.5 (5) Å3
Mr = 344.92Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.103 (3) ŵ = 8.08 mm1
b = 5.0634 (9) ÅT = 296 K
c = 16.036 (3) Å0.20 × 0.18 × 0.16 mm
β = 110.142 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1310 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
1204 reflections with I > 2σ(I)
Tmin = 0.512, Tmax = 0.746Rint = 0.022
4188 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.01Δρmax = 0.88 e Å3
1310 reflectionsΔρmin = 1.72 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.325354 (14)0.79247 (6)0.004298 (16)0.03990 (8)
Br10.505370 (16)0.92599 (7)0.38247 (2)0.03684 (10)
S10.31936 (4)0.26125 (15)0.13294 (5)0.0237 (2)
N10.36109 (14)0.3610 (6)0.39356 (17)0.0280 (7)
O10.36615 (13)0.3588 (6)0.08721 (15)0.0417 (6)
O20.25004 (15)0.3786 (6)0.10181 (17)0.0468 (8)
O30.31813 (13)0.0272 (5)0.13609 (16)0.0365 (7)
C10.33643 (16)0.2719 (7)0.3129 (2)0.0252 (8)
H1A0.30260.13850.29930.030*
C20.35925 (15)0.3708 (6)0.24497 (18)0.0201 (7)
C30.40983 (15)0.5648 (7)0.26565 (19)0.0237 (8)
H3A0.42650.63240.22260.028*
C40.43547 (15)0.6575 (7)0.3514 (2)0.0269 (8)
C50.41094 (16)0.5505 (7)0.4151 (2)0.0285 (9)
H5A0.42920.61070.47330.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.05584 (14)0.04198 (16)0.02679 (13)0.01450 (12)0.02051 (11)0.00050 (10)
Br10.03597 (16)0.0366 (2)0.03715 (17)0.00643 (15)0.01160 (13)0.00657 (15)
S10.0333 (3)0.0199 (4)0.0160 (3)0.0027 (3)0.0060 (3)0.0009 (3)
N10.0360 (12)0.0253 (13)0.0241 (11)0.0001 (12)0.0120 (9)0.0010 (11)
O10.0639 (13)0.0433 (10)0.0244 (9)0.0083 (12)0.0236 (9)0.0060 (9)
O20.0498 (13)0.0449 (14)0.0294 (12)0.0224 (13)0.0071 (11)0.0057 (12)
O30.0608 (13)0.0185 (11)0.0306 (10)0.0012 (11)0.0164 (10)0.0084 (9)
C10.0207 (11)0.0258 (16)0.0285 (14)0.0027 (12)0.0075 (11)0.0065 (12)
C20.0308 (12)0.0156 (13)0.0149 (11)0.0024 (12)0.0091 (10)0.0012 (11)
C30.0241 (11)0.0291 (17)0.0216 (12)0.0056 (12)0.0126 (10)0.0014 (12)
C40.0160 (11)0.0322 (17)0.0297 (15)0.0008 (14)0.0044 (11)0.0033 (14)
C50.0294 (13)0.0385 (19)0.0159 (13)0.0021 (15)0.0056 (11)0.0012 (13)
Geometric parameters (Å, º) top
Ag1—N1i2.270 (3)N1—C51.344 (4)
Ag1—O3ii2.352 (3)N1—Ag1iv2.270 (3)
Ag1—O2iii2.488 (3)O2—Ag1iii2.488 (3)
Ag1—O12.552 (3)O3—Ag1v2.352 (3)
Ag1—Ag1iii3.0159 (8)C1—C21.411 (5)
Br1—C41.894 (3)C1—H1A0.9300
S1—O21.437 (3)C2—C31.370 (4)
S1—O31.462 (3)C3—C41.374 (4)
S1—O11.463 (3)C3—H3A0.9300
S1—C21.785 (3)C4—C51.388 (5)
N1—C11.297 (4)C5—H5A0.9300
N1i—Ag1—O3ii165.92 (9)S1—O1—Ag1113.87 (15)
N1i—Ag1—O2iii88.66 (10)S1—O2—Ag1iii143.5 (2)
O3ii—Ag1—O2iii98.22 (9)S1—O3—Ag1v110.48 (15)
N1i—Ag1—O188.93 (10)N1—C1—C2122.2 (3)
O3ii—Ag1—O188.52 (8)N1—C1—H1A118.9
O2iii—Ag1—O1160.60 (9)C2—C1—H1A118.9
N1i—Ag1—Ag1iii119.93 (7)C3—C2—C1118.6 (3)
O3ii—Ag1—Ag1iii74.01 (6)C3—C2—S1120.3 (2)
O2iii—Ag1—Ag1iii72.45 (7)C1—C2—S1120.9 (2)
O1—Ag1—Ag1iii92.22 (6)C2—C3—C4118.6 (3)
O2—S1—O3113.53 (16)C2—C3—H3A120.7
O2—S1—O1113.59 (17)C4—C3—H3A120.7
O3—S1—O1112.07 (17)C3—C4—C5119.8 (3)
O2—S1—C2105.49 (15)C3—C4—Br1119.8 (3)
O3—S1—C2106.43 (14)C5—C4—Br1120.4 (2)
O1—S1—C2104.83 (15)N1—C5—C4120.8 (3)
C1—N1—C5120.0 (3)N1—C5—H5A119.6
C1—N1—Ag1iv123.1 (2)C4—C5—H5A119.6
C5—N1—Ag1iv116.9 (2)
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z; (iii) x+1/2, y+3/2, z; (iv) x, y+1, z+1/2; (v) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Br1vi0.932.923.832 (3)168
Symmetry code: (vi) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag(C5H3BrNO3S)]
Mr344.92
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)20.103 (3), 5.0634 (9), 16.036 (3)
β (°) 110.142 (2)
V3)1532.5 (5)
Z8
Radiation typeMo Kα
µ (mm1)8.08
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.512, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
4188, 1310, 1204
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.152, 1.01
No. of reflections1310
No. of parameters109
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 1.72

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Br1i0.932.923.832 (3)167.5
Symmetry code: (i) x+1, y, z+1/2.
 

Acknowledgements

We acknowledge financial support from the NSF of Jiangxi Provincial Education Department (Nos. GJJ10717 and 2009ZDG02800) and the Key Laboratory of Jiangxi University for Function of Materials Chemistry.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandler, B. D., Cote, A. P., Cramb, D. T., Hill, J. M. & Shimizu, G. K. H. (2002). Chem. Commun. pp. 1900–1901.  Web of Science CSD CrossRef Google Scholar
First citationLu, Y.-B., Cai, L.-Z., Zou, J.-P., Liu, X., Guo, G.-C. & Huang, J.-S. (2011). CrystEngComm, 13, 5724–5729.  Web of Science CSD CrossRef CAS Google Scholar
First citationMakinen, S. K., Melcer, N. J., Parvez, M. & Shimizu, G. K. H. (2001). Chem. Eur. J. 7, 5176–5182.  CrossRef PubMed CAS Google Scholar
First citationMay, L. J. & Shimizu, G. K. H. (2005). Chem. Commun. pp. 1270–1272.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds