organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,4-Di­fluoro­phen­yl)-2-(1H-1,2,4-triazol-1-yl)ethanol

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: taoxiao@njut.edu.cn

(Received 4 January 2012; accepted 10 January 2012; online 18 January 2012)

In the title compound, C10H9F2N3O, the dihedral angle between the rings is 22.90 (4)°. In the crystal, C—H⋯F and O—H⋯N hydrogen bonds link the mol­ecules into chains along [010].

Related literature

For related compounds containing a 2-(1H-1,2,4-triazol-1-yl)-1-phenyl­ethanol fragment, see: Bu et al. (2000[Bu, H.-Z., Poglod, M., Micetich, R. G. & Khan, J. K. (2000). J. Chromatogr. B, 738, 259-265.]). For related structures, see: Tao et al. (2007[Tao, X., Yuan, L., Zhang, X.-Q., Jing, C. & Wang, J.-T. (2007). Acta Cryst. E63, o1330-o1331.]); Liu et al. (2011[Liu, D., Li, C., Tian, X., Li, S. & Xiao, T. (2011). Acta Cryst. E67, o3170.]); Yu et al. (2011[Yu, G., Li, C., Xiao, T., Li, S. & Tian, X. (2011). Acta Cryst. E67, o3468.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9F2N3O

  • Mr = 225.20

  • Monoclinic, C 2/c

  • a = 14.261 (3) Å

  • b = 5.6150 (11) Å

  • c = 25.823 (5) Å

  • β = 94.84 (3)°

  • V = 2060.4 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.964, Tmax = 0.988

  • 1969 measured reflections

  • 1886 independent reflections

  • 1059 reflections with I > 2σ(I)

  • Rint = 0.035

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.143

  • S = 1.01

  • 1886 reflections

  • 148 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O—H0A⋯N3i 0.83 (3) 1.98 (3) 2.794 (3) 169 (3)
C8—H8B⋯F2ii 0.97 2.46 3.388 (4) 159
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y+1, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound, C10H9O1N3F2, is the key intermediate in the synthesis of a new kind of antifungal drug (Bu et al., 2000). We previously reported the crystal structures of similar compounds (Tao et al., 2007; Liu et al., 2011; Yu et al., 2011). The X-ray diffraction study has been carried out in order to elucidate the molecular conformation.We report here its crystal structure (Fig. 1). The bond lengths and angles are within normal ranges (Allen et al., 1987). The dihedral angle between the ring A (N1/N2/C9—C11) and B (C1—C6) is 22.90 (4)°. In the crystal, intermolecular C—H···F and O—H···N hydrogen bonds link the molecules into one-dimensional [010] chains (Fig. 2).

Related literature top

For related compounds containing a 2-(1H-1,2,4-triazol-1-yl)-1-phenylethanol fragment, see: Bu et al. (2000). For related structures, see: Tao et al. (2007); Liu et al. (2011); Yu et al. (2011). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of 1-(2,4-difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone (2.25 g, 10 mol), sodium borohydride (0.756 g, 20 mmol) and 30 ml dry ethanol was refluxed for 3 h. After solvent evaporation, the mixture was neutralized with dilute hydrochloric acid and then refluxed for 30 min. After the mixture was cooled, the solution was alkalinized with sodium hydroxide, the precipitate collected and recrystallized with ethanol, and a yellow deposit was obtain (m.p. 395–396 K). Crystals suitable for X-ray analysis were obtained by dissolving the crude product (1.0 g) in ethanol (30 ml) and then allowing the solution to evaporate slowly at room temperature for about 7 d.

Refinement top

The H atom of the hydroxy group was located in a Fourier difference map and freely refined with Uiso(H) = 1.5Ueq(O). The other H atoms were positioned geometrically with C—H = 0.93 Å (aromatic) and 0.97 Å (methylene) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
1-(2,4-Difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanol top
Crystal data top
C10H9F2N3OF(000) = 928
Mr = 225.20Dx = 1.452 Mg m3
Monoclinic, C2/cMelting point: 395 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 14.261 (3) ÅCell parameters from 25 reflections
b = 5.6150 (11) Åθ = 9–13°
c = 25.823 (5) ŵ = 0.12 mm1
β = 94.84 (3)°T = 293 K
V = 2060.4 (7) Å3Prism, colourless
Z = 80.30 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1059 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 25.4°, θmin = 1.6°
ω/2θ scansh = 017
Absorption correction: ψ scan
(North et al., 1968)
k = 06
Tmin = 0.964, Tmax = 0.988l = 3130
1969 measured reflections3 standard reflections every 200 reflections
1886 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.070P)2]
where P = (Fo2 + 2Fc2)/3
1886 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.17 e Å3
3 restraintsΔρmin = 0.15 e Å3
Crystal data top
C10H9F2N3OV = 2060.4 (7) Å3
Mr = 225.20Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.261 (3) ŵ = 0.12 mm1
b = 5.6150 (11) ÅT = 293 K
c = 25.823 (5) Å0.30 × 0.10 × 0.10 mm
β = 94.84 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1059 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.035
Tmin = 0.964, Tmax = 0.9883 standard reflections every 200 reflections
1969 measured reflections intensity decay: 1%
1886 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0513 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.17 e Å3
1886 reflectionsΔρmin = 0.15 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.06636 (12)0.1378 (4)0.69742 (7)0.0730 (6)
H0A0.080 (2)0.037 (5)0.7204 (11)0.088*
N10.25384 (13)0.1969 (4)0.66832 (7)0.0604 (6)
F10.20749 (13)0.0256 (4)0.49804 (8)0.1263 (8)
C10.05951 (18)0.1696 (6)0.60844 (11)0.0895 (10)
H1A0.05720.29070.63310.107*
F20.07930 (15)0.3219 (4)0.57292 (8)0.1337 (9)
N20.30591 (16)0.0018 (5)0.68043 (10)0.0848 (8)
C20.13473 (19)0.1639 (7)0.57217 (12)0.0971 (11)
H2B0.18310.27520.57180.117*
N30.36133 (15)0.3146 (5)0.72719 (8)0.0787 (7)
C30.1347 (2)0.0224 (7)0.53496 (12)0.0873 (10)
C40.0688 (2)0.1827 (6)0.53470 (12)0.1006 (11)
H4A0.07140.30410.51010.121*
C50.0087 (2)0.1631 (5)0.57445 (11)0.0821 (9)
C60.01250 (17)0.0092 (5)0.61091 (9)0.0617 (7)
C70.09468 (17)0.0301 (5)0.65216 (9)0.0604 (7)
H7A0.11950.12920.66070.072*
C80.17176 (16)0.1809 (5)0.63143 (9)0.0686 (7)
H8A0.18980.11180.59930.082*
H8B0.14770.33970.62380.082*
C90.36890 (19)0.0821 (6)0.71531 (12)0.0851 (9)
H9A0.41610.01430.73110.102*
C100.2871 (2)0.3760 (5)0.69662 (11)0.0760 (8)
H10A0.26130.52820.69520.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0753 (11)0.0893 (15)0.0522 (10)0.0145 (11)0.0081 (8)0.0017 (10)
N10.0569 (11)0.0675 (13)0.0548 (12)0.0103 (11)0.0083 (9)0.0079 (11)
F10.1093 (14)0.1456 (18)0.1112 (15)0.0102 (13)0.0652 (12)0.0063 (13)
C10.0722 (17)0.121 (3)0.0707 (18)0.0322 (19)0.0212 (14)0.0251 (19)
F20.1684 (18)0.0919 (14)0.1278 (16)0.0621 (14)0.0645 (14)0.0378 (12)
N20.0710 (14)0.0808 (16)0.0969 (18)0.0165 (13)0.0257 (13)0.0199 (14)
C20.0697 (17)0.141 (3)0.0767 (19)0.039 (2)0.0157 (15)0.005 (2)
N30.0761 (15)0.095 (2)0.0616 (13)0.0125 (14)0.0126 (11)0.0080 (13)
C30.0747 (19)0.104 (2)0.078 (2)0.0099 (19)0.0289 (16)0.0163 (19)
C40.127 (3)0.073 (2)0.091 (2)0.002 (2)0.051 (2)0.0071 (18)
C50.101 (2)0.0584 (17)0.0804 (19)0.0165 (17)0.0334 (16)0.0083 (15)
C60.0612 (14)0.0680 (16)0.0533 (14)0.0083 (14)0.0098 (11)0.0007 (13)
C70.0643 (14)0.0636 (16)0.0506 (13)0.0115 (12)0.0114 (11)0.0024 (12)
C80.0683 (15)0.0824 (18)0.0519 (13)0.0105 (14)0.0147 (11)0.0038 (14)
C90.0644 (17)0.102 (3)0.084 (2)0.0084 (17)0.0214 (15)0.0041 (19)
C100.0809 (18)0.0693 (18)0.0763 (19)0.0009 (15)0.0025 (15)0.0094 (16)
Geometric parameters (Å, º) top
O—C71.405 (3)N3—C101.312 (3)
O—H0A0.83 (3)N3—C91.347 (4)
N1—C101.308 (3)C3—C41.302 (4)
N1—N21.345 (3)C4—C51.448 (3)
N1—C81.448 (3)C4—H4A0.9300
F1—C31.349 (3)C5—C61.348 (3)
C1—C61.363 (3)C6—C71.520 (3)
C1—C21.364 (3)C7—C81.520 (4)
C1—H1A0.9300C7—H7A0.9800
F2—C51.348 (3)C8—H8A0.9700
N2—C91.298 (3)C8—H8B0.9700
C2—C31.420 (4)C9—H9A0.9300
C2—H2B0.9300C10—H10A0.9300
C7—O—H0A104 (2)C5—C6—C1117.1 (2)
C10—N1—N2109.2 (2)C5—C6—C7121.9 (2)
C10—N1—C8130.5 (2)C1—C6—C7121.0 (2)
N2—N1—C8120.1 (2)O—C7—C8108.7 (2)
C6—C1—C2124.2 (3)O—C7—C6110.93 (19)
C6—C1—H1A117.9C8—C7—C6109.5 (2)
C2—C1—H1A117.9O—C7—H7A109.2
C9—N2—N1102.4 (2)C8—C7—H7A109.2
C1—C2—C3115.9 (3)C6—C7—H7A109.2
C1—C2—H2B122.0N1—C8—C7111.78 (19)
C3—C2—H2B122.0N1—C8—H8A109.3
C10—N3—C9101.2 (2)C7—C8—H8A109.3
C4—C3—F1120.0 (3)N1—C8—H8B109.3
C4—C3—C2123.6 (3)C7—C8—H8B109.3
F1—C3—C2116.4 (3)H8A—C8—H8B107.9
C3—C4—C5116.9 (3)N2—C9—N3115.5 (3)
C3—C4—H4A121.6N2—C9—H9A122.2
C5—C4—H4A121.6N3—C9—H9A122.2
F2—C5—C6120.6 (2)N1—C10—N3111.7 (3)
F2—C5—C4117.2 (2)N1—C10—H10A124.1
C6—C5—C4122.2 (3)N3—C10—H10A124.1
C10—N1—N2—C91.0 (3)C2—C1—C6—C7179.1 (3)
C8—N1—N2—C9177.4 (2)C5—C6—C7—O152.5 (3)
C6—C1—C2—C30.7 (5)C1—C6—C7—O29.4 (4)
C1—C2—C3—C40.9 (5)C5—C6—C7—C887.5 (3)
C1—C2—C3—F1178.2 (3)C1—C6—C7—C890.6 (3)
F1—C3—C4—C5177.9 (3)C10—N1—C8—C7108.9 (3)
C2—C3—C4—C51.1 (5)N2—N1—C8—C766.5 (3)
C3—C4—C5—F2177.0 (3)O—C7—C8—N161.5 (3)
C3—C4—C5—C61.3 (5)C6—C7—C8—N1177.2 (2)
F2—C5—C6—C1177.0 (3)N1—N2—C9—N30.5 (4)
C4—C5—C6—C11.2 (5)C10—N3—C9—N20.2 (4)
F2—C5—C6—C71.1 (4)N2—N1—C10—N31.3 (3)
C4—C5—C6—C7179.3 (3)C8—N1—C10—N3177.1 (2)
C2—C1—C6—C50.9 (5)C9—N3—C10—N10.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H0A···N3i0.83 (3)1.98 (3)2.794 (3)169 (3)
C8—H8B···F2ii0.972.463.388 (4)159
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H9F2N3O
Mr225.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)14.261 (3), 5.6150 (11), 25.823 (5)
β (°) 94.84 (3)
V3)2060.4 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.964, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
1969, 1886, 1059
Rint0.035
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.143, 1.01
No. of reflections1886
No. of parameters148
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H0A···N3i0.83 (3)1.98 (3)2.794 (3)169 (3)
C8—H8B···F2ii0.97002.46003.388 (4)159.00
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y+1, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBu, H.-Z., Poglod, M., Micetich, R. G. & Khan, J. K. (2000). J. Chromatogr. B, 738, 259–265.  CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLiu, D., Li, C., Tian, X., Li, S. & Xiao, T. (2011). Acta Cryst. E67, o3170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, X., Yuan, L., Zhang, X.-Q., Jing, C. & Wang, J.-T. (2007). Acta Cryst. E63, o1330–o1331.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, G., Li, C., Xiao, T., Li, S. & Tian, X. (2011). Acta Cryst. E67, o3468.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds