metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m204-m205

Chloridobis(di­methyl­glyoximato-κ2N,N′)(ethyl pyridine-4-carboxyl­ate-κN)cobalt(III) chloro­form monosolvate

aHenan University of Technology, School of Chemistry and Chemical Engineering, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: ssdyok@yahoo.com.cn

(Received 5 January 2012; accepted 19 January 2012; online 25 January 2012)

The title compound, [Co(C4H7N2O2)2Cl(C8H9NO2)]·CHCl3, was synthesized as a model complex of vitamin B12. The CoIII cation displays an approximately octa­hedral coordination environment, being displaced by 0.0240 (15) Å from the mean plane of the four N atoms of the equatorial plane. The O—H distances in the dimethyl­glyoximate hy­droxy groups are 0.89 (6) and 1.14 (6) Å; such long O—H bonds are very common in cobaloxime derivatives. Weak classical O—H⋯N and non-classical C—H⋯Cl hydrogen-bonding interactions further consolidate the crystal packing.

Related literature

For background on the chemistry of cobaloximes, see: Schrayzer (1968[Schrayzer, G. N. (1968). Acc. Chem. Res. 1, 97-103.]); Zangrando et al. (2003[Zangrando, E., Trani, M., Stabon, E., Carfagna, C., Milani, B. & Mestroni, G. (2003). Eur. J. Inorg. Chem. pp. 2683-2692.]). For applications of cobaloximes in proton reduction, see: Raza­vet et al. (2005[Razavet, M., Artero, V. & Fontecave, M. (2005). Inorg. Chem. 44, 4786-4795.]). For related structures, see: Bhuyan et al. (2007[Bhuyan, M., Laskar, M., Mandal, D. & Gupta, B. D. (2007). Organometallics, 26, 3559-3567.]); Dutta et al. (2009[Dutta, G., Kumar, K. & Gupta, B. D. (2009). Organometallics, 28, 3485-3491.]); Mandal & Gupta (2005[Mandal, D. & Gupta, B. D. (2005). Organometallics, 24, 1501-1510.], 2007[Mandal, D. & Gupta, B. D. (2007). Organometallics, 26, 658-670.]); William et al. (1973[William, C. T., Robert, C. S., Leon, A. E. & Luigi, G. M. (1973). Inorg. Chem. 10, 1564-1570.]). For NMR research on O—H⋯O bridges, see: Bakac & Espenson (1984[Bakac, A. & Espenson, J. H. (1984). J. Am. Chem. Soc. 106, 5197-5202.]). For deprotonation of O—H⋯O bridges by BF3·Et2O, see: Magnuson & Weber (1974[Magnuson, V. E. & Weber, J. H. (1974). J. Organomet. Chem. 74, 135-141.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C4H7N2O2)2Cl(C8H9NO2)]·CHCl3

  • Mr = 595.14

  • Orthorhombic, P b c a

  • a = 10.053 (3) Å

  • b = 22.357 (7) Å

  • c = 23.099 (8) Å

  • V = 5192 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 293 K

  • 0.29 × 0.14 × 0.06 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.829, Tmax = 0.935

  • 24393 measured reflections

  • 4558 independent reflections

  • 3483 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.158

  • S = 1.08

  • 4558 reflections

  • 310 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4 1.14 (6) 1.37 (6) 2.495 (4) 168 (5)
O2—H2⋯N4 1.14 (6) 2.10 (6) 3.004 (4) 133 (4)
O1—H1⋯O3 0.89 (6) 1.60 (6) 2.486 (4) 177 (6)
O1—H1⋯N3 0.89 (6) 2.25 (6) 3.000 (4) 142 (5)
C17—H17A⋯Cl1 0.98 2.49 3.437 (6) 163
C6—H6C⋯Cl1i 0.96 2.79 3.675 (5) 153
Symmetry code: (i) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SADABS, SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The cobaloximes have extensively been used to mimic the vitamin B12 coenzyme (Schrayzer, 1968). Recently they also are used to catalyze proton reduction as a functional model of hydrogenase (Razavet et al., 2005). The title compound, [Co(dmgH)2(4-(COOEt)C5H4N)Cl], was prepared as previously described (William et al., 1973). The cobalt atom is coordinated in a distorted-octahedral geometry by four nitrogen atoms of the pseudomacrocyclic [(dmgH)2]2- ligand in the equatorial plane and by one chlorine atom and a nitrogen atom of ethyl isonicotinate, respectively, in mutually trans positions (N5—Co—Cl1 = 179.33° (10)). The cobalt atom which is linked to four nitrogen atoms belonging to the equatorial plane, displays an approximately octahedral coordination. The mean Co—N bond length is 1.898 Å (3). The mean O—O distance between neighboring dimethylglyoximato oxygen atoms is 2.491 Å (5). These ligands form strong O—H···O bridges with each other which is very common in cobaloxime derivatives. The presence of the O—H···O bridging moieties in cobaloxime derivatives ensures coplanarity of the two ligand molecules and promotes the stability of the cobaloxime molecule (Zangrando et al., 2003). The existence of O—H···O bridging is supported by the NMR data and further substantiated by their chemical behavior with BF3.Et2O in readily forming an O—BF2—O system by deprotonation of the O—H···O bridge (Bakac & Espenson, 1984; Magnuson & Weber, 1974). The distance between O2 and H2 is 1.14 (6) Å indicating a strongly hydrogen bonded nearly symmetric O—H···O system (Bhuyan et al., 2007; Dutta et al., 2009; Mandal & Gupta, 2005, 2007). The Co atom is 0.0240 Å (15) out of the mean plane of the four nitrogen atoms. The plane of the four nitrogen atoms is practically planar.

Related literature top

For background on the chemistry of cobaloximes, see: Schrayzer (1968); Zangrando et al. (2003). For applications of cobaloximes in proton reduction, see: Razavet et al. (2005). For related structures, see: Bhuyan et al. (2007); Dutta et al. (2009); Mandal & Gupta (2005, 2007); William et al. (1973). For NMR research on O—H···O bridges, see: Bakac & Espenson (1984). For deprotonation of O—H···O bridges by BF3.Et2O, see: Magnuson & Weber (1974).

Experimental top

Co(dmgH)(dmgH2)Cl, (3.6 g, 0.01 mol) and ethyl isonicotinate (3.0 g, 0.02 mol) were added to chloroform (90 ml) (William et al.,1973). The suspension was stirred for 20 minutes. Then water (30 ml) was added to the flask and the mixture was vigorously stirred for 2 h. The aqueous layer was discarded and the chloroform layer filtered and extracted with water until the washings were nearly colorless. The solution was reduced in volume and the product precipitated by addition of ethanol (95%); yield 69%. Brown single crystals of [Co(dmgH)2(4-(COOEt)C5H4N)Cl] were grown from a CHCl3/ethyl acetate solution (v:v = 1:1). 1H NMR (400 MHz, CDCl3): δ 8.45 (d, 6.4 Hz, 2 H, o-Hpy), 7.75 (d, 6 Hz, 2 H, m-Hpy), 4.38 (q, 7.2 Hz, 2 H, CH2), 2.30 (s, 12 H, N=CCH3), 1.35 (t, 7.0 Hz, 3 H, CH3).

Refinement top

H1 and H2 were located in difference Fourier maps and their positions and displacement parameters were fully rerfined. All other hydrogen atoms were placed in calculated positions and refined as riding with C—H = 0.93 Å (CH) and 0.97 Å (CH3), and with Uiso(H) = 1.5Ueq(C) for the methyl group and Uiso(H) = 1.2Ueq(C) for all others.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
Chloridobis(dimethylglyoximato-κ2N,N')(ethyl pyridine-4-carboxylate-κN)cobalt(III) chloroform monosolvate top
Crystal data top
[Co(C4H7N2O2)2Cl(C8H9NO2)]·CHCl3F(000) = 2432
Mr = 595.14Dx = 1.523 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5509 reflections
a = 10.053 (3) Åθ = 2.4–24.8°
b = 22.357 (7) ŵ = 1.11 mm1
c = 23.099 (8) ÅT = 293 K
V = 5192 (3) Å3Needle, brown
Z = 80.29 × 0.14 × 0.06 mm
Data collection top
Bruker APEXII area-detector
diffractometer
4558 independent reflections
Radiation source: fine-focus sealed tube3483 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 119
Tmin = 0.829, Tmax = 0.935k = 2626
24393 measured reflectionsl = 2724
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0892P)2 + 4.4304P]
where P = (Fo2 + 2Fc2)/3
4558 reflections(Δ/σ)max = 0.001
310 parametersΔρmax = 1.25 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
[Co(C4H7N2O2)2Cl(C8H9NO2)]·CHCl3V = 5192 (3) Å3
Mr = 595.14Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.053 (3) ŵ = 1.11 mm1
b = 22.357 (7) ÅT = 293 K
c = 23.099 (8) Å0.29 × 0.14 × 0.06 mm
Data collection top
Bruker APEXII area-detector
diffractometer
4558 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3483 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 0.935Rint = 0.039
24393 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 1.25 e Å3
4558 reflectionsΔρmin = 0.78 e Å3
310 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.23591 (5)0.00646 (2)0.63484 (2)0.03477 (19)
Cl10.08443 (9)0.07824 (5)0.62035 (4)0.0473 (3)
N20.2686 (3)0.00560 (14)0.55381 (14)0.0387 (7)
N40.3608 (3)0.06594 (13)0.65679 (12)0.0364 (7)
O20.3577 (3)0.04186 (12)0.52883 (11)0.0489 (7)
N30.1977 (3)0.00927 (14)0.71495 (13)0.0407 (7)
N50.3706 (3)0.05592 (13)0.64728 (13)0.0406 (7)
O40.4372 (3)0.09421 (12)0.61771 (11)0.0473 (7)
O30.1032 (3)0.02516 (14)0.73944 (11)0.0558 (7)
C40.3647 (4)0.07978 (16)0.71110 (15)0.0384 (8)
N10.1090 (3)0.05257 (15)0.61321 (13)0.0443 (8)
C20.2011 (4)0.03273 (18)0.52384 (15)0.0438 (9)
O10.0261 (3)0.07852 (15)0.65120 (13)0.0617 (9)
C30.2708 (3)0.04442 (17)0.74594 (16)0.0406 (9)
C10.1055 (4)0.06658 (18)0.55898 (16)0.0478 (10)
C60.2193 (5)0.0395 (2)0.45984 (18)0.0661 (13)
H6A0.30240.05910.45220.099*
H6B0.21930.00080.44200.099*
H6C0.14780.06300.44430.099*
C70.2605 (4)0.0476 (2)0.81032 (17)0.0580 (12)
H7A0.17230.05990.82100.087*
H7B0.32380.07600.82480.087*
H7C0.27870.00890.82660.087*
C90.4808 (4)0.05867 (19)0.61441 (18)0.0514 (10)
H9A0.49200.03070.58500.062*
C80.4506 (4)0.12779 (18)0.73592 (18)0.0522 (10)
H8A0.50490.14460.70590.078*
H8B0.50650.11110.76550.078*
H8C0.39550.15850.75240.078*
C100.5774 (4)0.10112 (19)0.6225 (2)0.0571 (11)
H10A0.65120.10220.59820.069*
C130.3583 (4)0.09637 (18)0.68994 (17)0.0518 (10)
H13A0.28250.09530.71300.062*
C50.0100 (5)0.1112 (2)0.5347 (2)0.0683 (13)
H5A0.05060.12370.56450.102*
H5B0.05820.14520.52050.102*
H5C0.03890.09330.50350.102*
C110.5646 (5)0.14251 (19)0.66696 (19)0.0548 (11)
C120.4530 (5)0.1392 (2)0.70090 (19)0.0601 (12)
H12A0.44140.16590.73130.072*
O50.7541 (4)0.1941 (2)0.6368 (2)0.1054 (16)
O60.6596 (6)0.2213 (2)0.7205 (2)0.134 (2)
C140.6648 (6)0.1899 (2)0.6788 (3)0.0737 (15)
C150.8560 (7)0.2399 (3)0.6427 (4)0.130 (3)
H15A0.86810.24980.68330.156*
H15B0.93990.22520.62770.156*
C160.8152 (9)0.2930 (4)0.6107 (3)0.127 (3)
H16A0.88150.32360.61490.191*
H16B0.80530.28310.57050.191*
H16C0.73180.30720.62560.191*
Cl20.3288 (3)0.21423 (11)0.52934 (9)0.1438 (9)
Cl30.2763 (2)0.24725 (11)0.64763 (12)0.1451 (11)
Cl40.0658 (2)0.24578 (13)0.56700 (13)0.1782 (13)
C170.2161 (6)0.2156 (3)0.5858 (2)0.0785 (15)
H17A0.19830.17360.59540.094*
H20.406 (6)0.064 (3)0.568 (3)0.105 (19)*
H10.053 (6)0.060 (3)0.683 (3)0.10 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0347 (3)0.0443 (3)0.0253 (3)0.0059 (2)0.00124 (18)0.00086 (19)
Cl10.0387 (5)0.0631 (6)0.0401 (5)0.0045 (4)0.0007 (4)0.0016 (4)
N20.0389 (17)0.0465 (18)0.0306 (17)0.0038 (14)0.0041 (12)0.0030 (13)
N40.0354 (16)0.0430 (16)0.0308 (16)0.0006 (13)0.0008 (12)0.0025 (13)
O20.0527 (17)0.0618 (17)0.0321 (14)0.0127 (14)0.0075 (12)0.0021 (12)
N30.0389 (17)0.0536 (19)0.0296 (16)0.0037 (14)0.0033 (13)0.0034 (13)
N50.0424 (17)0.0409 (17)0.0384 (17)0.0040 (14)0.0010 (13)0.0012 (13)
O40.0460 (15)0.0562 (16)0.0398 (15)0.0164 (13)0.0049 (11)0.0074 (12)
O30.0506 (17)0.0802 (19)0.0366 (15)0.0215 (15)0.0116 (12)0.0071 (14)
C40.0384 (19)0.0416 (19)0.035 (2)0.0047 (16)0.0036 (15)0.0002 (15)
N10.0430 (18)0.0542 (19)0.0358 (18)0.0111 (15)0.0005 (13)0.0029 (14)
C20.052 (2)0.051 (2)0.0293 (18)0.0015 (18)0.0021 (17)0.0057 (17)
O10.065 (2)0.078 (2)0.0422 (17)0.0358 (17)0.0040 (14)0.0046 (16)
C30.037 (2)0.056 (2)0.0287 (18)0.0056 (17)0.0011 (15)0.0013 (17)
C10.052 (2)0.055 (2)0.037 (2)0.0067 (19)0.0063 (17)0.0052 (18)
C60.075 (3)0.090 (4)0.033 (2)0.014 (3)0.003 (2)0.013 (2)
C70.057 (3)0.086 (3)0.031 (2)0.006 (2)0.0015 (17)0.005 (2)
C90.047 (2)0.051 (2)0.056 (3)0.0002 (19)0.0069 (19)0.0105 (19)
C80.056 (2)0.056 (2)0.044 (2)0.007 (2)0.0107 (19)0.0058 (18)
C100.049 (2)0.054 (2)0.068 (3)0.004 (2)0.004 (2)0.002 (2)
C130.059 (3)0.054 (2)0.042 (2)0.001 (2)0.0035 (18)0.0085 (19)
C50.081 (3)0.070 (3)0.053 (3)0.029 (3)0.013 (2)0.007 (2)
C110.061 (3)0.048 (2)0.055 (3)0.003 (2)0.015 (2)0.002 (2)
C120.080 (3)0.052 (2)0.048 (3)0.001 (2)0.006 (2)0.012 (2)
O50.074 (3)0.078 (3)0.164 (5)0.031 (2)0.017 (3)0.036 (3)
O60.180 (5)0.134 (4)0.089 (3)0.091 (4)0.008 (3)0.028 (3)
C140.084 (4)0.057 (3)0.081 (4)0.016 (3)0.028 (3)0.000 (3)
C150.086 (5)0.098 (5)0.207 (9)0.052 (4)0.016 (5)0.038 (6)
C160.151 (8)0.114 (6)0.118 (6)0.072 (6)0.003 (5)0.020 (5)
Cl20.159 (2)0.167 (2)0.1055 (15)0.0384 (17)0.0411 (14)0.0400 (13)
Cl30.1212 (16)0.178 (2)0.1355 (19)0.0474 (15)0.0562 (14)0.0717 (16)
Cl40.1211 (17)0.229 (3)0.185 (3)0.0840 (18)0.0778 (17)0.087 (2)
C170.081 (4)0.079 (4)0.075 (4)0.007 (3)0.009 (3)0.001 (3)
Geometric parameters (Å, º) top
Co1—N31.891 (3)C7—H7C0.9600
Co1—N41.898 (3)C9—C101.370 (6)
Co1—N21.901 (3)C9—H9A0.9300
Co1—N11.902 (3)C8—H8A0.9600
Co1—N51.965 (3)C8—H8B0.9600
Co1—Cl12.2375 (12)C8—H8C0.9600
N2—C21.294 (5)C10—C111.389 (6)
N2—O21.339 (4)C10—H10A0.9300
N4—C41.293 (5)C13—C121.374 (6)
N4—O41.344 (4)C13—H13A0.9300
O2—H21.14 (6)C5—H5A0.9600
N3—C31.292 (5)C5—H5B0.9600
N3—O31.347 (4)C5—H5C0.9600
N5—C131.343 (5)C11—C121.371 (6)
N5—C91.345 (5)C11—C141.487 (6)
O4—H21.37 (6)C12—H12A0.9300
C4—C31.471 (5)O5—C141.325 (7)
C4—C81.492 (5)O5—C151.454 (7)
N1—C11.292 (5)O6—C141.194 (7)
N1—O11.342 (4)C15—C161.456 (11)
C2—C11.468 (6)C15—H15A0.9700
C2—C61.497 (5)C15—H15B0.9700
O1—H10.89 (6)C16—H16A0.9600
C3—C71.492 (5)C16—H16B0.9600
C1—C51.493 (6)C16—H16C0.9600
C6—H6A0.9600Cl2—C171.728 (6)
C6—H6B0.9600Cl3—C171.705 (6)
C6—H6C0.9600Cl4—C171.712 (6)
C7—H7A0.9600C17—H17A0.9800
C7—H7B0.9600
N3—Co1—N481.36 (13)H7A—C7—H7B109.5
N3—Co1—N2177.80 (13)C3—C7—H7C109.5
N4—Co1—N298.96 (13)H7A—C7—H7C109.5
N3—Co1—N198.27 (13)H7B—C7—H7C109.5
N4—Co1—N1179.30 (14)N5—C9—C10122.6 (4)
N2—Co1—N181.39 (13)N5—C9—H9A118.7
N3—Co1—N591.17 (13)C10—C9—H9A118.7
N4—Co1—N590.15 (13)C4—C8—H8A109.5
N2—Co1—N591.00 (13)C4—C8—H8B109.5
N1—Co1—N590.45 (14)H8A—C8—H8B109.5
N3—Co1—Cl189.10 (10)C4—C8—H8C109.5
N4—Co1—Cl189.28 (9)H8A—C8—H8C109.5
N2—Co1—Cl188.73 (10)H8B—C8—H8C109.5
N1—Co1—Cl190.12 (11)C9—C10—C11119.8 (4)
N5—Co1—Cl1179.33 (10)C9—C10—H10A120.1
C2—N2—O2121.4 (3)C11—C10—H10A120.1
C2—N2—Co1116.3 (3)N5—C13—C12122.7 (4)
O2—N2—Co1122.3 (2)N5—C13—H13A118.6
C4—N4—O4121.5 (3)C12—C13—H13A118.6
C4—N4—Co1116.6 (2)C1—C5—H5A109.5
O4—N4—Co1121.9 (2)C1—C5—H5B109.5
N2—O2—H2102 (3)H5A—C5—H5B109.5
C3—N3—O3121.0 (3)C1—C5—H5C109.5
C3—N3—Co1116.5 (3)H5A—C5—H5C109.5
O3—N3—Co1122.4 (2)H5B—C5—H5C109.5
C13—N5—C9117.3 (4)C12—C11—C10117.6 (4)
C13—N5—Co1121.5 (3)C12—C11—C14119.2 (5)
C9—N5—Co1121.2 (3)C10—C11—C14123.2 (5)
N4—O4—H2102 (2)C11—C12—C13120.0 (4)
N4—C4—C3112.5 (3)C11—C12—H12A120.0
N4—C4—C8124.3 (3)C13—C12—H12A120.0
C3—C4—C8123.2 (3)C14—O5—C15117.3 (5)
C1—N1—O1120.8 (3)O6—C14—O5125.3 (5)
C1—N1—Co1116.2 (3)O6—C14—C11122.5 (6)
O1—N1—Co1123.0 (2)O5—C14—C11112.1 (5)
N2—C2—C1112.9 (3)O5—C15—C16109.1 (7)
N2—C2—C6122.1 (4)O5—C15—H15A109.9
C1—C2—C6125.0 (4)C16—C15—H15A109.9
N1—O1—H199 (4)O5—C15—H15B109.9
N3—C3—C4112.9 (3)C16—C15—H15B109.9
N3—C3—C7122.8 (4)H15A—C15—H15B108.3
C4—C3—C7124.3 (3)C15—C16—H16A109.5
N1—C1—C2113.1 (3)C15—C16—H16B109.5
N1—C1—C5122.9 (4)H16A—C16—H16B109.5
C2—C1—C5123.9 (4)C15—C16—H16C109.5
C2—C6—H6A109.5H16A—C16—H16C109.5
C2—C6—H6B109.5H16B—C16—H16C109.5
H6A—C6—H6B109.5Cl3—C17—Cl4111.2 (3)
C2—C6—H6C109.5Cl3—C17—Cl2114.0 (3)
H6A—C6—H6C109.5Cl4—C17—Cl2113.2 (4)
H6B—C6—H6C109.5Cl3—C17—H17A105.9
C3—C7—H7A109.5Cl4—C17—H17A105.9
C3—C7—H7B109.5Cl2—C17—H17A105.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O41.14 (6)1.37 (6)2.495 (4)168 (5)
O2—H2···N41.14 (6)2.10 (6)3.004 (4)133 (4)
O1—H1···O30.89 (6)1.60 (6)2.486 (4)177 (6)
O1—H1···N30.89 (6)2.25 (6)3.000 (4)142 (5)
C17—H17A···Cl10.982.493.437 (6)163
C6—H6C···Cl1i0.962.793.675 (5)153
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(C4H7N2O2)2Cl(C8H9NO2)]·CHCl3
Mr595.14
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)10.053 (3), 22.357 (7), 23.099 (8)
V3)5192 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.29 × 0.14 × 0.06
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.829, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
24393, 4558, 3483
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.158, 1.08
No. of reflections4558
No. of parameters310
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.25, 0.78

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O41.14 (6)1.37 (6)2.495 (4)168 (5)
O2—H2···N41.14 (6)2.10 (6)3.004 (4)133 (4)
O1—H1···O30.89 (6)1.60 (6)2.486 (4)177 (6)
O1—H1···N30.89 (6)2.25 (6)3.000 (4)142 (5)
C17—H17A···Cl10.982.493.437 (6)163
C6—H6C···Cl1i0.962.793.675 (5)153
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

We are grateful to the Chinese National Natural Science Foundation (grant No. 21101057), the Science Foundation of the Education Department of Henan Province (No. 2011B150006) and the Doctoral Fund of Henan University of Technology (No. 2009BS053).

References

First citationBakac, A. & Espenson, J. H. (1984). J. Am. Chem. Soc. 106, 5197–5202.  CrossRef CAS Web of Science Google Scholar
First citationBhuyan, M., Laskar, M., Mandal, D. & Gupta, B. D. (2007). Organometallics, 26, 3559–3567.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). SADABS, SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDutta, G., Kumar, K. & Gupta, B. D. (2009). Organometallics, 28, 3485–3491.  Web of Science CSD CrossRef CAS Google Scholar
First citationMagnuson, V. E. & Weber, J. H. (1974). J. Organomet. Chem. 74, 135–141.  CrossRef CAS Web of Science Google Scholar
First citationMandal, D. & Gupta, B. D. (2005). Organometallics, 24, 1501–1510.  Web of Science CSD CrossRef CAS Google Scholar
First citationMandal, D. & Gupta, B. D. (2007). Organometallics, 26, 658–670.  Web of Science CSD CrossRef CAS Google Scholar
First citationRazavet, M., Artero, V. & Fontecave, M. (2005). Inorg. Chem. 44, 4786–4795.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchrayzer, G. N. (1968). Acc. Chem. Res. 1, 97–103.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliam, C. T., Robert, C. S., Leon, A. E. & Luigi, G. M. (1973). Inorg. Chem. 10, 1564–1570.  Google Scholar
First citationZangrando, E., Trani, M., Stabon, E., Carfagna, C., Milani, B. & Mestroni, G. (2003). Eur. J. Inorg. Chem. pp. 2683–2692.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m204-m205
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds