organic compounds
3-Bromopyridin-2-amine
aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, PO Wits 2050, South Africa
*Correspondence e-mail: andreas.lemmerer@wits.ac.za
In the 5H5BrN2, molecules assemble via pairs of N—H⋯N hydrogen bonds into inversion dimers using only the syn H atom on the amine group. These dimers then assemble further into two-dimensional layers via type I C—Br⋯Br [Br⋯Br = 3.693 (s6) Å] halogen bonding along the (102) plane.
of the title compound, CRelated literature
For halogen bonding, see: Metrangelo et al. (2005). For a related structure, see: Hu et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811055541/zj2050sup1.cif
contains datablocks global, I. DOI:Supporting information file. DOI: 10.1107/S1600536811055541/zj2050Isup2.mol
Structure factors: contains datablock I. DOI: 10.1107/S1600536811055541/zj2050Isup3.hkl
Supporting information file. DOI: 10.1107/S1600536811055541/zj2050Isup4.cml
Crystals were grown by slow evaporation of a methanol solution of the title compound, 0.200 g (1.16 mmol) in 8 ml of methanol, and afforded light brown plates after three days of slow evaporation at ambient conditions.
The aromatic C-bound H atoms were geometrically placed, C—H bond length of 0.95 Å and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located in the difference map and coordinates as well as isotropic displacement parameters refined freely.
Data collection: APEX2 (Bruker, 2005); cell
SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).C5H5BrN2 | F(000) = 336 |
Mr = 173.02 | Dx = 1.945 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2888 reflections |
a = 12.2179 (6) Å | θ = 3.2–28.3° |
b = 4.0007 (2) Å | µ = 6.84 mm−1 |
c = 12.8451 (6) Å | T = 173 K |
β = 109.731 (3)° | Plate, brown |
V = 591.01 (5) Å3 | 0.5 × 0.4 × 0.09 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 1200 reflections with I > 2σ(I) |
ω scans | Rint = 0.093 |
Absorption correction: integration (XPREP; Bruker, 2004) | θmax = 28.0°, θmin = 1.8° |
Tmin = 0.131, Tmax = 0.578 | h = −16→15 |
5622 measured reflections | k = −5→5 |
1428 independent reflections | l = −16→16 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.034 | w = 1/[σ2(Fo2) + (0.0479P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.082 | (Δ/σ)max < 0.001 |
S = 0.99 | Δρmax = 1.04 e Å−3 |
1428 reflections | Δρmin = −0.77 e Å−3 |
81 parameters |
C5H5BrN2 | V = 591.01 (5) Å3 |
Mr = 173.02 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.2179 (6) Å | µ = 6.84 mm−1 |
b = 4.0007 (2) Å | T = 173 K |
c = 12.8451 (6) Å | 0.5 × 0.4 × 0.09 mm |
β = 109.731 (3)° |
Bruker SMART APEXII CCD area-detector diffractometer | 1428 independent reflections |
Absorption correction: integration (XPREP; Bruker, 2004) | 1200 reflections with I > 2σ(I) |
Tmin = 0.131, Tmax = 0.578 | Rint = 0.093 |
5622 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | Δρmax = 1.04 e Å−3 |
1428 reflections | Δρmin = −0.77 e Å−3 |
81 parameters |
Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C2 | 0.8182 (2) | 0.4235 (7) | 0.4926 (2) | 0.0288 (6) | |
C3 | 0.7048 (2) | 0.3668 (6) | 0.4912 (2) | 0.0267 (5) | |
C4 | 0.6702 (2) | 0.4704 (7) | 0.5771 (2) | 0.0309 (6) | |
H4 | 0.5934 | 0.4287 | 0.5763 | 0.037* | |
C5 | 0.7499 (3) | 0.6374 (7) | 0.6653 (2) | 0.0327 (6) | |
H5 | 0.729 | 0.7168 | 0.7258 | 0.039* | |
C6 | 0.8602 (3) | 0.6833 (7) | 0.6615 (2) | 0.0334 (6) | |
H6 | 0.915 | 0.7976 | 0.7215 | 0.04* | |
N1 | 0.8956 (2) | 0.5781 (6) | 0.5793 (2) | 0.0325 (5) | |
N2 | 0.8547 (3) | 0.3359 (7) | 0.4077 (2) | 0.0386 (6) | |
Br1 | 0.59557 (2) | 0.15619 (6) | 0.36599 (2) | 0.03201 (13) | |
H2S | 0.923 (3) | 0.345 (7) | 0.415 (3) | 0.030 (9)* | |
H2A | 0.820 (4) | 0.210 (8) | 0.362 (4) | 0.043 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0309 (14) | 0.0294 (12) | 0.0253 (12) | 0.0002 (11) | 0.0084 (11) | 0.0031 (10) |
C3 | 0.0271 (14) | 0.0256 (12) | 0.0238 (12) | 0.0031 (9) | 0.0039 (11) | 0.0034 (9) |
C4 | 0.0282 (14) | 0.0331 (13) | 0.0319 (13) | 0.0070 (11) | 0.0107 (11) | 0.0076 (12) |
C5 | 0.0359 (16) | 0.0376 (15) | 0.0250 (13) | 0.0059 (11) | 0.0109 (12) | 0.0036 (10) |
C6 | 0.0343 (16) | 0.0367 (15) | 0.0273 (13) | −0.0010 (12) | 0.0079 (12) | 0.0002 (11) |
N1 | 0.0286 (13) | 0.0408 (12) | 0.0266 (11) | −0.0041 (10) | 0.0073 (10) | −0.0022 (10) |
N2 | 0.0303 (15) | 0.0568 (18) | 0.0309 (13) | −0.0112 (12) | 0.0134 (12) | −0.0120 (12) |
Br1 | 0.02548 (18) | 0.03463 (19) | 0.03161 (18) | 0.00029 (10) | 0.00396 (12) | −0.00178 (10) |
C2—N1 | 1.344 (4) | C5—C6 | 1.378 (5) |
C2—N2 | 1.357 (4) | C5—H5 | 0.95 |
C2—C3 | 1.398 (4) | C6—N1 | 1.336 (4) |
C3—C4 | 1.372 (4) | C6—H6 | 0.95 |
C3—Br1 | 1.904 (3) | N2—H2S | 0.81 (4) |
C4—C5 | 1.390 (4) | N2—H2A | 0.78 (4) |
C4—H4 | 0.95 | ||
N1—C2—N2 | 117.1 (3) | C6—C5—H5 | 121.3 |
N1—C2—C3 | 120.2 (2) | C4—C5—H5 | 121.3 |
N2—C2—C3 | 122.7 (3) | N1—C6—C5 | 124.6 (3) |
C4—C3—C2 | 120.8 (3) | N1—C6—H6 | 117.7 |
C4—C3—Br1 | 119.7 (2) | C5—C6—H6 | 117.7 |
C2—C3—Br1 | 119.5 (2) | C6—N1—C2 | 118.4 (2) |
C3—C4—C5 | 118.7 (3) | C2—N2—H2S | 120 (3) |
C3—C4—H4 | 120.6 | C2—N2—H2A | 122 (3) |
C5—C4—H4 | 120.6 | H2S—N2—H2A | 113 (4) |
C6—C5—C4 | 117.3 (3) | ||
N1—C2—C3—C4 | 0.7 (4) | C3—C4—C5—C6 | −1.1 (4) |
N2—C2—C3—C4 | −177.6 (3) | C4—C5—C6—N1 | −0.1 (4) |
N1—C2—C3—Br1 | 178.6 (2) | C5—C6—N1—C2 | 1.7 (4) |
N2—C2—C3—Br1 | 0.3 (4) | N2—C2—N1—C6 | 176.5 (3) |
C2—C3—C4—C5 | 0.9 (4) | C3—C2—N1—C6 | −1.9 (4) |
Br1—C3—C4—C5 | −177.04 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2S···N1i | 0.81 (4) | 2.21 (4) | 3.019 (4) | 173 (3) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C5H5BrN2 |
Mr | 173.02 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 12.2179 (6), 4.0007 (2), 12.8451 (6) |
β (°) | 109.731 (3) |
V (Å3) | 591.01 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 6.84 |
Crystal size (mm) | 0.5 × 0.4 × 0.09 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Integration (XPREP; Bruker, 2004) |
Tmin, Tmax | 0.131, 0.578 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5622, 1428, 1200 |
Rint | 0.093 |
(sin θ/λ)max (Å−1) | 0.660 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.082, 0.99 |
No. of reflections | 1428 |
No. of parameters | 81 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.04, −0.77 |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2S···N1i | 0.81 (4) | 2.21 (4) | 3.019 (4) | 173 (3) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
Acknowledgements
This work was supported by the University of the Witwatersrand and the Molecular Sciences Institute, which are thanked for providing the infrastructure required to do this work.
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hu, Z.-N., Yang, H.-B., Luo, H. & Li, B. (2011). Acta Cryst. E67, o1138. Web of Science CSD CrossRef IUCr Journals Google Scholar
Metrangelo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound is being used as a co-crystal former for potential co-crystal with the molecule 2-chloro-4-nitrobenzoic acid. As its structure has not been determined previously, and for screening purposes, it is now reported (Fig. 1). The title molecule forms centrosymmetric dimers using the syn H2S atom on the amine group. The anti H atom H2A is not involved in any intermolecular interactions. The dimers are joined by type II C—Br···Br halogen bonding (Metrangelo et al., 2005) to form 2-D layers (Fig. 2). The related compound, 3-chloropyridin-2-amine (Hu et al., 2011), has the same hydrogen bonded dimers, but forms instead chains of dimers through C—Cl···Cl halogen bonding of type I.