organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Bromo­pyridin-2-amine

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, PO Wits 2050, South Africa
*Correspondence e-mail: andreas.lemmerer@wits.ac.za

(Received 19 December 2011; accepted 24 December 2011; online 14 January 2012)

In the crystal structure of the title compound, C5H5BrN2, mol­ecules assemble via pairs of N—H⋯N hydrogen bonds into inversion dimers using only the syn H atom on the amine group. These dimers then assemble further into two-dimensional layers via type I C—Br⋯Br [Br⋯Br = 3.693 (s6) Å] halogen bonding along the (102) plane.

Related literature

For halogen bonding, see: Metrangelo et al. (2005[Metrangelo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.]). For a related structure, see: Hu et al. (2011[Hu, Z.-N., Yang, H.-B., Luo, H. & Li, B. (2011). Acta Cryst. E67, o1138.]).

[Scheme 1]

Experimental

Crystal data
  • C5H5BrN2

  • Mr = 173.02

  • Monoclinic, P 21 /c

  • a = 12.2179 (6) Å

  • b = 4.0007 (2) Å

  • c = 12.8451 (6) Å

  • β = 109.731 (3)°

  • V = 591.01 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.84 mm−1

  • T = 173 K

  • 0.5 × 0.4 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: integration (XPREP; Bruker, 2004[Bruker (2004). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.131, Tmax = 0.578

  • 5622 measured reflections

  • 1428 independent reflections

  • 1200 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.082

  • S = 0.99

  • 1428 reflections

  • 81 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2S⋯N1i 0.81 (4) 2.21 (4) 3.019 (4) 173 (3)
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker 2004[Bruker (2004). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is being used as a co-crystal former for potential co-crystal with the molecule 2-chloro-4-nitrobenzoic acid. As its structure has not been determined previously, and for screening purposes, it is now reported (Fig. 1). The title molecule forms centrosymmetric dimers using the syn H2S atom on the amine group. The anti H atom H2A is not involved in any intermolecular interactions. The dimers are joined by type II C—Br···Br halogen bonding (Metrangelo et al., 2005) to form 2-D layers (Fig. 2). The related compound, 3-chloropyridin-2-amine (Hu et al., 2011), has the same hydrogen bonded dimers, but forms instead chains of dimers through C—Cl···Cl halogen bonding of type I.

Related literature top

For halogen bonding, see: Metrangelo et al. (2005). For a related structure, see: Hu et al. (2011).

Experimental top

Crystals were grown by slow evaporation of a methanol solution of the title compound, 0.200 g (1.16 mmol) in 8 ml of methanol, and afforded light brown plates after three days of slow evaporation at ambient conditions.

Refinement top

The aromatic C-bound H atoms were geometrically placed, C—H bond length of 0.95 Å and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located in the difference map and coordinates as well as isotropic displacement parameters refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (I). Intermolecular N—H···N hydrogen bonds are shown as dashed red lines forming dimers. Note that the anti H is not used in any hydrogen bonding interactions. The C—Br···Br halogen bonds are shown as dashed blue lines.
3-Bromopyridin-2-amine top
Crystal data top
C5H5BrN2F(000) = 336
Mr = 173.02Dx = 1.945 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2888 reflections
a = 12.2179 (6) Åθ = 3.2–28.3°
b = 4.0007 (2) ŵ = 6.84 mm1
c = 12.8451 (6) ÅT = 173 K
β = 109.731 (3)°Plate, brown
V = 591.01 (5) Å30.5 × 0.4 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1200 reflections with I > 2σ(I)
ω scansRint = 0.093
Absorption correction: integration
(XPREP; Bruker, 2004)
θmax = 28.0°, θmin = 1.8°
Tmin = 0.131, Tmax = 0.578h = 1615
5622 measured reflectionsk = 55
1428 independent reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0479P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max < 0.001
S = 0.99Δρmax = 1.04 e Å3
1428 reflectionsΔρmin = 0.77 e Å3
81 parameters
Crystal data top
C5H5BrN2V = 591.01 (5) Å3
Mr = 173.02Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.2179 (6) ŵ = 6.84 mm1
b = 4.0007 (2) ÅT = 173 K
c = 12.8451 (6) Å0.5 × 0.4 × 0.09 mm
β = 109.731 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1428 independent reflections
Absorption correction: integration
(XPREP; Bruker, 2004)
1200 reflections with I > 2σ(I)
Tmin = 0.131, Tmax = 0.578Rint = 0.093
5622 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 1.04 e Å3
1428 reflectionsΔρmin = 0.77 e Å3
81 parameters
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.8182 (2)0.4235 (7)0.4926 (2)0.0288 (6)
C30.7048 (2)0.3668 (6)0.4912 (2)0.0267 (5)
C40.6702 (2)0.4704 (7)0.5771 (2)0.0309 (6)
H40.59340.42870.57630.037*
C50.7499 (3)0.6374 (7)0.6653 (2)0.0327 (6)
H50.7290.71680.72580.039*
C60.8602 (3)0.6833 (7)0.6615 (2)0.0334 (6)
H60.9150.79760.72150.04*
N10.8956 (2)0.5781 (6)0.5793 (2)0.0325 (5)
N20.8547 (3)0.3359 (7)0.4077 (2)0.0386 (6)
Br10.59557 (2)0.15619 (6)0.36599 (2)0.03201 (13)
H2S0.923 (3)0.345 (7)0.415 (3)0.030 (9)*
H2A0.820 (4)0.210 (8)0.362 (4)0.043 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0309 (14)0.0294 (12)0.0253 (12)0.0002 (11)0.0084 (11)0.0031 (10)
C30.0271 (14)0.0256 (12)0.0238 (12)0.0031 (9)0.0039 (11)0.0034 (9)
C40.0282 (14)0.0331 (13)0.0319 (13)0.0070 (11)0.0107 (11)0.0076 (12)
C50.0359 (16)0.0376 (15)0.0250 (13)0.0059 (11)0.0109 (12)0.0036 (10)
C60.0343 (16)0.0367 (15)0.0273 (13)0.0010 (12)0.0079 (12)0.0002 (11)
N10.0286 (13)0.0408 (12)0.0266 (11)0.0041 (10)0.0073 (10)0.0022 (10)
N20.0303 (15)0.0568 (18)0.0309 (13)0.0112 (12)0.0134 (12)0.0120 (12)
Br10.02548 (18)0.03463 (19)0.03161 (18)0.00029 (10)0.00396 (12)0.00178 (10)
Geometric parameters (Å, º) top
C2—N11.344 (4)C5—C61.378 (5)
C2—N21.357 (4)C5—H50.95
C2—C31.398 (4)C6—N11.336 (4)
C3—C41.372 (4)C6—H60.95
C3—Br11.904 (3)N2—H2S0.81 (4)
C4—C51.390 (4)N2—H2A0.78 (4)
C4—H40.95
N1—C2—N2117.1 (3)C6—C5—H5121.3
N1—C2—C3120.2 (2)C4—C5—H5121.3
N2—C2—C3122.7 (3)N1—C6—C5124.6 (3)
C4—C3—C2120.8 (3)N1—C6—H6117.7
C4—C3—Br1119.7 (2)C5—C6—H6117.7
C2—C3—Br1119.5 (2)C6—N1—C2118.4 (2)
C3—C4—C5118.7 (3)C2—N2—H2S120 (3)
C3—C4—H4120.6C2—N2—H2A122 (3)
C5—C4—H4120.6H2S—N2—H2A113 (4)
C6—C5—C4117.3 (3)
N1—C2—C3—C40.7 (4)C3—C4—C5—C61.1 (4)
N2—C2—C3—C4177.6 (3)C4—C5—C6—N10.1 (4)
N1—C2—C3—Br1178.6 (2)C5—C6—N1—C21.7 (4)
N2—C2—C3—Br10.3 (4)N2—C2—N1—C6176.5 (3)
C2—C3—C4—C50.9 (4)C3—C2—N1—C61.9 (4)
Br1—C3—C4—C5177.04 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2S···N1i0.81 (4)2.21 (4)3.019 (4)173 (3)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC5H5BrN2
Mr173.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.2179 (6), 4.0007 (2), 12.8451 (6)
β (°) 109.731 (3)
V3)591.01 (5)
Z4
Radiation typeMo Kα
µ (mm1)6.84
Crystal size (mm)0.5 × 0.4 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionIntegration
(XPREP; Bruker, 2004)
Tmin, Tmax0.131, 0.578
No. of measured, independent and
observed [I > 2σ(I)] reflections
5622, 1428, 1200
Rint0.093
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.082, 0.99
No. of reflections1428
No. of parameters81
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.04, 0.77

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2S···N1i0.81 (4)2.21 (4)3.019 (4)173 (3)
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

This work was supported by the University of the Witwaters­rand and the Mol­ecular Sciences Institute, which are thanked for providing the infrastructure required to do this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHu, Z.-N., Yang, H.-B., Luo, H. & Li, B. (2011). Acta Cryst. E67, o1138.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMetrangelo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds