organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[2,2-Bis(phenyl­sulfon­yl)ethen­yl]-4-meth­­oxy­benzene

aLudwig-Maximilians-Universität, Department of Chemistry, Butenandtstrasse 5–13, 81377 München, Germany
*Correspondence e-mail: p.mayer@lmu.de

(Received 16 December 2011; accepted 16 January 2012; online 21 January 2012)

In the title compound, C21H18O5S2, the two sulfur-bound phenyl rings lie on opposite sides of the meth­oxy­phenyl group, making dihedral angles of 77.58 (8) and 87.45 (8)°with it. The dihedral angle between the sulfur-bound phenyl rings is 57.31 (8)°. In the crystal, ππ stacking is observed between the two sulfur-bound phenyl rings, with a centroid–centroid distance of 3.878 (1) Å and a dihedral angle of 7.58 (8)°. The mol­ecules are linked by weak C—H⋯O and C—H⋯π contacts.

Related literature

For background to bis­sulfonyl ethyl­enes and their synthesis, see: Simpkins (1993[Simpkins, N. S. (1993). Sulfones in Organic Synthesis. Oxford: Pergamon Press.]); Najera & Yus (1999[Najera, C. & Yus, M. (1999). Tetrahedron, 55, 10547-10658.]); Prilezhaeva (2000[Prilezhaeva, E. N. (2000). Russ. Chem. Rev. 69, 367-408.]); Nielsen et al. (2010[Nielsen, M., Jacobsen, C. B., Holub, N., Paixao, M. W. & Jorgensen, K. A. J. (2010). Angew. Chem. Int. Ed. 49, 2668-2679.]), Zhu & Lu (2009[Zhu, Q. & Lu, Y. (2009). Aust. J. Chem. 62, 951-955.]), Alba et al. (2010[Alba, A. R., Companyo, X. & Rios, R. (2010). Chem. Soc. Rev. 39, 2018-2033.]), Sulzer-Moss et al. (2009[Sulzer-Moss, S., Alexakis, A., Mareda, J., Bollot, G., Bernardinelli, G. & Filinchuk, Y. (2009). Chem. Eur. J. 15, 3204-3220.]). For a related structure, see: De Lucchi et al. (1985[De Lucchi, O., Pasquato, L., Modena, G. & Valle, G. (1985). Z. Kristallogr. 170, 267-274.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18O5S2

  • Mr = 414.50

  • Monoclinic, P 21 /c

  • a = 7.8291 (1) Å

  • b = 21.6666 (4) Å

  • c = 12.0332 (2) Å

  • β = 107.8449 (10)°

  • V = 1942.99 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 173 K

  • 0.33 × 0.26 × 0.21 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 15675 measured reflections

  • 4445 independent reflections

  • 3908 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.08

  • 4445 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C16–C21 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Cg1i 0.95 2.56 3.4835 (17) 164
C14—H14⋯O1ii 0.95 2.51 3.229 (2) 133
C21—H21⋯O3i 0.95 2.50 3.2695 (19) 138
C20—H20⋯O4iii 0.95 2.59 3.453 (2) 151
Symmetry codes: (i) -x, -y, -z+1; (ii) x+1, y, z; (iii) x-1, y, z.

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Bissulfonyl ethylenes are important reagents in synthetic organic chemistry, because they are active Michael acceptors [Simpkins (1993), Najera et al. (1999), Prilezhaeva (2000)]. Recently, organocatalytic Michael additions of bissulfonyl ethylene have also been reported [Nielsen et al. (2010), Zhu et al. (2009), Alba et al. (2010)]. During our studies on the electrophilic reactivity of bissulfonyl ethylenes, we discussed structure-reactivity relationships.

In the title compound, the C1—C2 double bond deviates only slighthly from coplanarity with the phenyl ring of the methoxyphenyl group (plane-bond angle 10.22 (10)°). The double bonds S1—O2 and S2—O3 are coplanar with the C1—C2 double bond as is indicated by the torsion angles O2—S1—C1—C2 (-178.13 (13)°) and O3—S2—C1—C2 (1.12 (13)°). The sulfur-bound phenyl rings lie to opposite sides of the methoxyphenyl group with dihedral angles of 77.58 (8)° and 87.45 (8)°. The ring bound to S1 is almost coplanar with the S1—O1 double bond (plane-bond angle 7.79 (8)°), the ring bound to S2 is nearly coplanar with the S2—O4 double bond (plane-bond angle 9.12 (7)°). The molecular structure of the title compound is shown in Figure 1.

The packing of the title compound is shown in Figure 2. π-π-stacking is observed between the two sulfur-bound phenyl rings with a centroid-centroid distance of 3.878 (1) Å and a dihedral angle of 7.58 (8)°. A C–H···π contact is established between the phenyl ring bound to S2 and the C8–H8 moiety. The distance of H8 to the centre of gravity of the phenyl ring is 2.56 Å, the angle around H8 is 164°. Furthermore weak C–H···O contacts with sulfur-bound oxygen atoms as acceptors are observed.

Related literature top

For background to bissulfonyl ethylenes and their synthesis, see: Simpkins (1993); Najera & Yus (1999); Prilezhaeva (2000); Nielsen et al. (2010), Zhu & Lu (2009), Alba et al. (2010), Sulzer-Moss et al. (2009). For a related structure, see: De Lucchi et al. (1985).

Experimental top

The title compound has been obtained by following modified method of Alexakis [Sulzer-Moss et al. (2009)]. A mixture of p-anisaldehyde (15.0 g, 110 mmol, 7.4 equiv.), bis(phenylsulfonyl)methane (4.4 g, 14.8 mmol, 1.0 equiv.), diethylammonium chloride (32.1 mmol, 2.1 equiv.) and potassium fluoride (2.5 mmol, 0.17 equiv.) in dry toluene (150 ml) was stirred and refluxed under a Dean Stark water separator for 24 h. After cooling, the solvent was evaporated and residue was partitioned between water (50 ml) and CH2Cl2 (150 ml). The organic phase was separated and the aqueous phase was extracted with CH2Cl2 (three times 25 ml). The combined organic layer was dried over Na2SO4, filtered and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography on silica gel (pentane/ethyl acetate: from 95/5 to 80/20), followed by recrystallization from pentane/chloroform. mp 123.0–123.9 °C (yield 4.9 g, 11.8 mmol, 79.9%).

Refinement top

C-bound H atoms were positioned geometrically (C—H = 0.98 Å for aliphatic, 0.95 Å for aromatic H) and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(C, aromatic), Uiso(H) = 1.5Ueq(C, aliphatic)].

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound.
1-[2,2-bis(phenylsulfonyl)ethenyl]-4-methoxybenzene top
Crystal data top
C21H18O5S2F(000) = 864
Mr = 414.50Dx = 1.417 (1) Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7909 reflections
a = 7.8291 (1) Åθ = 3.1–27.5°
b = 21.6666 (4) ŵ = 0.31 mm1
c = 12.0332 (2) ÅT = 173 K
β = 107.8449 (10)°Block, yellow
V = 1942.99 (5) Å30.33 × 0.26 × 0.21 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3908 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.026
MONTEL, graded multilayered X-ray optics monochromatorθmax = 27.5°, θmin = 3.3°
CCD; rotation images; thick slices scansh = 1010
15675 measured reflectionsk = 2728
4445 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.031P)2 + 1.0861P]
where P = (Fo2 + 2Fc2)/3
4445 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C21H18O5S2V = 1942.99 (5) Å3
Mr = 414.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8291 (1) ŵ = 0.31 mm1
b = 21.6666 (4) ÅT = 173 K
c = 12.0332 (2) Å0.33 × 0.26 × 0.21 mm
β = 107.8449 (10)°
Data collection top
Nonius KappaCCD
diffractometer
3908 reflections with I > 2σ(I)
15675 measured reflectionsRint = 0.026
4445 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.08Δρmax = 0.33 e Å3
4445 reflectionsΔρmin = 0.38 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20814 (5)0.197024 (16)0.62810 (3)0.02090 (9)
S20.18614 (5)0.089334 (17)0.46455 (3)0.02332 (10)
O10.07863 (14)0.21777 (5)0.68234 (10)0.0292 (2)
O20.20435 (14)0.22512 (5)0.51907 (9)0.0278 (2)
O30.17420 (16)0.02302 (5)0.46677 (9)0.0313 (3)
O40.33662 (14)0.11588 (5)0.43740 (9)0.0305 (3)
O50.25877 (18)0.04667 (6)1.16063 (9)0.0365 (3)
C10.18455 (19)0.11624 (7)0.60485 (12)0.0214 (3)
C20.1764 (2)0.07226 (7)0.68278 (13)0.0245 (3)
H20.15640.03250.64810.029*
C30.1902 (2)0.07015 (7)0.80624 (12)0.0242 (3)
C40.18860 (19)0.12011 (7)0.88083 (13)0.0243 (3)
H40.17340.16090.85060.029*
C50.2090 (2)0.11019 (7)0.99738 (13)0.0276 (3)
H50.20580.14431.04640.033*
C60.2341 (2)0.05075 (7)1.04444 (13)0.0274 (3)
C70.2320 (2)0.00049 (8)0.97225 (14)0.0338 (4)
H70.24640.04031.00270.041*
C80.2085 (2)0.01103 (7)0.85489 (14)0.0322 (4)
H80.20450.02340.80540.039*
C90.2945 (3)0.01316 (9)1.21382 (15)0.0435 (4)
H9A0.19150.04031.18000.065*
H9B0.31500.00941.29810.065*
H9C0.40140.03071.19980.065*
C100.42503 (19)0.20496 (7)0.72786 (13)0.0227 (3)
C110.4505 (2)0.23657 (7)0.83213 (13)0.0284 (3)
H110.35170.25320.85230.034*
C120.6252 (2)0.24312 (8)0.90616 (14)0.0365 (4)
H120.64630.26450.97800.044*
C130.7677 (2)0.21894 (9)0.87638 (15)0.0394 (4)
H130.88630.22410.92750.047*
C140.7396 (2)0.18709 (9)0.77248 (16)0.0368 (4)
H140.83870.17010.75310.044*
C150.5677 (2)0.17990 (8)0.69699 (14)0.0283 (3)
H150.54740.15830.62540.034*
C160.0154 (2)0.11649 (7)0.36510 (12)0.0231 (3)
C170.0075 (2)0.14543 (7)0.26401 (13)0.0298 (3)
H170.10470.15460.25260.036*
C180.1677 (2)0.16064 (8)0.17987 (14)0.0361 (4)
H180.16560.18010.10960.043*
C190.3298 (2)0.14774 (8)0.19744 (15)0.0355 (4)
H190.43830.15820.13900.043*
C200.3363 (2)0.11958 (8)0.29952 (15)0.0323 (4)
H200.44870.11130.31120.039*
C210.1780 (2)0.10357 (7)0.38461 (14)0.0270 (3)
H210.18060.08420.45490.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01895 (17)0.02019 (17)0.02280 (18)0.00109 (13)0.00526 (13)0.00185 (13)
S20.02724 (19)0.02359 (19)0.01953 (17)0.00020 (14)0.00776 (14)0.00026 (13)
O10.0256 (5)0.0272 (6)0.0373 (6)0.0061 (4)0.0134 (5)0.0010 (5)
O20.0302 (6)0.0260 (6)0.0252 (5)0.0007 (4)0.0054 (4)0.0073 (4)
O30.0453 (7)0.0237 (6)0.0250 (5)0.0030 (5)0.0112 (5)0.0005 (4)
O40.0279 (6)0.0390 (7)0.0275 (6)0.0007 (5)0.0125 (5)0.0005 (5)
O50.0530 (7)0.0367 (7)0.0210 (5)0.0024 (6)0.0133 (5)0.0005 (5)
C10.0213 (7)0.0219 (7)0.0204 (6)0.0013 (5)0.0056 (5)0.0011 (5)
C20.0267 (7)0.0229 (7)0.0231 (7)0.0024 (6)0.0062 (6)0.0017 (6)
C30.0261 (7)0.0244 (7)0.0218 (7)0.0024 (6)0.0069 (6)0.0006 (6)
C40.0240 (7)0.0232 (7)0.0261 (7)0.0021 (6)0.0082 (6)0.0002 (6)
C50.0305 (8)0.0274 (8)0.0260 (7)0.0012 (6)0.0102 (6)0.0053 (6)
C60.0297 (8)0.0334 (8)0.0198 (7)0.0022 (6)0.0085 (6)0.0004 (6)
C70.0511 (10)0.0261 (8)0.0255 (8)0.0004 (7)0.0139 (7)0.0027 (6)
C80.0503 (10)0.0233 (8)0.0247 (8)0.0026 (7)0.0138 (7)0.0033 (6)
C90.0634 (12)0.0432 (11)0.0268 (8)0.0097 (9)0.0180 (8)0.0097 (7)
C100.0209 (7)0.0218 (7)0.0241 (7)0.0031 (5)0.0046 (5)0.0024 (5)
C110.0342 (8)0.0242 (8)0.0261 (7)0.0037 (6)0.0080 (6)0.0004 (6)
C120.0448 (10)0.0330 (9)0.0248 (8)0.0110 (8)0.0005 (7)0.0012 (7)
C130.0305 (9)0.0432 (10)0.0349 (9)0.0134 (7)0.0039 (7)0.0104 (8)
C140.0220 (8)0.0451 (10)0.0419 (10)0.0015 (7)0.0077 (7)0.0094 (8)
C150.0234 (7)0.0325 (8)0.0289 (8)0.0020 (6)0.0079 (6)0.0013 (6)
C160.0272 (7)0.0200 (7)0.0202 (7)0.0025 (6)0.0047 (6)0.0018 (5)
C170.0345 (8)0.0296 (8)0.0243 (7)0.0056 (7)0.0076 (6)0.0028 (6)
C180.0448 (10)0.0343 (9)0.0237 (8)0.0024 (7)0.0022 (7)0.0053 (6)
C190.0344 (9)0.0308 (9)0.0324 (8)0.0027 (7)0.0030 (7)0.0033 (7)
C200.0280 (8)0.0289 (8)0.0386 (9)0.0007 (6)0.0082 (7)0.0083 (7)
C210.0313 (8)0.0233 (7)0.0273 (7)0.0020 (6)0.0105 (6)0.0024 (6)
Geometric parameters (Å, º) top
S1—O11.4359 (11)C9—H9B0.9800
S1—O21.4383 (11)C9—H9C0.9800
S1—C101.7620 (15)C10—C111.389 (2)
S1—C11.7731 (15)C10—C151.391 (2)
S2—O41.4357 (11)C11—C121.392 (2)
S2—O31.4405 (12)C11—H110.9500
S2—C161.7638 (15)C12—C131.375 (3)
S2—C11.7897 (14)C12—H120.9500
O5—C61.3544 (18)C13—C141.385 (3)
O5—C91.435 (2)C13—H130.9500
C1—C21.352 (2)C14—C151.382 (2)
C2—C31.457 (2)C14—H140.9500
C2—H20.9500C15—H150.9500
C3—C81.397 (2)C16—C171.387 (2)
C3—C41.409 (2)C16—C211.392 (2)
C4—C51.379 (2)C17—C181.389 (2)
C4—H40.9500C17—H170.9500
C5—C61.396 (2)C18—C191.377 (3)
C5—H50.9500C18—H180.9500
C6—C71.390 (2)C19—C201.386 (2)
C7—C81.386 (2)C19—H190.9500
C7—H70.9500C20—C211.388 (2)
C8—H80.9500C20—H200.9500
C9—H9A0.9800C21—H210.9500
O1—S1—O2117.52 (7)O5—C9—H9C109.5
O1—S1—C10109.09 (7)H9A—C9—H9C109.5
O2—S1—C10109.05 (7)H9B—C9—H9C109.5
O1—S1—C1109.08 (7)C11—C10—C15121.94 (14)
O2—S1—C1107.57 (7)C11—C10—S1120.33 (12)
C10—S1—C1103.64 (7)C15—C10—S1117.71 (11)
O4—S2—O3117.79 (7)C10—C11—C12117.97 (15)
O4—S2—C16109.75 (7)C10—C11—H11121.0
O3—S2—C16107.20 (7)C12—C11—H11121.0
O4—S2—C1109.11 (7)C13—C12—C11120.72 (16)
O3—S2—C1106.75 (7)C13—C12—H12119.6
C16—S2—C1105.54 (7)C11—C12—H12119.6
C6—O5—C9117.78 (13)C12—C13—C14120.50 (15)
C2—C1—S1127.66 (11)C12—C13—H13119.8
C2—C1—S2116.11 (11)C14—C13—H13119.8
S1—C1—S2116.10 (8)C15—C14—C13120.17 (17)
C1—C2—C3136.46 (14)C15—C14—H14119.9
C1—C2—H2111.8C13—C14—H14119.9
C3—C2—H2111.8C14—C15—C10118.70 (15)
C8—C3—C4117.20 (14)C14—C15—H15120.7
C8—C3—C2114.97 (14)C10—C15—H15120.7
C4—C3—C2127.82 (14)C17—C16—C21121.88 (14)
C5—C4—C3120.49 (14)C17—C16—S2118.33 (12)
C5—C4—H4119.8C21—C16—S2119.53 (11)
C3—C4—H4119.8C16—C17—C18118.24 (15)
C4—C5—C6120.95 (14)C16—C17—H17120.9
C4—C5—H5119.5C18—C17—H17120.9
C6—C5—H5119.5C19—C18—C17120.58 (16)
O5—C6—C7124.39 (15)C19—C18—H18119.7
O5—C6—C5115.88 (14)C17—C18—H18119.7
C7—C6—C5119.73 (14)C18—C19—C20120.75 (15)
C8—C7—C6118.70 (15)C18—C19—H19119.6
C8—C7—H7120.7C20—C19—H19119.6
C6—C7—H7120.7C19—C20—C21119.75 (16)
C7—C8—C3122.86 (15)C19—C20—H20120.1
C7—C8—H8118.6C21—C20—H20120.1
C3—C8—H8118.6C20—C21—C16118.78 (15)
O5—C9—H9A109.5C20—C21—H21120.6
O5—C9—H9B109.5C16—C21—H21120.6
H9A—C9—H9B109.5
O1—S1—C1—C249.65 (15)O1—S1—C10—C119.58 (14)
O2—S1—C1—C2178.13 (13)O2—S1—C10—C11119.97 (12)
C10—S1—C1—C266.46 (15)C1—S1—C10—C11125.68 (12)
O1—S1—C1—S2134.70 (8)O1—S1—C10—C15171.88 (12)
O2—S1—C1—S26.22 (10)O2—S1—C10—C1558.57 (13)
C10—S1—C1—S2109.19 (9)C1—S1—C10—C1555.78 (13)
O4—S2—C1—C2127.17 (12)C15—C10—C11—C120.4 (2)
O3—S2—C1—C21.12 (13)S1—C10—C11—C12178.05 (12)
C16—S2—C1—C2114.95 (12)C10—C11—C12—C130.0 (2)
O4—S2—C1—S149.00 (10)C11—C12—C13—C140.6 (3)
O3—S2—C1—S1177.29 (8)C12—C13—C14—C150.7 (3)
C16—S2—C1—S168.88 (9)C13—C14—C15—C100.3 (3)
S1—C1—C2—C33.5 (3)C11—C10—C15—C140.3 (2)
S2—C1—C2—C3172.18 (15)S1—C10—C15—C14178.21 (12)
C1—C2—C3—C8167.66 (18)O4—S2—C16—C1714.62 (14)
C1—C2—C3—C411.9 (3)O3—S2—C16—C17114.41 (12)
C8—C3—C4—C51.6 (2)C1—S2—C16—C17132.07 (12)
C2—C3—C4—C5177.91 (14)O4—S2—C16—C21171.11 (12)
C3—C4—C5—C60.9 (2)O3—S2—C16—C2159.86 (13)
C9—O5—C6—C73.5 (2)C1—S2—C16—C2153.66 (13)
C9—O5—C6—C5176.81 (16)C21—C16—C17—C181.1 (2)
C4—C5—C6—O5177.80 (14)S2—C16—C17—C18172.98 (13)
C4—C5—C6—C72.4 (2)C16—C17—C18—C190.6 (3)
O5—C6—C7—C8178.93 (16)C17—C18—C19—C200.3 (3)
C5—C6—C7—C81.3 (3)C18—C19—C20—C210.7 (2)
C6—C7—C8—C31.3 (3)C19—C20—C21—C160.2 (2)
C4—C3—C8—C72.8 (3)C17—C16—C21—C200.8 (2)
C2—C3—C8—C7176.83 (16)S2—C16—C21—C20173.31 (12)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C16–C21 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···Cg1i0.952.563.4835 (17)164
C14—H14···O1ii0.952.513.229 (2)133
C21—H21···O3i0.952.503.2695 (19)138
C20—H20···O4iii0.952.593.453 (2)151
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC21H18O5S2
Mr414.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.8291 (1), 21.6666 (4), 12.0332 (2)
β (°) 107.8449 (10)
V3)1942.99 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.33 × 0.26 × 0.21
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15675, 4445, 3908
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.08
No. of reflections4445
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.38

Computer programs: COLLECT (Hooft, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C16–C21 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···Cg1i0.952.563.4835 (17)164
C14—H14···O1ii0.952.513.229 (2)133
C21—H21···O3i0.952.503.2695 (19)138
C20—H20···O4iii0.952.593.453 (2)151
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x1, y, z.
 

Acknowledgements

The authors thank Professor Peter Klüfers for generous allocation of diffractometer time.

References

First citationAlba, A. R., Companyo, X. & Rios, R. (2010). Chem. Soc. Rev. 39, 2018–2033.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDe Lucchi, O., Pasquato, L., Modena, G. & Valle, G. (1985). Z. Kristallogr. 170, 267–274.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNajera, C. & Yus, M. (1999). Tetrahedron, 55, 10547–10658.  CAS Google Scholar
First citationNielsen, M., Jacobsen, C. B., Holub, N., Paixao, M. W. & Jorgensen, K. A. J. (2010). Angew. Chem. Int. Ed. 49, 2668–2679.  CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrilezhaeva, E. N. (2000). Russ. Chem. Rev. 69, 367–408.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimpkins, N. S. (1993). Sulfones in Organic Synthesis. Oxford: Pergamon Press.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSulzer-Moss, S., Alexakis, A., Mareda, J., Bollot, G., Bernardinelli, G. & Filinchuk, Y. (2009). Chem. Eur. J. 15, 3204–3220.  Web of Science PubMed Google Scholar
First citationZhu, Q. & Lu, Y. (2009). Aust. J. Chem. 62, 951–955.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds