metal-organic compounds
Poly[μ3-β-alanine-aqua-μ4-sulfato-dilithium]
aPhysics Research Centre, S.T. Hindu College, Nagercoil 629 002, India, bScientist in charge, SAIF, STIC, Cochin University of Science & Technology, Cochin 682 022, India, and cDepartment of Physics, Vivekananda College, Agasteeswaram 629 701, India
*Correspondence e-mail: danielsweetlin@gmail.com
The title compound, [Li2(SO4)(C3H7NO2)(H2O)]n, is a coordination polymer in which the β-alanine residues remain in the zwitterionic form. The consists of corrugated sheets of [LiO4] and [SO4] tetrahedra parallel to (010) with the β-alanine molecules located between the sheets. The two independent Li+ cations are four-coordinated by O atoms in a distorted tetrahedral geometry. The is formed by stacking of alternate organic and inorganic layers along the a axis. The is further stabilized by N—H⋯O hydrogen bonds.
Related literature
For related structures with glycine as the amino acid, see: Fleck & Bohatý (2004). For related metal-organic compounds, see: Anbuchezhiyan et al. (2010); Liao et al. (2001); Pestov et al. (2005); Urpí et al. (2003). For the importance of β-alanine and lithium in medicine and pharmaceuticals, see: Anderson et al. (2008); Cipriani et al. (2005); Derave et al. (2007); Geddes et al. (2004); Poolsup et al. (2000); Tiedje et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812002115/zj2051sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812002115/zj2051Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812002115/zj2051Isup3.cml
All reagents were used as obtained commercially without further purification. A mixture containing β–alanine (89.1 mg, 1 mmol) and lithium sulfate monohydrate (127.9 mg, 1 mmol) were dissolved in 10 ml distilled water and heated to 50 °C for 2 h. The hot solution was filtered into a test tube and cooled to room temperature (30 °C). Colourless transparent crystals of the title compound were formed after four weeks which were suitable for single-crystal X-ray diffraction.
Primary characterization of the title compound was carried out by FTIR spectroscopy, β-alanine, lithium sulfate and water have combined in equimolar ratio to form the title compound. From TGA we observed a weight loss of 8% between 166°C and 193°C which shows the presence of water molecules in the equimolar ratio in the title compound.
(DSC), Thermogravimetric Analysis (TGA) and CHNS elemental analysis. Following are the results of the CHNS elemental analysis for the tittle compound. Calculated: C, 16.60%; H, 4.19%; N, 6.45%; S, 14.77%. Observed: C, 16.87%; H, 3.57%; N, 6.48%; S, 12.4%. The close agreement between the calculated and observed values shows that the molecules ofThe water H atoms were located in a difference Fourier, and refined isotropically with O—H restraints (0.86 (2) Å). All other H atoms were positioned geometrically (C—H = 0.96–0.97 Å; N—H = 0.91 Å) and in the
process were allowed to ride on their carrier atoms with Uiso(H) = 1.2Ueq(C, N).Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).Fig. 1. The asymmetric unit of the title compound, with atom labels and anisotropic displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. Molecular packing of the title compound as viewed down the crytallographic a axis. Hydrogen bonds are represented by red dotted lines. |
[Li2(SO4)(C3H7NO2)(H2O)] | Z = 2 |
Mr = 217.05 | F(000) = 224 |
Triclinic, P1 | Dx = 1.709 Mg m−3 Dm = 1.71 Mg m−3 Dm measured by Floatation |
Hall symbol: -P 1 | Melting point: 457.9 K |
a = 5.1093 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.2367 (8) Å | Cell parameters from 184 reflections |
c = 9.6769 (8) Å | θ = 2.3–24.3° |
α = 68.725 (3)° | µ = 0.39 mm−1 |
β = 82.576 (3)° | T = 296 K |
γ = 89.045 (3)° | Block, colourless |
V = 421.77 (6) Å3 | 0.35 × 0.30 × 0.25 mm |
Bruker Kappa APEXII CCD diffractometer | 2045 independent reflections |
Radiation source: fine-focus sealed tube | 1899 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.062 |
ω and ϕ scan | θmax = 28.3°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −6→6 |
Tmin = 0.875, Tmax = 0.909 | k = −12→12 |
6764 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.115 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0528P)2 + 0.2641P] where P = (Fo2 + 2Fc2)/3 |
2045 reflections | (Δ/σ)max = 0.001 |
163 parameters | Δρmax = 0.42 e Å−3 |
3 restraints | Δρmin = −0.50 e Å−3 |
[Li2(SO4)(C3H7NO2)(H2O)] | γ = 89.045 (3)° |
Mr = 217.05 | V = 421.77 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.1093 (4) Å | Mo Kα radiation |
b = 9.2367 (8) Å | µ = 0.39 mm−1 |
c = 9.6769 (8) Å | T = 296 K |
α = 68.725 (3)° | 0.35 × 0.30 × 0.25 mm |
β = 82.576 (3)° |
Bruker Kappa APEXII CCD diffractometer | 2045 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | 1899 reflections with I > 2σ(I) |
Tmin = 0.875, Tmax = 0.909 | Rint = 0.062 |
6764 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 3 restraints |
wR(F2) = 0.115 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.42 e Å−3 |
2045 reflections | Δρmin = −0.50 e Å−3 |
163 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S | −0.30781 (7) | 0.77817 (4) | 0.59785 (4) | 0.01721 (16) | |
O5 | −0.5839 (3) | 0.7797 (2) | 0.57385 (16) | 0.0396 (4) | |
O4 | −0.2641 (3) | 0.89203 (17) | 0.66688 (16) | 0.0356 (4) | |
O2 | 0.0637 (2) | 0.85784 (15) | 0.13776 (14) | 0.0254 (3) | |
O3 | −0.1386 (2) | 0.82127 (16) | 0.45218 (14) | 0.0261 (3) | |
O1 | 0.4349 (2) | 0.83197 (17) | 0.23942 (15) | 0.0287 (3) | |
O6 | −0.2486 (4) | 0.62525 (19) | 0.69837 (19) | 0.0535 (5) | |
C1 | 0.2965 (3) | 0.81463 (19) | 0.14778 (18) | 0.0197 (3) | |
C2 | 0.4192 (4) | 0.7346 (3) | 0.0438 (2) | 0.0291 (4) | |
C3 | 0.2349 (4) | 0.7090 (2) | −0.0549 (2) | 0.0287 (4) | |
N | 0.1701 (4) | 0.8593 (2) | −0.16740 (19) | 0.0304 (4) | |
OW | −0.1998 (4) | 0.53707 (19) | 0.3258 (3) | 0.0581 (6) | |
Li2 | −0.2349 (6) | 1.1171 (4) | 0.5940 (3) | 0.0261 (6) | |
Li1 | −0.2272 (6) | 0.7488 (4) | 0.2953 (4) | 0.0256 (6) | |
HNA | 0.321 (7) | 0.912 (4) | −0.232 (4) | 0.060 (9)* | |
HNB | 0.055 (7) | 0.846 (4) | −0.222 (4) | 0.069 (10)* | |
HWB | −0.325 (5) | 0.473 (3) | 0.364 (4) | 0.069 (10)* | |
H3A | 0.321 (5) | 0.649 (3) | −0.109 (3) | 0.040 (7)* | |
H3B | 0.070 (6) | 0.660 (3) | 0.004 (3) | 0.047 (7)* | |
H4B | 0.482 (6) | 0.643 (4) | 0.097 (3) | 0.052 (8)* | |
H4A | 0.569 (6) | 0.793 (3) | −0.013 (3) | 0.054 (8)* | |
HWA | −0.058 (5) | 0.485 (4) | 0.340 (5) | 0.107 (15)* | |
HNC | 0.109 (5) | 0.927 (3) | −0.120 (3) | 0.033 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S | 0.0138 (2) | 0.0201 (2) | 0.0187 (2) | 0.00037 (14) | −0.00144 (14) | −0.00835 (16) |
O5 | 0.0141 (6) | 0.0760 (11) | 0.0284 (7) | −0.0078 (6) | −0.0020 (5) | −0.0183 (7) |
O4 | 0.0448 (8) | 0.0376 (8) | 0.0311 (7) | −0.0141 (6) | 0.0027 (6) | −0.0222 (6) |
O2 | 0.0183 (6) | 0.0344 (7) | 0.0255 (6) | 0.0063 (5) | −0.0024 (5) | −0.0136 (5) |
O3 | 0.0172 (6) | 0.0399 (8) | 0.0233 (6) | −0.0055 (5) | 0.0032 (4) | −0.0156 (5) |
O1 | 0.0231 (6) | 0.0419 (8) | 0.0303 (7) | 0.0084 (5) | −0.0090 (5) | −0.0224 (6) |
O6 | 0.0649 (12) | 0.0302 (8) | 0.0444 (9) | 0.0221 (8) | 0.0117 (8) | 0.0039 (7) |
C1 | 0.0185 (7) | 0.0226 (8) | 0.0175 (7) | 0.0024 (6) | −0.0004 (5) | −0.0073 (6) |
C2 | 0.0266 (9) | 0.0402 (10) | 0.0275 (9) | 0.0141 (8) | −0.0067 (7) | −0.0200 (8) |
C3 | 0.0341 (10) | 0.0304 (9) | 0.0260 (9) | 0.0004 (7) | −0.0028 (7) | −0.0157 (7) |
N | 0.0311 (8) | 0.0404 (9) | 0.0245 (8) | 0.0098 (7) | −0.0064 (7) | −0.0168 (7) |
OW | 0.0394 (10) | 0.0254 (8) | 0.1070 (17) | 0.0012 (7) | −0.0107 (10) | −0.0209 (9) |
Li2 | 0.0187 (13) | 0.0341 (16) | 0.0290 (15) | −0.0015 (11) | −0.0018 (11) | −0.0161 (13) |
Li1 | 0.0190 (13) | 0.0311 (16) | 0.0308 (15) | 0.0034 (11) | −0.0042 (11) | −0.0160 (13) |
S—O6 | 1.4484 (15) | C3—N | 1.485 (3) |
S—O5 | 1.4579 (13) | C3—H3A | 0.96 (3) |
S—O4 | 1.4692 (13) | C3—H3B | 0.97 (3) |
S—O3 | 1.4772 (12) | N—HNA | 0.94 (3) |
O5—Li2i | 1.908 (4) | N—HNB | 0.88 (4) |
O4—Li2 | 1.939 (4) | N—HNC | 0.93 (3) |
O2—C1 | 1.253 (2) | OW—Li1 | 1.875 (4) |
O2—Li1 | 1.974 (3) | OW—HWB | 0.833 (18) |
O3—Li2ii | 1.948 (3) | OW—HWA | 0.859 (19) |
O3—Li1 | 1.970 (3) | Li2—O5i | 1.908 (4) |
O1—C1 | 1.257 (2) | Li2—O3ii | 1.948 (3) |
O1—Li1iii | 1.939 (3) | Li2—O1ii | 1.994 (3) |
O1—Li2ii | 1.994 (3) | Li2—C1ii | 2.771 (3) |
C1—C2 | 1.521 (2) | Li2—Li1ii | 3.157 (4) |
C1—Li2ii | 2.771 (3) | Li2—Li1i | 3.214 (4) |
C2—C3 | 1.503 (3) | Li1—O1iv | 1.939 (3) |
C2—H4B | 0.90 (3) | Li1—Li2ii | 3.157 (4) |
C2—H4A | 0.93 (3) | Li1—Li2i | 3.214 (4) |
O6—S—O5 | 109.41 (11) | Li1—OW—HWB | 123 (2) |
O6—S—O4 | 108.78 (11) | Li1—OW—HWA | 125 (3) |
O5—S—O4 | 108.91 (10) | HWB—OW—HWA | 106 (3) |
O6—S—O3 | 111.20 (9) | O5i—Li2—O4 | 114.67 (17) |
O5—S—O3 | 109.12 (8) | O5i—Li2—O3ii | 110.71 (16) |
O4—S—O3 | 109.39 (8) | O4—Li2—O3ii | 108.30 (16) |
S—O5—Li2i | 133.35 (13) | O5i—Li2—O1ii | 104.37 (15) |
S—O4—Li2 | 134.19 (13) | O4—Li2—O1ii | 103.06 (15) |
C1—O2—Li1 | 120.86 (14) | O3ii—Li2—O1ii | 115.69 (16) |
S—O3—Li2ii | 128.04 (12) | O5i—Li2—C1ii | 123.53 (15) |
S—O3—Li1 | 121.15 (11) | O4—Li2—C1ii | 103.92 (14) |
Li2ii—O3—Li1 | 107.36 (14) | O3ii—Li2—C1ii | 93.11 (12) |
C1—O1—Li1iii | 131.16 (15) | O1ii—Li2—C1ii | 24.28 (6) |
C1—O1—Li2ii | 115.02 (14) | O5i—Li2—Li1ii | 128.01 (16) |
Li1iii—O1—Li2ii | 109.61 (14) | O4—Li2—Li1ii | 114.65 (15) |
O2—C1—O1 | 124.14 (15) | O3ii—Li2—Li1ii | 36.56 (9) |
O2—C1—C2 | 118.10 (15) | O1ii—Li2—Li1ii | 79.45 (12) |
O1—C1—C2 | 117.76 (15) | C1ii—Li2—Li1ii | 56.56 (9) |
O2—C1—Li2ii | 84.56 (11) | O5i—Li2—Li1i | 70.83 (11) |
O1—C1—Li2ii | 40.69 (10) | O4—Li2—Li1i | 109.49 (14) |
C2—C1—Li2ii | 155.18 (14) | O3ii—Li2—Li1i | 136.76 (16) |
C3—C2—C1 | 114.33 (15) | O1ii—Li2—Li1i | 34.63 (8) |
C3—C2—H4B | 109.1 (18) | C1ii—Li2—Li1i | 57.93 (9) |
C1—C2—H4B | 109.9 (19) | Li1ii—Li2—Li1i | 106.63 (13) |
C3—C2—H4A | 110.9 (19) | OW—Li1—O1iv | 113.60 (17) |
C1—C2—H4A | 108.1 (19) | OW—Li1—O3 | 118.66 (18) |
H4B—C2—H4A | 104 (3) | O1iv—Li1—O3 | 107.99 (15) |
N—C3—C2 | 110.69 (17) | OW—Li1—O2 | 106.31 (16) |
N—C3—H3A | 107.1 (15) | O1iv—Li1—O2 | 110.88 (16) |
C2—C3—H3A | 109.1 (16) | O3—Li1—O2 | 98.23 (14) |
N—C3—H3B | 107.3 (16) | OW—Li1—Li2ii | 113.59 (15) |
C2—C3—H3B | 110.7 (16) | O1iv—Li1—Li2ii | 131.51 (16) |
H3A—C3—H3B | 112 (2) | O3—Li1—Li2ii | 36.08 (8) |
C3—N—HNA | 112.0 (19) | O2—Li1—Li2ii | 64.94 (11) |
C3—N—HNB | 111 (2) | OW—Li1—Li2i | 121.10 (16) |
HNA—N—HNB | 108 (3) | O1iv—Li1—Li2i | 35.76 (9) |
C3—N—HNC | 110.0 (15) | O3—Li1—Li2i | 74.83 (11) |
HNA—N—HNC | 104 (2) | O2—Li1—Li2i | 129.47 (15) |
HNB—N—HNC | 111 (3) | Li2ii—Li1—Li2i | 106.63 (13) |
O6—S—O5—Li2i | −145.5 (2) | Li2ii—C1—C2—C3 | 150.7 (3) |
O4—S—O5—Li2i | 95.8 (2) | C1—C2—C3—N | 68.4 (2) |
O3—S—O5—Li2i | −23.6 (2) | S—O4—Li2—O5i | 26.6 (3) |
O6—S—O4—Li2 | 166.47 (18) | S—O4—Li2—O3ii | −97.5 (2) |
O5—S—O4—Li2 | −74.36 (19) | S—O4—Li2—O1ii | 139.41 (15) |
O3—S—O4—Li2 | 44.8 (2) | S—O4—Li2—C1ii | 164.38 (13) |
O6—S—O3—Li2ii | −73.80 (19) | S—O4—Li2—Li1ii | −136.35 (15) |
O5—S—O3—Li2ii | 165.42 (16) | S—O4—Li2—Li1i | 103.89 (18) |
O4—S—O3—Li2ii | 46.37 (18) | S—O3—Li1—OW | −69.2 (2) |
O6—S—O3—Li1 | 82.47 (17) | Li2ii—O3—Li1—OW | 91.4 (2) |
O5—S—O3—Li1 | −38.31 (16) | S—O3—Li1—O1iv | 61.9 (2) |
O4—S—O3—Li1 | −157.36 (14) | Li2ii—O3—Li1—O1iv | −137.53 (16) |
Li1—O2—C1—O1 | −71.1 (2) | S—O3—Li1—O2 | 177.06 (10) |
Li1—O2—C1—C2 | 108.25 (19) | Li2ii—O3—Li1—O2 | −22.34 (18) |
Li1—O2—C1—Li2ii | −61.09 (16) | S—O3—Li1—Li2ii | −160.61 (19) |
Li1iii—O1—C1—O2 | 169.51 (18) | S—O3—Li1—Li2i | 48.28 (13) |
Li2ii—O1—C1—O2 | 15.4 (2) | Li2ii—O3—Li1—Li2i | −151.12 (17) |
Li1iii—O1—C1—C2 | −9.8 (3) | C1—O2—Li1—OW | −51.3 (2) |
Li2ii—O1—C1—C2 | −163.97 (17) | C1—O2—Li1—O1iv | −175.22 (15) |
Li1iii—O1—C1—Li2ii | 154.1 (3) | C1—O2—Li1—O3 | 71.88 (19) |
O2—C1—C2—C3 | −3.3 (3) | C1—O2—Li1—Li2ii | 57.57 (16) |
O1—C1—C2—C3 | 176.12 (17) | C1—O2—Li1—Li2i | 148.96 (17) |
Symmetry codes: (i) −x−1, −y+2, −z+1; (ii) −x, −y+2, −z+1; (iii) x+1, y, z; (iv) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N—HNA···O5v | 0.94 (4) | 2.58 (4) | 2.981 (2) | 106 (3) |
N—HNA···O4v | 0.94 (4) | 2.25 (4) | 3.082 (3) | 147 (3) |
N—HNB···O4vi | 0.88 (4) | 2.02 (4) | 2.851 (2) | 157 (4) |
N—HNC···O2 | 0.93 (3) | 2.32 (3) | 2.928 (2) | 123 (2) |
N—HNC···O2vii | 0.93 (3) | 2.12 (3) | 2.947 (2) | 148 (2) |
Symmetry codes: (v) x+1, y, z−1; (vi) x, y, z−1; (vii) −x, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | [Li2(SO4)(C3H7NO2)(H2O)] |
Mr | 217.05 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 5.1093 (4), 9.2367 (8), 9.6769 (8) |
α, β, γ (°) | 68.725 (3), 82.576 (3), 89.045 (3) |
V (Å3) | 421.77 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.39 |
Crystal size (mm) | 0.35 × 0.30 × 0.25 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1999) |
Tmin, Tmax | 0.875, 0.909 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6764, 2045, 1899 |
Rint | 0.062 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.115, 1.07 |
No. of reflections | 2045 |
No. of parameters | 163 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.42, −0.50 |
Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), OLEX2 (Dolomanov et al., 2009), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N—HNA···O5i | 0.94 (4) | 2.58 (4) | 2.981 (2) | 106 (3) |
N—HNA···O4i | 0.94 (4) | 2.25 (4) | 3.082 (3) | 147 (3) |
N—HNB···O4ii | 0.88 (4) | 2.02 (4) | 2.851 (2) | 157 (4) |
N—HNC···O2 | 0.93 (3) | 2.32 (3) | 2.928 (2) | 123 (2) |
N—HNC···O2iii | 0.93 (3) | 2.12 (3) | 2.947 (2) | 148 (2) |
Symmetry codes: (i) x+1, y, z−1; (ii) x, y, z−1; (iii) −x, −y+2, −z. |
Acknowledgements
MDS thanks the University Grants Commission (UGC), India, for the award of a fellowship under the Faculty Development Programme. The authors are thankful to the Sophisticated Test and Instrumentation Centre (STIC), Cochin, India, for providing the Single Crystal X-Ray Diffraction and CHN facilities and the
Pondicherry University, India, for the DSC and TGA facilities.References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Anbuchezhiyan, M., Ponnusamy, S., Muthamizhchelvan, C. & Sivakumar, K. (2010). Mater. Res. Bull. 45, 897–904. Web of Science CSD CrossRef CAS Google Scholar
Anderson, C. M. H., Ganapathy, V. & Thwaites, D. T. (2008). J. Physiol. 586, 4061–4067. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cipriani, A., Pretty, H., Hawton, K. & Geddes, J. R. (2005). Am. J. Psychiatry, 162, 1805–1819. Web of Science CrossRef PubMed Google Scholar
Derave, W., Ozdemir, M. S., Harris, R. C., Pottier, A., Reyngoudt, H., Koppo, K., Wise, J. A. & Achten, E. (2007). J. Appl. Physiol. 103, 1736–1743. Web of Science CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fleck, M. & Bohatý, L. (2004). Acta Cryst. C60, m291–m295. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Geddes, J. R., Burgess, S., Hawton, K., Jamison, K. & Goodwin, G. M. (2004). Am. J. Psychiatry, 161, 217–222. Web of Science CrossRef PubMed Google Scholar
Liao, C.-Z., Feng, X.-L., Yao, J.-H. & Cai, J.-W. (2001). Acta Cryst. C57, 1215–1216. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pestov, A. V., Peresypkina, E. V., Virovets, A. V., Podberezskaya, N. V., Yatluk, Y. G. & Skorik, Y. A. (2005). Acta Cryst. C61, m510–m512. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Poolsup, N., de Li Wan Po, A. & Oliveira, I. R. (2000). J. Clin. Pharm. Ther. 25, 139–156. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tiedje, K. E., Stevens, K., Barnes, S. & Weaver, D. F. (2010). Neurochem. Int. 57, 177–188. Web of Science CrossRef CAS PubMed Google Scholar
Urpí, L., Jiménez, K., Solans, X., Rodríguez-Galán, A. & Puiggalí, J. (2003). Acta Cryst. C59, o24–o26. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Naturally available β-alanine is constituent of the dipeptides, carnosine and anserine. It has the ability to form coordinate complexes with different metals both transition and nontransition elements due to its free carboxylate anion in its zwitterionic form. Previous reports have shown that β-alanine was forming crystalline complexes with organic and inorganic compounds (Liao et al., 2001; Urpí et al., 2003; Pestov et al., 2005; Anbuchezhiyan et al., 2010).
Herein, we are reporting a very interesting crystal structure of β-alanine with lithium sulfate. Both β-alanine and lithium got tremendous interest to chemists due to their importance in medicine and pharmaceuticals (Poolsup et al., 2000; Cipriani et al., 2005; Anderson et al., 2008; Tiedje et al., 2010). Recently β-alanine is gaining momentum as a sports medicine (Derave et al., 2007) and Lithium remains as the 'gold standard' drug as mood stabiliser suitable for bipolar disorder (Geddes et al.,2 004). Hence the study of the title compound, which is formed by the combination of two potential drugs viz. β-alanine and lithium sulfate, will be very much useful for drug design and identification of the material.
The asymmetric unit (Fig.1) contains one-half of the compound, the other half being related to the first by an inversion centre. The structure of the title compound (Fig.2), is composed of corrugated sheets of [LiO4] tetrahedra and [SO4] tetrahedra parallel to (010). These sheets consist of three crystallographically different tetrahedra (around atoms Li1, Li2 and S). These tetrahedra are connected by common corners with O atoms. The tetrahedra around Li1, Li2 are connected by O1 and Li1, S by O3. The tetrahedron around S is connected with three Li2 tetrahedra by O3, O4 and O5. The tip of each tetrahedron faces away from the sheet. The coordination environment around the Li1 and Li2 atoms involving O atoms form distorted tetrahedron because the coordinating O atoms have dissimilar attachments. The Li1 atom is coordinated by two O atoms from two different β–alanine carboxyl anions, one O from the water ligand and another O from the SO4 ligand. The Li2 atom is also four-coordinated by four O atoms of which three O atoms are from SO4 group of different asymmetric units and another O is from the carboxyl anion of the β–alanine ligand. The tetrahedral environment around S atom is regular with tetrahedral angle 109.121 (75)° as all the four O atoms attached to it have similarity in their association with atoms on the other end by having coordination with either Li1 or Li2 atoms only.