metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m206-m207

Poly[μ3-β-alanine-aqua-μ4-sulfato-dilithium]

aPhysics Research Centre, S.T. Hindu College, Nagercoil 629 002, India, bScientist in charge, SAIF, STIC, Cochin University of Science & Technology, Cochin 682 022, India, and cDepartment of Physics, Vivekananda College, Agasteeswaram 629 701, India
*Correspondence e-mail: danielsweetlin@gmail.com

(Received 20 December 2011; accepted 17 January 2012; online 25 January 2012)

The title compound, [Li2(SO4)(C3H7NO2)(H2O)]n, is a coordination polymer in which the β-alanine residues remain in the zwitterionic form. The crystal structure consists of corrugated sheets of [LiO4] and [SO4] tetra­hedra parallel to (010) with the β-alanine mol­ecules located between the sheets. The two independent Li+ cations are four-coordinated by O atoms in a distorted tetra­hedral geometry. The crystal structure is formed by stacking of alternate organic and inorganic layers along the a axis. The crystal structure is further stabilized by N—H⋯O hydrogen bonds.

Related literature

For related structures with glycine as the amino acid, see: Fleck & Bohatý (2004[Fleck, M. & Bohatý, L. (2004). Acta Cryst. C60, m291-m295.]). For related metal-organic compounds, see: Anbuchezhiyan et al. (2010[Anbuchezhiyan, M., Ponnusamy, S., Muthamizhchelvan, C. & Sivakumar, K. (2010). Mater. Res. Bull. 45, 897-904.]); Liao et al. (2001[Liao, C.-Z., Feng, X.-L., Yao, J.-H. & Cai, J.-W. (2001). Acta Cryst. C57, 1215-1216.]); Pestov et al. (2005[Pestov, A. V., Peresypkina, E. V., Virovets, A. V., Podberezskaya, N. V., Yatluk, Y. G. & Skorik, Y. A. (2005). Acta Cryst. C61, m510-m512.]); Urpí et al. (2003[Urpí, L., Jiménez, K., Solans, X., Rodríguez-Galán, A. & Puiggalí, J. (2003). Acta Cryst. C59, o24-o26.]). For the importance of β-alanine and lithium in medicine and pharmaceuticals, see: Anderson et al. (2008[Anderson, C. M. H., Ganapathy, V. & Thwaites, D. T. (2008). J. Physiol. 586, 4061-4067.]); Cipriani et al. (2005[Cipriani, A., Pretty, H., Hawton, K. & Geddes, J. R. (2005). Am. J. Psychiatry, 162, 1805-1819.]); Derave et al. (2007[Derave, W., Ozdemir, M. S., Harris, R. C., Pottier, A., Reyngoudt, H., Koppo, K., Wise, J. A. & Achten, E. (2007). J. Appl. Physiol. 103, 1736-1743.]); Geddes et al. (2004[Geddes, J. R., Burgess, S., Hawton, K., Jamison, K. & Goodwin, G. M. (2004). Am. J. Psychiatry, 161, 217-222.]); Poolsup et al. (2000[Poolsup, N., de Li Wan Po, A. & Oliveira, I. R. (2000). J. Clin. Pharm. Ther. 25, 139-156.]); Tiedje et al. (2010[Tiedje, K. E., Stevens, K., Barnes, S. & Weaver, D. F. (2010). Neurochem. Int. 57, 177-188.]).

[Scheme 1]

Experimental

Crystal data
  • [Li2(SO4)(C3H7NO2)(H2O)]

  • Mr = 217.05

  • Triclinic, [P \overline 1]

  • a = 5.1093 (4) Å

  • b = 9.2367 (8) Å

  • c = 9.6769 (8) Å

  • α = 68.725 (3)°

  • β = 82.576 (3)°

  • γ = 89.045 (3)°

  • V = 421.77 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.875, Tmax = 0.909

  • 6764 measured reflections

  • 2045 independent reflections

  • 1899 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 1.07

  • 2045 reflections

  • 163 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—HNA⋯O5i 0.94 (4) 2.58 (4) 2.981 (2) 106 (3)
N—HNA⋯O4i 0.94 (4) 2.25 (4) 3.082 (3) 147 (3)
N—HNB⋯O4ii 0.88 (4) 2.02 (4) 2.851 (2) 157 (4)
N—HNC⋯O2 0.93 (3) 2.32 (3) 2.928 (2) 123 (2)
N—HNC⋯O2iii 0.93 (3) 2.12 (3) 2.947 (2) 148 (2)
Symmetry codes: (i) x+1, y, z-1; (ii) x, y, z-1; (iii) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Naturally available β-alanine is constituent of the dipeptides, carnosine and anserine. It has the ability to form coordinate complexes with different metals both transition and nontransition elements due to its free carboxylate anion in its zwitterionic form. Previous reports have shown that β-alanine was forming crystalline complexes with organic and inorganic compounds (Liao et al., 2001; Urpí et al., 2003; Pestov et al., 2005; Anbuchezhiyan et al., 2010).

Herein, we are reporting a very interesting crystal structure of β-alanine with lithium sulfate. Both β-alanine and lithium got tremendous interest to chemists due to their importance in medicine and pharmaceuticals (Poolsup et al., 2000; Cipriani et al., 2005; Anderson et al., 2008; Tiedje et al., 2010). Recently β-alanine is gaining momentum as a sports medicine (Derave et al., 2007) and Lithium remains as the 'gold standard' drug as mood stabiliser suitable for bipolar disorder (Geddes et al.,2 004). Hence the study of the title compound, which is formed by the combination of two potential drugs viz. β-alanine and lithium sulfate, will be very much useful for drug design and identification of the material.

The asymmetric unit (Fig.1) contains one-half of the compound, the other half being related to the first by an inversion centre. The structure of the title compound (Fig.2), is composed of corrugated sheets of [LiO4] tetrahedra and [SO4] tetrahedra parallel to (010). These sheets consist of three crystallographically different tetrahedra (around atoms Li1, Li2 and S). These tetrahedra are connected by common corners with O atoms. The tetrahedra around Li1, Li2 are connected by O1 and Li1, S by O3. The tetrahedron around S is connected with three Li2 tetrahedra by O3, O4 and O5. The tip of each tetrahedron faces away from the sheet. The coordination environment around the Li1 and Li2 atoms involving O atoms form distorted tetrahedron because the coordinating O atoms have dissimilar attachments. The Li1 atom is coordinated by two O atoms from two different β–alanine carboxyl anions, one O from the water ligand and another O from the SO4 ligand. The Li2 atom is also four-coordinated by four O atoms of which three O atoms are from SO4 group of different asymmetric units and another O is from the carboxyl anion of the β–alanine ligand. The tetrahedral environment around S atom is regular with tetrahedral angle 109.121 (75)° as all the four O atoms attached to it have similarity in their association with atoms on the other end by having coordination with either Li1 or Li2 atoms only.

Related literature top

For isostructural [isotypic?] compounds, see: Fleck & Bohatý (2004). For related metal-organic compounds, see: Anbuchezhiyan et al. (2010); Liao et al. (2001); Pestov et al. (2005); Urpí et al. (2003). For the importance in of β-alanine and lithium in medicine and pharmaceuticals, see: Anderson et al. (2008); Cipriani et al. (2005); Derave et al. (2007); Geddes et al. (2004); Poolsup et al. (2000); Tiedje et al. (2010).

Experimental top

All reagents were used as obtained commercially without further purification. A mixture containing β–alanine (89.1 mg, 1 mmol) and lithium sulfate monohydrate (127.9 mg, 1 mmol) were dissolved in 10 ml distilled water and heated to 50 °C for 2 h. The hot solution was filtered into a test tube and cooled to room temperature (30 °C). Colourless transparent crystals of the title compound were formed after four weeks which were suitable for single-crystal X-ray diffraction.

Primary characterization of the title compound was carried out by FTIR spectroscopy, Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and CHNS elemental analysis. Following are the results of the CHNS elemental analysis for the tittle compound. Calculated: C, 16.60%; H, 4.19%; N, 6.45%; S, 14.77%. Observed: C, 16.87%; H, 3.57%; N, 6.48%; S, 12.4%. The close agreement between the calculated and observed values shows that the molecules of β-alanine, lithium sulfate and water have combined in equimolar ratio to form the title compound. From TGA we observed a weight loss of 8% between 166°C and 193°C which shows the presence of water molecules in the equimolar ratio in the title compound.

Refinement top

The water H atoms were located in a difference Fourier, and refined isotropically with O—H restraints (0.86 (2) Å). All other H atoms were positioned geometrically (C—H = 0.96–0.97 Å; N—H = 0.91 Å) and in the refinement process were allowed to ride on their carrier atoms with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with atom labels and anisotropic displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound as viewed down the crytallographic a axis. Hydrogen bonds are represented by red dotted lines.
Poly[µ3-β-alanine-aqua-µ4-sulfato-dilithium] top
Crystal data top
[Li2(SO4)(C3H7NO2)(H2O)]Z = 2
Mr = 217.05F(000) = 224
Triclinic, P1Dx = 1.709 Mg m3
Dm = 1.71 Mg m3
Dm measured by Floatation
Hall symbol: -P 1Melting point: 457.9 K
a = 5.1093 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2367 (8) ÅCell parameters from 184 reflections
c = 9.6769 (8) Åθ = 2.3–24.3°
α = 68.725 (3)°µ = 0.39 mm1
β = 82.576 (3)°T = 296 K
γ = 89.045 (3)°Block, colourless
V = 421.77 (6) Å30.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2045 independent reflections
Radiation source: fine-focus sealed tube1899 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ω and ϕ scanθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 66
Tmin = 0.875, Tmax = 0.909k = 1212
6764 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.2641P]
where P = (Fo2 + 2Fc2)/3
2045 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.42 e Å3
3 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Li2(SO4)(C3H7NO2)(H2O)]γ = 89.045 (3)°
Mr = 217.05V = 421.77 (6) Å3
Triclinic, P1Z = 2
a = 5.1093 (4) ÅMo Kα radiation
b = 9.2367 (8) ŵ = 0.39 mm1
c = 9.6769 (8) ÅT = 296 K
α = 68.725 (3)°0.35 × 0.30 × 0.25 mm
β = 82.576 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2045 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1899 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.909Rint = 0.062
6764 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0413 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.42 e Å3
2045 reflectionsΔρmin = 0.50 e Å3
163 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.30781 (7)0.77817 (4)0.59785 (4)0.01721 (16)
O50.5839 (3)0.7797 (2)0.57385 (16)0.0396 (4)
O40.2641 (3)0.89203 (17)0.66688 (16)0.0356 (4)
O20.0637 (2)0.85784 (15)0.13776 (14)0.0254 (3)
O30.1386 (2)0.82127 (16)0.45218 (14)0.0261 (3)
O10.4349 (2)0.83197 (17)0.23942 (15)0.0287 (3)
O60.2486 (4)0.62525 (19)0.69837 (19)0.0535 (5)
C10.2965 (3)0.81463 (19)0.14778 (18)0.0197 (3)
C20.4192 (4)0.7346 (3)0.0438 (2)0.0291 (4)
C30.2349 (4)0.7090 (2)0.0549 (2)0.0287 (4)
N0.1701 (4)0.8593 (2)0.16740 (19)0.0304 (4)
OW0.1998 (4)0.53707 (19)0.3258 (3)0.0581 (6)
Li20.2349 (6)1.1171 (4)0.5940 (3)0.0261 (6)
Li10.2272 (6)0.7488 (4)0.2953 (4)0.0256 (6)
HNA0.321 (7)0.912 (4)0.232 (4)0.060 (9)*
HNB0.055 (7)0.846 (4)0.222 (4)0.069 (10)*
HWB0.325 (5)0.473 (3)0.364 (4)0.069 (10)*
H3A0.321 (5)0.649 (3)0.109 (3)0.040 (7)*
H3B0.070 (6)0.660 (3)0.004 (3)0.047 (7)*
H4B0.482 (6)0.643 (4)0.097 (3)0.052 (8)*
H4A0.569 (6)0.793 (3)0.013 (3)0.054 (8)*
HWA0.058 (5)0.485 (4)0.340 (5)0.107 (15)*
HNC0.109 (5)0.927 (3)0.120 (3)0.033 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0138 (2)0.0201 (2)0.0187 (2)0.00037 (14)0.00144 (14)0.00835 (16)
O50.0141 (6)0.0760 (11)0.0284 (7)0.0078 (6)0.0020 (5)0.0183 (7)
O40.0448 (8)0.0376 (8)0.0311 (7)0.0141 (6)0.0027 (6)0.0222 (6)
O20.0183 (6)0.0344 (7)0.0255 (6)0.0063 (5)0.0024 (5)0.0136 (5)
O30.0172 (6)0.0399 (8)0.0233 (6)0.0055 (5)0.0032 (4)0.0156 (5)
O10.0231 (6)0.0419 (8)0.0303 (7)0.0084 (5)0.0090 (5)0.0224 (6)
O60.0649 (12)0.0302 (8)0.0444 (9)0.0221 (8)0.0117 (8)0.0039 (7)
C10.0185 (7)0.0226 (8)0.0175 (7)0.0024 (6)0.0004 (5)0.0073 (6)
C20.0266 (9)0.0402 (10)0.0275 (9)0.0141 (8)0.0067 (7)0.0200 (8)
C30.0341 (10)0.0304 (9)0.0260 (9)0.0004 (7)0.0028 (7)0.0157 (7)
N0.0311 (8)0.0404 (9)0.0245 (8)0.0098 (7)0.0064 (7)0.0168 (7)
OW0.0394 (10)0.0254 (8)0.1070 (17)0.0012 (7)0.0107 (10)0.0209 (9)
Li20.0187 (13)0.0341 (16)0.0290 (15)0.0015 (11)0.0018 (11)0.0161 (13)
Li10.0190 (13)0.0311 (16)0.0308 (15)0.0034 (11)0.0042 (11)0.0160 (13)
Geometric parameters (Å, º) top
S—O61.4484 (15)C3—N1.485 (3)
S—O51.4579 (13)C3—H3A0.96 (3)
S—O41.4692 (13)C3—H3B0.97 (3)
S—O31.4772 (12)N—HNA0.94 (3)
O5—Li2i1.908 (4)N—HNB0.88 (4)
O4—Li21.939 (4)N—HNC0.93 (3)
O2—C11.253 (2)OW—Li11.875 (4)
O2—Li11.974 (3)OW—HWB0.833 (18)
O3—Li2ii1.948 (3)OW—HWA0.859 (19)
O3—Li11.970 (3)Li2—O5i1.908 (4)
O1—C11.257 (2)Li2—O3ii1.948 (3)
O1—Li1iii1.939 (3)Li2—O1ii1.994 (3)
O1—Li2ii1.994 (3)Li2—C1ii2.771 (3)
C1—C21.521 (2)Li2—Li1ii3.157 (4)
C1—Li2ii2.771 (3)Li2—Li1i3.214 (4)
C2—C31.503 (3)Li1—O1iv1.939 (3)
C2—H4B0.90 (3)Li1—Li2ii3.157 (4)
C2—H4A0.93 (3)Li1—Li2i3.214 (4)
O6—S—O5109.41 (11)Li1—OW—HWB123 (2)
O6—S—O4108.78 (11)Li1—OW—HWA125 (3)
O5—S—O4108.91 (10)HWB—OW—HWA106 (3)
O6—S—O3111.20 (9)O5i—Li2—O4114.67 (17)
O5—S—O3109.12 (8)O5i—Li2—O3ii110.71 (16)
O4—S—O3109.39 (8)O4—Li2—O3ii108.30 (16)
S—O5—Li2i133.35 (13)O5i—Li2—O1ii104.37 (15)
S—O4—Li2134.19 (13)O4—Li2—O1ii103.06 (15)
C1—O2—Li1120.86 (14)O3ii—Li2—O1ii115.69 (16)
S—O3—Li2ii128.04 (12)O5i—Li2—C1ii123.53 (15)
S—O3—Li1121.15 (11)O4—Li2—C1ii103.92 (14)
Li2ii—O3—Li1107.36 (14)O3ii—Li2—C1ii93.11 (12)
C1—O1—Li1iii131.16 (15)O1ii—Li2—C1ii24.28 (6)
C1—O1—Li2ii115.02 (14)O5i—Li2—Li1ii128.01 (16)
Li1iii—O1—Li2ii109.61 (14)O4—Li2—Li1ii114.65 (15)
O2—C1—O1124.14 (15)O3ii—Li2—Li1ii36.56 (9)
O2—C1—C2118.10 (15)O1ii—Li2—Li1ii79.45 (12)
O1—C1—C2117.76 (15)C1ii—Li2—Li1ii56.56 (9)
O2—C1—Li2ii84.56 (11)O5i—Li2—Li1i70.83 (11)
O1—C1—Li2ii40.69 (10)O4—Li2—Li1i109.49 (14)
C2—C1—Li2ii155.18 (14)O3ii—Li2—Li1i136.76 (16)
C3—C2—C1114.33 (15)O1ii—Li2—Li1i34.63 (8)
C3—C2—H4B109.1 (18)C1ii—Li2—Li1i57.93 (9)
C1—C2—H4B109.9 (19)Li1ii—Li2—Li1i106.63 (13)
C3—C2—H4A110.9 (19)OW—Li1—O1iv113.60 (17)
C1—C2—H4A108.1 (19)OW—Li1—O3118.66 (18)
H4B—C2—H4A104 (3)O1iv—Li1—O3107.99 (15)
N—C3—C2110.69 (17)OW—Li1—O2106.31 (16)
N—C3—H3A107.1 (15)O1iv—Li1—O2110.88 (16)
C2—C3—H3A109.1 (16)O3—Li1—O298.23 (14)
N—C3—H3B107.3 (16)OW—Li1—Li2ii113.59 (15)
C2—C3—H3B110.7 (16)O1iv—Li1—Li2ii131.51 (16)
H3A—C3—H3B112 (2)O3—Li1—Li2ii36.08 (8)
C3—N—HNA112.0 (19)O2—Li1—Li2ii64.94 (11)
C3—N—HNB111 (2)OW—Li1—Li2i121.10 (16)
HNA—N—HNB108 (3)O1iv—Li1—Li2i35.76 (9)
C3—N—HNC110.0 (15)O3—Li1—Li2i74.83 (11)
HNA—N—HNC104 (2)O2—Li1—Li2i129.47 (15)
HNB—N—HNC111 (3)Li2ii—Li1—Li2i106.63 (13)
O6—S—O5—Li2i145.5 (2)Li2ii—C1—C2—C3150.7 (3)
O4—S—O5—Li2i95.8 (2)C1—C2—C3—N68.4 (2)
O3—S—O5—Li2i23.6 (2)S—O4—Li2—O5i26.6 (3)
O6—S—O4—Li2166.47 (18)S—O4—Li2—O3ii97.5 (2)
O5—S—O4—Li274.36 (19)S—O4—Li2—O1ii139.41 (15)
O3—S—O4—Li244.8 (2)S—O4—Li2—C1ii164.38 (13)
O6—S—O3—Li2ii73.80 (19)S—O4—Li2—Li1ii136.35 (15)
O5—S—O3—Li2ii165.42 (16)S—O4—Li2—Li1i103.89 (18)
O4—S—O3—Li2ii46.37 (18)S—O3—Li1—OW69.2 (2)
O6—S—O3—Li182.47 (17)Li2ii—O3—Li1—OW91.4 (2)
O5—S—O3—Li138.31 (16)S—O3—Li1—O1iv61.9 (2)
O4—S—O3—Li1157.36 (14)Li2ii—O3—Li1—O1iv137.53 (16)
Li1—O2—C1—O171.1 (2)S—O3—Li1—O2177.06 (10)
Li1—O2—C1—C2108.25 (19)Li2ii—O3—Li1—O222.34 (18)
Li1—O2—C1—Li2ii61.09 (16)S—O3—Li1—Li2ii160.61 (19)
Li1iii—O1—C1—O2169.51 (18)S—O3—Li1—Li2i48.28 (13)
Li2ii—O1—C1—O215.4 (2)Li2ii—O3—Li1—Li2i151.12 (17)
Li1iii—O1—C1—C29.8 (3)C1—O2—Li1—OW51.3 (2)
Li2ii—O1—C1—C2163.97 (17)C1—O2—Li1—O1iv175.22 (15)
Li1iii—O1—C1—Li2ii154.1 (3)C1—O2—Li1—O371.88 (19)
O2—C1—C2—C33.3 (3)C1—O2—Li1—Li2ii57.57 (16)
O1—C1—C2—C3176.12 (17)C1—O2—Li1—Li2i148.96 (17)
Symmetry codes: (i) x1, y+2, z+1; (ii) x, y+2, z+1; (iii) x+1, y, z; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—HNA···O5v0.94 (4)2.58 (4)2.981 (2)106 (3)
N—HNA···O4v0.94 (4)2.25 (4)3.082 (3)147 (3)
N—HNB···O4vi0.88 (4)2.02 (4)2.851 (2)157 (4)
N—HNC···O20.93 (3)2.32 (3)2.928 (2)123 (2)
N—HNC···O2vii0.93 (3)2.12 (3)2.947 (2)148 (2)
Symmetry codes: (v) x+1, y, z1; (vi) x, y, z1; (vii) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Li2(SO4)(C3H7NO2)(H2O)]
Mr217.05
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.1093 (4), 9.2367 (8), 9.6769 (8)
α, β, γ (°)68.725 (3), 82.576 (3), 89.045 (3)
V3)421.77 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.875, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
6764, 2045, 1899
Rint0.062
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.07
No. of reflections2045
No. of parameters163
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.50

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), OLEX2 (Dolomanov et al., 2009), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—HNA···O5i0.94 (4)2.58 (4)2.981 (2)106 (3)
N—HNA···O4i0.94 (4)2.25 (4)3.082 (3)147 (3)
N—HNB···O4ii0.88 (4)2.02 (4)2.851 (2)157 (4)
N—HNC···O20.93 (3)2.32 (3)2.928 (2)123 (2)
N—HNC···O2iii0.93 (3)2.12 (3)2.947 (2)148 (2)
Symmetry codes: (i) x+1, y, z1; (ii) x, y, z1; (iii) x, y+2, z.
 

Acknowledgements

MDS thanks the University Grants Commission (UGC), India, for the award of a fellowship under the Faculty Development Programme. The authors are thankful to the Sophisticated Test and Instrumentation Centre (STIC), Cochin, India, for providing the Single Crystal X-Ray Diffraction and CHN facilities and the CIF, Pondicherry University, India, for the DSC and TGA facilities.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAnbuchezhiyan, M., Ponnusamy, S., Muthamizhchelvan, C. & Sivakumar, K. (2010). Mater. Res. Bull. 45, 897–904.  Web of Science CSD CrossRef CAS Google Scholar
First citationAnderson, C. M. H., Ganapathy, V. & Thwaites, D. T. (2008). J. Physiol. 586, 4061–4067.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCipriani, A., Pretty, H., Hawton, K. & Geddes, J. R. (2005). Am. J. Psychiatry, 162, 1805–1819.  Web of Science CrossRef PubMed Google Scholar
First citationDerave, W., Ozdemir, M. S., Harris, R. C., Pottier, A., Reyngoudt, H., Koppo, K., Wise, J. A. & Achten, E. (2007). J. Appl. Physiol. 103, 1736–1743.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFleck, M. & Bohatý, L. (2004). Acta Cryst. C60, m291–m295.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGeddes, J. R., Burgess, S., Hawton, K., Jamison, K. & Goodwin, G. M. (2004). Am. J. Psychiatry, 161, 217–222.  Web of Science CrossRef PubMed Google Scholar
First citationLiao, C.-Z., Feng, X.-L., Yao, J.-H. & Cai, J.-W. (2001). Acta Cryst. C57, 1215–1216.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPestov, A. V., Peresypkina, E. V., Virovets, A. V., Podberezskaya, N. V., Yatluk, Y. G. & Skorik, Y. A. (2005). Acta Cryst. C61, m510–m512.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPoolsup, N., de Li Wan Po, A. & Oliveira, I. R. (2000). J. Clin. Pharm. Ther. 25, 139–156.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiedje, K. E., Stevens, K., Barnes, S. & Weaver, D. F. (2010). Neurochem. Int. 57, 177–188.  Web of Science CrossRef CAS PubMed Google Scholar
First citationUrpí, L., Jiménez, K., Solans, X., Rodríguez-Galán, A. & Puiggalí, J. (2003). Acta Cryst. C59, o24–o26.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m206-m207
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds