organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o426-o427

4-{2-[4-(Di­methyl­amino)­phen­yl]ethen­yl}-1-methyl­pyridinium 2-amino-3,5-di­methyl­benzene­sulfonate monohydrate

aDepartment of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China, and bState Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
*Correspondence e-mail: yangz@ustb.edu.cn

(Received 18 December 2011; accepted 9 January 2012; online 18 January 2012)

In the crystal structure of the title compound, C16H19N2+·C8H10NO3S·H2O, the cations and anions are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming alternating layers parallel to the ac plane. An intra­molecular N—H⋯O hydrogen bond occurs in the anion. The crystal structure is further stabilized by ππ inter­actions, with centroid–centroid distances of 3.7240 (9) and 3.6803 (8) Å.

Related literature

For the synthesis, see: Okada et al. (1990[Okada, S., Masaki, I., Matsuda, H., Nakanishi, H., Kato, M., Muramatsu, R. & Otsuka, M. (1990). Jpn J. Appl. Phys. 29, 1112-1115.]). For background to non-linear optical materials, see: Gu et al. (2003[Gu, C., Xu, Y., Liu, Y. S., Pan, J. J., Zhou, F. Q. & He, H. (2003). Opt. Mater. 23, 219-227.]); Dorrer (2006[Dorrer, C. (2006). Ieee J. Sel. Top. Quantum Electron. 12, 843-858.]); Yang, Mutter et al. (2007[Yang, Z., Mutter, L., Ruiz, B., Aravazhi, S., Stillhart, M., Jazbinsek, M., Gramlich, V. & Günter, P. (2007). Adv. Funct. Mater. 17, 2018-2023.]); Ruiz et al. (2006[Ruiz, B., Yang, Z., Gramlich, V., Jazbinsek, M. & Günter, P. (2006). J. Mater. Chem. 16, 2839-2842.]). For the effects of different substituents of benzene sulfonate on its non-linear optical properties, see: Okada et al. (2003[Okada, S., Nogi, K., Anwar, Tsuji, K., Duan X. M., Oikawa, H., Matsuda, H. & Nakanishi H. (2003). Jpn J. Appl. Phys. 42, 668-671.]); Yang, Wörle et al. (2007[Yang, Z., Wörle, M., Mutter, L., Jazbinsek, M. & Günter, P. (2007). Cryst. Growth Des. 7, 83-86.]); Ogawa et al. (2008[Ogawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, 310, 836-842.]), Yang et al. (2005[Yang, Z., Aravazhi, S., Schneider, A., Seiler, P., Jazbinsek, M. & Günter, P. (2005). Adv. Funct. Mater. 15, 1072-1075.]), Yang, Jazbinsek et al., (2007[Yang, Z., Jazbinsek M., Ruiz B., Aravazhi S., Gramlich V. & Günter, P. (2007). Chem. Mater. 19, 3512-3518.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19N2+·C8H10NO3S·H2O

  • Mr = 457.58

  • Triclinic, [P \overline 1]

  • a = 8.7430 (17) Å

  • b = 9.5463 (19) Å

  • c = 14.109 (3) Å

  • α = 95.00 (3)°

  • β = 101.89 (3)°

  • γ = 96.29 (3)°

  • V = 1138.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 173 K

  • 0.30 × 0.24 × 0.23 mm

Data collection
  • Rigaku MM007HF + CCD (Saturn724+) diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.713, Tmax = 1.000

  • 8126 measured reflections

  • 3986 independent reflections

  • 3722 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.122

  • S = 1.10

  • 3986 reflections

  • 294 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O3 0.84 2.01 2.854 (2) 179
O4—H4A⋯O2i 0.84 2.04 2.874 (2) 172
N3—H3A⋯O1 0.89 1.96 2.732 (2) 144
N3—H3B⋯O4ii 0.89 2.27 3.110 (3) 158
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There has been intensive research on the development of nonlinear optical materials for its potential application in high-speed and high-density data processing, storage and telecommunications. (Gu et al., 2003; Dorrer, 2006; Yang, Mutter et al., 2007). The title compound was synthesized as part of our continuing research on the nonlinear optical properties of DAS (4-N,N-dimethylamino-4'-N'-methyl-stilbazolium) derivatives. (Okada et al., 2003; Ogawa et al., 2008; Yang et al., 2005; Ruiz et al., 2006; Yang Wörle et al., 2007; Yang, Jazbinsek et al., 2007). Fig. 1 illustrates the molecular structure of organic salt with the atomic numbering scheme. The bond distances and angles in both the cation and anion are in normal ranges (Allen et al., 1987). The unit cell of the title compound contains two asymmetric units, each consisting of one C16H19N2+ cation, one C8H5O7S- anion and one water molecule. In the crystal structure, atoms H3A and H3B are involved in N—H—O interactions, while atoms H4A and H4B are involved O—H—O hydrogen bonds. The distance of H3A—O1 and H3B—O4 are 1.96 Å and 2.27 Å, while the distance of H4B—O2 and H4B—O3 are 2.01 Å and 2.04 Å. The cations and anions are stacked in a parallel manner and form alternating layers. The crystal structure is further stabilized by ππ interactions with a Cg1···Cg1 and a Cg1···Cg2 separation of 3.6803 (8) Å and 3.7240 (9) Å, respectively (Cg1 and Cg2 are the centroids of the N2/C11—C15 pyridine ring and C3—C8 benzene ring, respectively).

Related literature top

For the synthesis, see: Okada et al. (1990). For background to non-linear optical materials, see: Gu et al. (2003); Dorrer (2006); Yang, Mutter et al. (2007); Ruiz et al. (2006). For the effects of different substituents of benzene sulfonate on its non-linear optical properties, see: Okada et al. (2003); Yang, Wörle et al. (2007); Ogawa et al. (2008), Yang et al. (2005), Yang, Jazbinsek et al., (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

4-N,N-dimethylamino-4'-N'-methyl-stilbazolium 2-amino-3,5-dimethylbenzenesulfonate was prepared by the metathesization of 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium iodide (Okada et al., 1990) with the sodium salt of the 2-amino-3,5-dimethylbenzenesulfonic acid. The title salt was then recrystallized from methanol to get high purity material for crystal growth. 4-{2-[4-(Dimethylamino)phenyl]ethenyl}-1-methylpyridinium 2-amino-3,5-dimethylbenzenesulfonate monohydrate: yield 65%; 1H-NMR (400 MHz, DMSO-d6): delta=8.68 (d, 2H, J= 6.8 Hz, C5H4N), 8.04(d, 2H, J= 6.8 Hz, C5H4N), 7.92 (d, 1H, J=16.0 Hz, CH), 7.60(d, 2H, J= 8.4 Hz, C6H4), 7.18 (m, 2H, J= 16.0 Hz, CH+C6H2SO3-), 6.80 (d, 2H, J= 8.8 Hz, C6H4), 6.73(s, 1H, C6H4SO3-),5.18(s, 2H, NH2), 4.16(s, 3H, NMe), 3.01 (s, 6H, NMe2), 2.10(s, 3H, Me), 2.01(s, 3H, Me). C, H, N analysis calcd. for C24H24N2O7S: C 65.58, H 6.65, N 9.56; found: C 65.60,H 6.67, N 9.53. Crystals were obtained by slow cooling method from 45OC to room temperature in methanol: first the saturated solution of the title compound in methanol at 45°C was prepared. Spontaneous nucleation could be observed after cooling down the saturated solution. Then the temperature was increased to dissolve most of the nuclei and made sure that only one or two nucleated crystals remained undissolved. After that, large crystals with good quality for X-Ray measurements could be obtained by slow cooling the solution at the temperature of about 34°C.

Refinement top

All H atoms were located geometrically (methyl C—H = 0.98 Å, aromatic C—H = 0.95 Å, N—H =0.89 Å and O—H = 0.84 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title organic salt, viewed down the y axis. Hydrogen bonds are shown as dashed lines.
4-{2-[4-(Dimethylamino)phenyl]ethenyl}-1-methylpyridinium 2-amino-3,5-dimethylbenzenesulfonate monohydrate top
Crystal data top
C16H19N2+·C8H10NO3S·H2OZ = 2
Mr = 457.58F(000) = 488
Triclinic, P1Dx = 1.335 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7430 (17) ÅCell parameters from 4072 reflections
b = 9.5463 (19) Åθ = 1.5–27.5°
c = 14.109 (3) ŵ = 0.18 mm1
α = 95.00 (3)°T = 173 K
β = 101.89 (3)°Block, red
γ = 96.29 (3)°0.30 × 0.24 × 0.23 mm
V = 1138.1 (4) Å3
Data collection top
Rigaku MM007HF + CCD (Saturn724+)
diffractometer
3986 independent reflections
Radiation source: Rotating Anode3722 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.032
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 2.8°
ω scans at fixed χ = 45°h = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
k = 1110
Tmin = 0.713, Tmax = 1.000l = 1316
8126 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.5973P]
where P = (Fo2 + 2Fc2)/3
3986 reflections(Δ/σ)max < 0.001
294 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C16H19N2+·C8H10NO3S·H2Oγ = 96.29 (3)°
Mr = 457.58V = 1138.1 (4) Å3
Triclinic, P1Z = 2
a = 8.7430 (17) ÅMo Kα radiation
b = 9.5463 (19) ŵ = 0.18 mm1
c = 14.109 (3) ÅT = 173 K
α = 95.00 (3)°0.30 × 0.24 × 0.23 mm
β = 101.89 (3)°
Data collection top
Rigaku MM007HF + CCD (Saturn724+)
diffractometer
3986 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
3722 reflections with I > 2σ(I)
Tmin = 0.713, Tmax = 1.000Rint = 0.032
8126 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.10Δρmax = 0.27 e Å3
3986 reflectionsΔρmin = 0.36 e Å3
294 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35960 (6)0.01854 (5)0.64442 (4)0.02452 (16)
O10.25159 (18)0.09428 (18)0.55886 (11)0.0414 (4)
O20.47733 (18)0.10464 (18)0.68633 (12)0.0413 (4)
O30.4275 (2)0.12009 (16)0.62811 (12)0.0415 (4)
O40.33542 (17)0.21476 (16)0.44082 (11)0.0359 (4)
H4B0.36420.18700.49580.043*
H4A0.39600.18020.40870.043*
N10.1077 (2)0.43155 (18)0.10981 (14)0.0323 (4)
N21.14453 (19)0.57343 (18)0.40983 (12)0.0250 (4)
N30.0089 (2)0.02843 (19)0.62299 (13)0.0313 (4)
H3A0.04350.05630.57840.038*
H3B0.11140.05970.61150.038*
C10.1983 (3)0.5453 (2)0.08007 (17)0.0340 (5)
H1C0.18260.61980.13480.051*
H1A0.31050.50780.06010.051*
H1B0.16300.58490.02530.051*
C20.1884 (3)0.2877 (2)0.0917 (2)0.0419 (6)
H2A0.15060.23450.04050.063*
H2C0.30220.28960.07080.063*
H2B0.16700.24170.15170.063*
C30.0515 (2)0.4578 (2)0.14488 (14)0.0246 (4)
C40.1328 (2)0.5964 (2)0.15746 (15)0.0272 (4)
H40.07610.67330.14070.033*
C50.2934 (2)0.6218 (2)0.19382 (15)0.0284 (5)
H50.34470.71630.20120.034*
C60.3837 (2)0.5134 (2)0.22030 (14)0.0249 (4)
C70.3029 (2)0.3751 (2)0.20748 (14)0.0261 (4)
H70.36000.29860.22450.031*
C80.1428 (2)0.3481 (2)0.17085 (15)0.0265 (4)
H80.09220.25320.16280.032*
C90.5511 (2)0.5491 (2)0.26169 (14)0.0264 (4)
H90.59220.64650.26760.032*
C100.6549 (2)0.4597 (2)0.29268 (15)0.0267 (4)
H100.61640.36160.28700.032*
C110.8219 (2)0.5027 (2)0.33428 (14)0.0249 (4)
C120.8933 (2)0.6450 (2)0.35356 (15)0.0276 (4)
H120.83080.71940.34100.033*
C131.0521 (2)0.6765 (2)0.39030 (14)0.0266 (4)
H131.09840.77290.40240.032*
C141.0799 (2)0.4359 (2)0.39385 (14)0.0268 (4)
H141.14510.36370.40800.032*
C150.9215 (2)0.3997 (2)0.35749 (15)0.0269 (4)
H150.87820.30250.34780.032*
C161.3155 (2)0.6116 (2)0.45006 (16)0.0323 (5)
H16C1.33280.65520.51750.049*
H16B1.35930.67890.41090.049*
H16A1.36780.52600.44840.049*
C170.1655 (2)0.0252 (2)0.77634 (18)0.0343 (5)
H17A0.20240.08860.72800.051*
H17C0.19680.05330.83730.051*
H17B0.21230.07250.75180.051*
C180.0114 (2)0.0350 (2)0.79461 (16)0.0264 (4)
C190.0835 (2)0.00344 (19)0.71531 (14)0.0237 (4)
C200.2495 (2)0.01369 (19)0.73519 (14)0.0228 (4)
C210.3380 (2)0.0561 (2)0.82936 (15)0.0257 (4)
H210.44960.06280.84070.031*
C220.2692 (2)0.0888 (2)0.90665 (15)0.0280 (5)
C230.3656 (3)0.1396 (3)1.00757 (17)0.0408 (6)
H23A0.47550.12411.01080.061*
H23C0.32350.08681.05510.061*
H23B0.36070.24101.02250.061*
C240.1045 (3)0.0758 (2)0.88675 (16)0.0288 (5)
H240.05410.09590.93910.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0209 (3)0.0246 (3)0.0281 (3)0.00316 (19)0.0056 (2)0.0024 (2)
O10.0290 (8)0.0526 (10)0.0371 (9)0.0016 (7)0.0053 (7)0.0147 (8)
O20.0332 (9)0.0554 (10)0.0448 (10)0.0240 (8)0.0159 (7)0.0172 (8)
O30.0585 (11)0.0287 (8)0.0407 (9)0.0035 (7)0.0239 (8)0.0034 (7)
O40.0296 (8)0.0451 (9)0.0367 (9)0.0135 (7)0.0090 (7)0.0098 (7)
N10.0238 (9)0.0268 (9)0.0430 (11)0.0035 (7)0.0011 (8)0.0057 (8)
N20.0225 (9)0.0290 (9)0.0237 (9)0.0037 (7)0.0060 (7)0.0018 (7)
N30.0206 (9)0.0381 (10)0.0331 (10)0.0039 (7)0.0018 (7)0.0027 (8)
C10.0278 (11)0.0359 (12)0.0390 (13)0.0078 (9)0.0047 (10)0.0100 (10)
C20.0283 (12)0.0344 (13)0.0567 (16)0.0016 (10)0.0028 (11)0.0071 (11)
C30.0235 (10)0.0276 (10)0.0230 (10)0.0034 (8)0.0054 (8)0.0045 (8)
C40.0268 (11)0.0246 (10)0.0316 (11)0.0062 (8)0.0071 (9)0.0050 (8)
C50.0289 (11)0.0231 (10)0.0329 (11)0.0017 (8)0.0070 (9)0.0029 (8)
C60.0241 (10)0.0294 (11)0.0224 (10)0.0043 (8)0.0080 (8)0.0011 (8)
C70.0275 (11)0.0258 (10)0.0272 (10)0.0085 (8)0.0074 (8)0.0050 (8)
C80.0282 (11)0.0230 (10)0.0281 (11)0.0013 (8)0.0066 (9)0.0024 (8)
C90.0270 (11)0.0249 (10)0.0279 (11)0.0024 (8)0.0086 (9)0.0019 (8)
C100.0259 (10)0.0247 (10)0.0303 (11)0.0021 (8)0.0085 (9)0.0024 (8)
C110.0265 (10)0.0275 (10)0.0227 (10)0.0048 (8)0.0087 (8)0.0045 (8)
C120.0286 (11)0.0272 (11)0.0278 (11)0.0076 (8)0.0057 (9)0.0046 (8)
C130.0284 (11)0.0242 (10)0.0269 (10)0.0032 (8)0.0061 (8)0.0013 (8)
C140.0290 (11)0.0263 (10)0.0270 (10)0.0086 (8)0.0078 (9)0.0033 (8)
C150.0280 (11)0.0233 (10)0.0306 (11)0.0031 (8)0.0087 (9)0.0047 (8)
C160.0222 (11)0.0418 (13)0.0310 (11)0.0036 (9)0.0029 (9)0.0005 (9)
C170.0238 (11)0.0316 (12)0.0502 (14)0.0053 (9)0.0119 (10)0.0081 (10)
C180.0232 (10)0.0196 (10)0.0382 (12)0.0044 (8)0.0089 (9)0.0059 (8)
C190.0228 (10)0.0179 (9)0.0307 (11)0.0033 (8)0.0049 (8)0.0058 (8)
C200.0214 (10)0.0179 (9)0.0290 (10)0.0037 (7)0.0042 (8)0.0044 (8)
C210.0204 (10)0.0245 (10)0.0313 (11)0.0033 (8)0.0027 (8)0.0042 (8)
C220.0315 (11)0.0239 (10)0.0283 (11)0.0062 (8)0.0042 (9)0.0039 (8)
C230.0431 (14)0.0459 (14)0.0325 (12)0.0128 (11)0.0040 (10)0.0002 (10)
C240.0339 (11)0.0236 (10)0.0335 (11)0.0076 (9)0.0152 (9)0.0051 (9)
Geometric parameters (Å, º) top
S1—O31.4470 (16)C9—C101.347 (3)
S1—O11.4492 (17)C9—H90.9500
S1—O21.4507 (16)C10—C111.455 (3)
S1—C201.779 (2)C10—H100.9500
O4—H4B0.8400C11—C151.399 (3)
O4—H4A0.8401C11—C121.411 (3)
N1—C31.365 (3)C12—C131.368 (3)
N1—C21.450 (3)C12—H120.9500
N1—C11.454 (3)C13—H130.9500
N2—C131.352 (3)C14—C151.368 (3)
N2—C141.352 (3)C14—H140.9500
N2—C161.478 (3)C15—H150.9500
N3—C191.373 (3)C16—H16C0.9800
N3—H3A0.8902C16—H16B0.9800
N3—H3B0.8900C16—H16A0.9800
C1—H1C0.9800C17—C181.505 (3)
C1—H1A0.9800C17—H17A0.9800
C1—H1B0.9800C17—H17C0.9800
C2—H2A0.9800C17—H17B0.9800
C2—H2C0.9800C18—C241.382 (3)
C2—H2B0.9800C18—C191.419 (3)
C3—C41.410 (3)C19—C201.411 (3)
C3—C81.413 (3)C20—C211.394 (3)
C4—C51.379 (3)C21—C221.379 (3)
C4—H40.9500C21—H210.9500
C5—C61.399 (3)C22—C241.399 (3)
C5—H50.9500C22—C231.506 (3)
C6—C71.405 (3)C23—H23A0.9800
C6—C91.451 (3)C23—H23C0.9800
C7—C81.376 (3)C23—H23B0.9800
C7—H70.9500C24—H240.9500
C8—H80.9500
O3—S1—O1113.26 (11)C15—C11—C12116.18 (19)
O3—S1—O2112.91 (11)C15—C11—C10119.85 (18)
O1—S1—O2111.58 (10)C12—C11—C10123.98 (18)
O3—S1—C20105.38 (9)C13—C12—C11120.40 (19)
O1—S1—C20107.64 (9)C13—C12—H12119.8
O2—S1—C20105.41 (9)C11—C12—H12119.8
H4B—O4—H4A102.7N2—C13—C12121.43 (19)
C3—N1—C2120.82 (18)N2—C13—H13119.3
C3—N1—C1120.90 (17)C12—C13—H13119.3
C2—N1—C1117.98 (17)N2—C14—C15120.57 (19)
C13—N2—C14119.89 (17)N2—C14—H14119.7
C13—N2—C16119.89 (17)C15—C14—H14119.7
C14—N2—C16120.22 (17)C14—C15—C11121.51 (19)
C19—N3—H3A113.8C14—C15—H15119.2
C19—N3—H3B123.0C11—C15—H15119.2
H3A—N3—H3B117.1N2—C16—H16C109.5
N1—C1—H1C109.5N2—C16—H16B109.5
N1—C1—H1A109.5H16C—C16—H16B109.5
H1C—C1—H1A109.5N2—C16—H16A109.5
N1—C1—H1B109.5H16C—C16—H16A109.5
H1C—C1—H1B109.5H16B—C16—H16A109.5
H1A—C1—H1B109.5C18—C17—H17A109.5
N1—C2—H2A109.5C18—C17—H17C109.5
N1—C2—H2C109.5H17A—C17—H17C109.5
H2A—C2—H2C109.5C18—C17—H17B109.5
N1—C2—H2B109.5H17A—C17—H17B109.5
H2A—C2—H2B109.5H17C—C17—H17B109.5
H2C—C2—H2B109.5C24—C18—C19119.59 (18)
N1—C3—C4121.40 (18)C24—C18—C17121.22 (19)
N1—C3—C8121.85 (18)C19—C18—C17119.19 (19)
C4—C3—C8116.75 (18)N3—C19—C20123.04 (18)
C5—C4—C3120.87 (19)N3—C19—C18119.28 (18)
C5—C4—H4119.6C20—C19—C18117.60 (18)
C3—C4—H4119.6C21—C20—C19120.54 (18)
C4—C5—C6122.42 (19)C21—C20—S1115.75 (15)
C4—C5—H5118.8C19—C20—S1123.67 (15)
C6—C5—H5118.8C22—C21—C20122.29 (19)
C5—C6—C7116.73 (18)C22—C21—H21118.9
C5—C6—C9119.24 (18)C20—C21—H21118.9
C7—C6—C9124.00 (19)C21—C22—C24116.84 (19)
C8—C7—C6121.48 (19)C21—C22—C23122.0 (2)
C8—C7—H7119.3C24—C22—C23121.1 (2)
C6—C7—H7119.3C22—C23—H23A109.5
C7—C8—C3121.73 (18)C22—C23—H23C109.5
C7—C8—H8119.1H23A—C23—H23C109.5
C3—C8—H8119.1C22—C23—H23B109.5
C10—C9—C6127.36 (19)H23A—C23—H23B109.5
C10—C9—H9116.3H23C—C23—H23B109.5
C6—C9—H9116.3C18—C24—C22123.12 (19)
C9—C10—C11124.62 (19)C18—C24—H24118.4
C9—C10—H10117.7C22—C24—H24118.4
C11—C10—H10117.7
C2—N1—C3—C4176.3 (2)N2—C14—C15—C111.0 (3)
C1—N1—C3—C42.7 (3)C12—C11—C15—C142.0 (3)
C2—N1—C3—C84.1 (3)C10—C11—C15—C14177.92 (19)
C1—N1—C3—C8177.65 (19)C24—C18—C19—N3175.99 (18)
N1—C3—C4—C5179.38 (19)C17—C18—C19—N33.2 (3)
C8—C3—C4—C50.3 (3)C24—C18—C19—C200.8 (3)
C3—C4—C5—C60.3 (3)C17—C18—C19—C20179.99 (17)
C4—C5—C6—C70.5 (3)N3—C19—C20—C21175.45 (18)
C4—C5—C6—C9177.54 (19)C18—C19—C20—C211.2 (3)
C5—C6—C7—C80.1 (3)N3—C19—C20—S12.0 (3)
C9—C6—C7—C8177.76 (19)C18—C19—C20—S1178.72 (14)
C6—C7—C8—C30.4 (3)O3—S1—C20—C2172.98 (17)
N1—C3—C8—C7179.06 (19)O1—S1—C20—C21165.88 (15)
C4—C3—C8—C70.6 (3)O2—S1—C20—C2146.66 (17)
C5—C6—C9—C10178.8 (2)O3—S1—C20—C19104.61 (18)
C7—C6—C9—C100.9 (3)O1—S1—C20—C1916.53 (19)
C6—C9—C10—C11179.54 (19)O2—S1—C20—C19135.75 (17)
C9—C10—C11—C15175.28 (19)C19—C20—C21—C220.4 (3)
C9—C10—C11—C124.7 (3)S1—C20—C21—C22178.10 (15)
C15—C11—C12—C131.8 (3)C20—C21—C22—C240.8 (3)
C10—C11—C12—C13178.17 (19)C20—C21—C22—C23177.79 (19)
C14—N2—C13—C120.6 (3)C19—C18—C24—C220.4 (3)
C16—N2—C13—C12179.62 (18)C17—C18—C24—C22178.75 (18)
C11—C12—C13—N20.5 (3)C21—C22—C24—C181.2 (3)
C13—N2—C14—C150.4 (3)C23—C22—C24—C18177.38 (19)
C16—N2—C14—C15179.38 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O30.842.012.854 (2)179
O4—H4A···O2i0.842.042.874 (2)172
N3—H3A···O10.891.962.732 (2)144
N3—H3B···O4ii0.892.273.110 (3)158
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H19N2+·C8H10NO3S·H2O
Mr457.58
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.7430 (17), 9.5463 (19), 14.109 (3)
α, β, γ (°)95.00 (3), 101.89 (3), 96.29 (3)
V3)1138.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.30 × 0.24 × 0.23
Data collection
DiffractometerRigaku MM007HF + CCD (Saturn724+)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.713, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8126, 3986, 3722
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.122, 1.10
No. of reflections3986
No. of parameters294
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.36

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O30.842.012.854 (2)178.5
O4—H4A···O2i0.842.042.874 (2)171.8
N3—H3A···O10.891.962.732 (2)143.8
N3—H3B···O4ii0.892.273.110 (3)157.5
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1.
 

Acknowledgements

The authors thank the National Natural Science Foundation (grant No. 50803005), the Fundamental Research Funds for the Central Universities, the Scientific Research Foundation for Returned Overseas Chinese Scholars and the National Natural Science Fund for Distinguished Young Scholars (grant No. 51025313).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDorrer, C. (2006). Ieee J. Sel. Top. Quantum Electron. 12, 843–858.  CrossRef CAS Google Scholar
First citationGu, C., Xu, Y., Liu, Y. S., Pan, J. J., Zhou, F. Q. & He, H. (2003). Opt. Mater. 23, 219–227.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOgawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, 310, 836–842.  Web of Science CrossRef CAS Google Scholar
First citationOkada, S., Masaki, I., Matsuda, H., Nakanishi, H., Kato, M., Muramatsu, R. & Otsuka, M. (1990). Jpn J. Appl. Phys. 29, 1112–1115.  CSD CrossRef CAS Web of Science Google Scholar
First citationOkada, S., Nogi, K., Anwar, Tsuji, K., Duan X. M., Oikawa, H., Matsuda, H. & Nakanishi H. (2003). Jpn J. Appl. Phys. 42, 668–671.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRuiz, B., Yang, Z., Gramlich, V., Jazbinsek, M. & Günter, P. (2006). J. Mater. Chem. 16, 2839–2842.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Z., Aravazhi, S., Schneider, A., Seiler, P., Jazbinsek, M. & Günter, P. (2005). Adv. Funct. Mater. 15, 1072–1075.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, Z., Jazbinsek M., Ruiz B., Aravazhi S., Gramlich V. & Günter, P. (2007). Chem. Mater. 19, 3512–3518.  Google Scholar
First citationYang, Z., Mutter, L., Ruiz, B., Aravazhi, S., Stillhart, M., Jazbinsek, M., Gramlich, V. & Günter, P. (2007). Adv. Funct. Mater. 17, 2018–2023.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, Z., Wörle, M., Mutter, L., Jazbinsek, M. & Günter, P. (2007). Cryst. Growth Des. 7, 83–86.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o426-o427
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds