organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Fluoro-2-methyl-3-(4-methyl­phenyl­sulfon­yl)-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 11 January 2012; accepted 13 January 2012; online 18 January 2012)

In the title compound, C16H13FO3S, the 4-methyl­phenyl ring makes a dihedral angle of 76.04 (4)° with the mean plane of the benzofuran fragment. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, and by a slipped ππ inter­action between the furan and benzene rings of adjacent mol­ecules [centroid–centroid distance = 3.780 (2) Å, inter­planar distance = 3.475 (2) Å and slippage = 1.488 (2) Å].

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For the crystal structures of related compounds, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o258.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o1909.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13FO3S

  • Mr = 304.32

  • Monoclinic, P 21 /c

  • a = 9.9429 (6) Å

  • b = 19.7506 (11) Å

  • c = 7.3696 (4) Å

  • β = 104.422 (2)°

  • V = 1401.62 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 173 K

  • 0.31 × 0.17 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.627, Tmax = 0.746

  • 12926 measured reflections

  • 3487 independent reflections

  • 2701 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.02

  • 3487 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O2i 0.95 2.58 3.246 (2) 128
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Many compounds involving a benzofuran ring have drawn much attention owing to their valuable biological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our continuing study of 4-fluoro-2-methyl-1-benzofuran derivatives containing either 3-phenylsulfonyl (Choi et al., 2010a) or 3-(4-fluorophenylsulfonyl) (Choi et al., 2010b) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 4-methylphenyl ring and the mean plane of the benzofurn fragment is 76.04 (4)°. The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds between one H atom of the 4-methylphenyl ring and an oxygen of the OSO unit (Table 1). The crystal packing (Fig. 2) is further stabilized by a weak slipped ππ interaction between the furan and benzene rings of adjacent molecules, with a Cg1···Cg2ii distance of 3.780 (2) Å and an interplanar distance of 3.475 (2) Å resulting in a slippage of 1.488 (2) Å (Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively).

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the crystal structures of related compounds, see: Choi et al. (2010a,b).

Experimental top

77% 3-chloroperoxybenzoic acid (560 mg, 2.5 mmol) was added in small portions to a stirred solution of 5-fluoro-2-methyl-3-(4-methylphenylsulfanyl)-1-benzofuran (326 mg, 1.2 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 10h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (benzene) to afford the title compound as a colorless solid [yield 73%, m.p. 433–434 K; Rf = 0.48 (benzene)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) =1.2Ueq(C) for aryl and 1.5Ueq(C)for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Fig. 2. A view of the C—H···O and ππ interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x, 1- y + 1 , - z; (ii) - x + 1, - y + 1, - z.]
5-Fluoro-2-methyl-3-(4-methylphenylsulfonyl)-1-benzofuran top
Crystal data top
C16H13FO3SF(000) = 632
Mr = 304.32Dx = 1.442 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3987 reflections
a = 9.9429 (6) Åθ = 2.4–27.6°
b = 19.7506 (11) ŵ = 0.25 mm1
c = 7.3696 (4) ÅT = 173 K
β = 104.422 (2)°Block, colourless
V = 1401.62 (14) Å30.31 × 0.17 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3487 independent reflections
Radiation source: rotating anode2701 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.037
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 2.1°
ϕ and ω scansh = 1013
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 2625
Tmin = 0.627, Tmax = 0.746l = 98
12926 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.108H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.6535P]
where P = (Fo2 + 2Fc2)/3
3487 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C16H13FO3SV = 1401.62 (14) Å3
Mr = 304.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9429 (6) ŵ = 0.25 mm1
b = 19.7506 (11) ÅT = 173 K
c = 7.3696 (4) Å0.31 × 0.17 × 0.10 mm
β = 104.422 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3487 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2701 reflections with I > 2σ(I)
Tmin = 0.627, Tmax = 0.746Rint = 0.037
12926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.02Δρmax = 0.41 e Å3
3487 reflectionsΔρmin = 0.39 e Å3
192 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23477 (5)0.39305 (2)0.03088 (6)0.02577 (13)
F10.32677 (14)0.67906 (6)0.15349 (19)0.0497 (3)
O10.60793 (13)0.44400 (6)0.32052 (17)0.0316 (3)
O20.16250 (14)0.44195 (7)0.10210 (17)0.0329 (3)
O30.26402 (14)0.32735 (6)0.03226 (18)0.0344 (3)
C10.38972 (18)0.43036 (9)0.1497 (2)0.0252 (4)
C20.41125 (18)0.50213 (9)0.1841 (2)0.0240 (4)
C30.3330 (2)0.56078 (9)0.1352 (2)0.0291 (4)
H30.23970.55970.06210.035*
C40.3993 (2)0.62026 (9)0.1994 (3)0.0345 (4)
C50.5348 (2)0.62513 (10)0.3054 (3)0.0369 (5)
H50.57390.66820.34480.044*
C60.6127 (2)0.56735 (10)0.3534 (2)0.0340 (4)
H60.70620.56890.42570.041*
C70.54778 (19)0.50706 (9)0.2910 (2)0.0278 (4)
C80.50969 (19)0.39822 (9)0.2337 (2)0.0287 (4)
C90.5545 (2)0.32675 (10)0.2509 (3)0.0411 (5)
H9A0.56480.31150.38010.062*
H9B0.64370.32250.21790.062*
H9C0.48480.29880.16600.062*
C100.13996 (18)0.38170 (9)0.2014 (2)0.0254 (4)
C110.15659 (19)0.32275 (9)0.3064 (2)0.0285 (4)
H110.22020.28890.28930.034*
C120.0791 (2)0.31405 (10)0.4364 (3)0.0329 (4)
H120.08990.27360.50850.040*
C130.01424 (19)0.36293 (10)0.4646 (3)0.0326 (4)
C140.0277 (2)0.42158 (10)0.3581 (3)0.0344 (4)
H140.09080.45570.37550.041*
C150.04855 (19)0.43154 (9)0.2272 (3)0.0307 (4)
H150.03840.47210.15580.037*
C160.0970 (2)0.35188 (13)0.6062 (3)0.0450 (5)
H16A0.03700.35810.73250.067*
H16B0.13470.30580.59370.067*
H16C0.17350.38460.58520.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0283 (2)0.0244 (2)0.0237 (2)0.00310 (18)0.00479 (16)0.00129 (16)
F10.0602 (8)0.0247 (6)0.0693 (9)0.0029 (6)0.0258 (7)0.0003 (6)
O10.0264 (7)0.0357 (7)0.0306 (6)0.0000 (5)0.0033 (5)0.0001 (5)
O20.0335 (7)0.0364 (7)0.0263 (6)0.0015 (6)0.0026 (5)0.0060 (5)
O30.0421 (8)0.0283 (7)0.0350 (7)0.0064 (6)0.0134 (6)0.0088 (5)
C10.0263 (9)0.0247 (9)0.0247 (8)0.0013 (7)0.0064 (7)0.0010 (7)
C20.0271 (9)0.0236 (8)0.0229 (8)0.0022 (7)0.0090 (7)0.0013 (6)
C30.0294 (9)0.0284 (9)0.0316 (9)0.0004 (7)0.0114 (7)0.0001 (7)
C40.0460 (12)0.0234 (9)0.0394 (10)0.0001 (8)0.0206 (9)0.0009 (8)
C50.0471 (12)0.0322 (10)0.0360 (10)0.0156 (9)0.0191 (9)0.0110 (8)
C60.0332 (10)0.0434 (12)0.0263 (9)0.0129 (9)0.0094 (8)0.0087 (8)
C70.0296 (9)0.0308 (10)0.0238 (8)0.0024 (7)0.0083 (7)0.0008 (7)
C80.0305 (9)0.0289 (9)0.0264 (8)0.0006 (7)0.0063 (7)0.0000 (7)
C90.0422 (12)0.0333 (11)0.0454 (11)0.0104 (9)0.0062 (9)0.0032 (9)
C100.0248 (9)0.0265 (9)0.0232 (8)0.0032 (7)0.0026 (6)0.0004 (7)
C110.0312 (9)0.0251 (9)0.0287 (8)0.0019 (7)0.0063 (7)0.0006 (7)
C120.0372 (10)0.0303 (10)0.0304 (9)0.0014 (8)0.0066 (8)0.0052 (7)
C130.0266 (9)0.0426 (11)0.0271 (9)0.0033 (8)0.0041 (7)0.0009 (8)
C140.0287 (10)0.0374 (11)0.0373 (10)0.0072 (8)0.0086 (8)0.0005 (8)
C150.0287 (9)0.0286 (10)0.0335 (9)0.0036 (8)0.0057 (7)0.0047 (7)
C160.0340 (11)0.0670 (16)0.0358 (11)0.0017 (10)0.0125 (9)0.0042 (10)
Geometric parameters (Å, º) top
S1—O31.4326 (13)C8—C91.476 (3)
S1—O21.4348 (13)C9—H9A0.9800
S1—C11.7353 (17)C9—H9B0.9800
S1—C101.7631 (18)C9—H9C0.9800
F1—C41.365 (2)C10—C151.385 (3)
O1—C81.367 (2)C10—C111.385 (2)
O1—C71.375 (2)C11—C121.382 (3)
C1—C81.357 (2)C11—H110.9500
C1—C21.447 (2)C12—C131.390 (3)
C2—C31.392 (2)C12—H120.9500
C2—C71.393 (2)C13—C141.387 (3)
C3—C41.372 (3)C13—C161.498 (3)
C3—H30.9500C14—C151.381 (3)
C4—C51.382 (3)C14—H140.9500
C5—C61.375 (3)C15—H150.9500
C5—H50.9500C16—H16A0.9800
C6—C71.378 (3)C16—H16B0.9800
C6—H60.9500C16—H16C0.9800
O3—S1—O2119.70 (8)C8—C9—H9A109.5
O3—S1—C1108.78 (8)C8—C9—H9B109.5
O2—S1—C1106.83 (8)H9A—C9—H9B109.5
O3—S1—C10107.71 (8)C8—C9—H9C109.5
O2—S1—C10107.86 (8)H9A—C9—H9C109.5
C1—S1—C10105.03 (8)H9B—C9—H9C109.5
C8—O1—C7107.03 (13)C15—C10—C11120.81 (17)
C8—C1—C2107.68 (15)C15—C10—S1119.56 (13)
C8—C1—S1126.92 (14)C11—C10—S1119.63 (14)
C2—C1—S1125.35 (13)C12—C11—C10118.84 (17)
C3—C2—C7119.43 (16)C12—C11—H11120.6
C3—C2—C1136.18 (16)C10—C11—H11120.6
C7—C2—C1104.38 (15)C11—C12—C13121.70 (17)
C4—C3—C2115.71 (17)C11—C12—H12119.2
C4—C3—H3122.1C13—C12—H12119.2
C2—C3—H3122.1C14—C13—C12118.01 (17)
F1—C4—C3117.65 (18)C14—C13—C16121.59 (19)
F1—C4—C5117.49 (17)C12—C13—C16120.40 (18)
C3—C4—C5124.85 (19)C15—C14—C13121.43 (18)
C6—C5—C4119.67 (18)C15—C14—H14119.3
C6—C5—H5120.2C13—C14—H14119.3
C4—C5—H5120.2C14—C15—C10119.21 (17)
C5—C6—C7116.37 (18)C14—C15—H15120.4
C5—C6—H6121.8C10—C15—H15120.4
C7—C6—H6121.8C13—C16—H16A109.5
O1—C7—C6125.49 (17)C13—C16—H16B109.5
O1—C7—C2110.52 (15)H16A—C16—H16B109.5
C6—C7—C2123.97 (18)C13—C16—H16C109.5
C1—C8—O1110.40 (15)H16A—C16—H16C109.5
C1—C8—C9134.32 (18)H16B—C16—H16C109.5
O1—C8—C9115.28 (16)
O3—S1—C1—C823.25 (18)C1—C2—C7—C6179.05 (16)
O2—S1—C1—C8153.76 (16)C2—C1—C8—O10.03 (19)
C10—S1—C1—C891.85 (17)S1—C1—C8—O1177.29 (12)
O3—S1—C1—C2159.88 (14)C2—C1—C8—C9179.8 (2)
O2—S1—C1—C229.37 (17)S1—C1—C8—C92.4 (3)
C10—S1—C1—C285.02 (16)C7—O1—C8—C10.24 (19)
C8—C1—C2—C3178.55 (19)C7—O1—C8—C9179.55 (16)
S1—C1—C2—C34.1 (3)O3—S1—C10—C15152.01 (14)
C8—C1—C2—C70.29 (18)O2—S1—C10—C1521.52 (16)
S1—C1—C2—C7177.09 (12)C1—S1—C10—C1592.15 (15)
C7—C2—C3—C40.3 (2)O3—S1—C10—C1127.24 (16)
C1—C2—C3—C4178.98 (19)O2—S1—C10—C11157.73 (14)
C2—C3—C4—F1179.49 (15)C1—S1—C10—C1188.60 (15)
C2—C3—C4—C50.3 (3)C15—C10—C11—C120.7 (3)
F1—C4—C5—C6179.25 (16)S1—C10—C11—C12178.54 (14)
C3—C4—C5—C60.1 (3)C10—C11—C12—C130.2 (3)
C4—C5—C6—C70.2 (3)C11—C12—C13—C140.2 (3)
C8—O1—C7—C6179.02 (17)C11—C12—C13—C16179.81 (18)
C8—O1—C7—C20.44 (19)C12—C13—C14—C150.2 (3)
C5—C6—C7—O1178.67 (16)C16—C13—C14—C15179.84 (18)
C5—C6—C7—C20.3 (3)C13—C14—C15—C100.3 (3)
C3—C2—C7—O1178.64 (15)C11—C10—C15—C140.7 (3)
C1—C2—C7—O10.44 (18)S1—C10—C15—C14178.51 (14)
C3—C2—C7—C60.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O2i0.952.583.246 (2)128
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H13FO3S
Mr304.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.9429 (6), 19.7506 (11), 7.3696 (4)
β (°) 104.422 (2)
V3)1401.62 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.31 × 0.17 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.627, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12926, 3487, 2701
Rint0.037
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.02
No. of reflections3487
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.39

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O2i0.952.583.246 (2)127.7
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o258.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o1909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds