organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o672-o673

14-Angeloyloxycacalohastine from Psacalium peltatum

aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México, DF 04510, Mexico
*Correspondence e-mail: simonho@unam.mx

(Received 31 October 2011; accepted 31 January 2012; online 10 February 2012)

The title compound [systematic name: (9-meth­oxy-3,5-dimethyl-5,6-dihydro­naphtho­[2,3-b]furan-4-yl)methyl 2-meth­yl­but-2-enoate], C21H24O4, was isolated from matarique, or Psacalium peltatum (Kunth). The structure is almost planar. The angelo­yloxy group makes an angle of 62.08 (2)° with the furan­oeremophilane skeleton. The carbonyl O atom is disordered between two positions with a 76:24 ratio. The mol­ecules in the crystal are joined by very weak C—H—O inter­actions in the ac plane.

Related literature

For fundamental background information, see: Romo de Vivar et al. (2007[Romo de Vivar, A., Pérez-Castorena, A. L., Arciniegas, A. & Villaseñor, J. L. (2007). J. Mex. Chem. Soc. 51, 160-172.]). For biological activity, see: Acevedo-Quiroz et al. (2008[Acevedo-Quiroz, N., Domínguez-Villegas, V. & Garduño-Ramírez, M. L. (2008). Nat. Prod. Commun. 3, 313-317.]); Alarcón-Aguilar et al. (2000[Alarcón-Aguilar, F. J., Jiménez-Estrada, M., Reyes-Chilpa, R., González-Paredes, B., Contreras-Weber, C. C. & Roman-Ramos, R. (2000). J. Ethnopharmacol. 69, 207-215.]); Bye et al. (1995[Bye, R., Linares, E. & Estrada, H. (1995). Phytochemistry of Medicinal Plants, pp. 65-82. New York: Plenum Press.]); Contreras-Weber et al. (2002[Contreras-Weber, C., Perez-Gutierrez, S., Alarcón-Aguilar, F. J. & Roman-Ramos, R. (2002). Proc. West. Pharmacol. Soc. 45, 134-136.]); Jimenez-Estrada et al. (2006[Jimenez-Estrada, M., Reyes, R., Ramirez, T., Lledias, F., Hansberg, W., Arrieta, D. & Alarcón-Aguilar, F. J. (2006). J. Ethnopharmacol. 105, 34-38.]). For compound isolation, see: Abdo et al. (1992[Abdo, S., Bernardi, M., Marinoni, G., Mellerio, G., Samaniego, S., Vidari, G. & Vita Finzi, P. (1992). Phytochemistry, 31, 3937-3941.]); Bohlmann et al. (1977[Bohlmann, F., Knoll, K. H., Zedro, C., Mahanta, P. K., Grenz, M., Suwita, A., Ehlers, D., Le Van, N., Abraham, W. R. & Natu, A. A. (1977). Phytochemistry, 16, 965-985.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24O4

  • Mr = 340.40

  • Orthorhombic, P 21 21 21

  • a = 7.1627 (17) Å

  • b = 10.276 (2) Å

  • c = 24.605 (6) Å

  • V = 1811.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.40 × 0.40 × 0.40 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 20061 measured reflections

  • 1945 independent reflections

  • 1701 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.095

  • S = 1.12

  • 1945 reflections

  • 241 parameters

  • 21 restraints

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O2i 0.97 2.62 3.536 (3) 157
C6—H6B⋯O4ii 0.97 2.61 3.42 (2) 142
Symmetry codes: (i) x+1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The sesquiterpenes knows as eremophilanes contain in its basis skeleton a decalin system and most of them are found as furanoeremophilanes (Romo de Vivar et al., 2007). Psacalium peltatum (Kunth) Cass., is an endemic medicinal plant, a member of matarique complex, widely distributed in the central part of Mexico. The roots of P. peltatum have been shown biological activities (Alarcón-Aguilar et al., 2000; Bye et al., 1995; Contreras-Weber et al., 2002). Sesquiterpenes as cacalol and cacalone, isolated from P. decompositum, have been shown a clear inhibition of edema with a dose dependent in anti-inflammatory effect using in vivo models (Jimenez-Estrada et al., 2006). Even more, cacalone in a natural mixture with epi-cacalone reported the highest anti-inflammatory effect using in vivo 12-O-tetradecanoylphorbol-13-acetate (TPA) model (Acevedo-Quiroz, et al., 2008). Although the title compound has been isolated from several species of Senecio inaequidens, S. othonnae (Bohlmann et al., 1977) and S. canescens (Abdo et al., 1992), no report on the crystal structure determination of this compound has appeared. Therefore, due to this lack of data, the x-ray crystal structure determination of 14-angeloyloxycacalohastine was made.

14-Angeloyloxycacalohastine (I) has a furanoeremophilane skeleton (Fig. 1). Bond lengths and angles in (I) exhibit normal values (Allen et al., 1987). The structure is almost planar with C6 and C7 atoms out of the plane, forming a dihedral angle of 26.9 (1)° between central benzene ring and C4—C5—C6—C7 atoms. The angeloyloxy frame is almost perpendicular making a dihedral angle of 62.08 (2) to the furanoeremophilane skeleton. In absence of donor H atoms is noteworthy the fact that in the crystal structure, the molecules are linked by weak C—H···O intermolecular interaction (Table 1).

Related literature top

For fundamental [background information?], see: Romo de Vivar et al. (2007). For biological activity, see: Acevedo-Quiroz et al. (2008); Alarcón-Aguilar et al. (2000); Bye et al. (1995); Contreras-Weber et al. (2002); Jimenez-Estrada et al. (2006). For compound isolation, see: Abdo et al. (1992); Bohlmann et al. (1977). For bond-length data, see: Allen et al. (1987).

Experimental top

Roots of Psacalium peltatum (Kunth) Cass., were collected from pine-oak forest of Mineral del Chico, Hidalgo, Mexico]. A voucher specimen was deposited at the National Herbarium (MEXU 1138692) of the Instituto of Biologia, UNAM, Mexico. Air-dried and powdered roots of P. peltatum were sequentially extracted with n-hexane by exhaustive maceration (3 × 2 l), at room temperature. Hexane extract of roots from P. peltatum, was separated in a chromatoghraphic column by elution with hexane - ethyl acetate in gradient mixture. 14-Angeloyloxycacalohastine was isolated from the fraction eluted by hexane.

Refinement top

The positional parameters of H atoms were calculated geometrically (C—H = 0.93–0.98 Å). All H atoms were refined as riding with Uiso(H) = 1.5Ueq(C) for methyl H-atoms and Uiso(H) = 1.2Ueq(C) for other H-atoms. The carbonyl oxygen is disordered and has been refined in two positions. The ratio of SOF is 76/24 for O4/O4A respectively. In absence of heavy atoms the absolute configuration was not determined and the Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of I with the numbering scheme. The thermal ellipsoids are drawn at 40% probability level. The disordered O4A atom was omitted for clarity.
(9-methoxy-3,5-dimethyl-5,6-dihydronaphtho[2,3-b]furan-4-yl)methyl 2-methylbut-2-enoate top
Crystal data top
C21H24O4F(000) = 728
Mr = 340.40Dx = 1.248 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9953 reflections
a = 7.1627 (17) Åθ = 2.6–25.1°
b = 10.276 (2) ŵ = 0.09 mm1
c = 24.605 (6) ÅT = 298 K
V = 1811.1 (7) Å3Prism, colourless
Z = 40.40 × 0.40 × 0.40 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1701 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 25.4°, θmin = 2.2°
Detector resolution: 0.83 pixels mm-1h = 88
ω scansk = 1212
20061 measured reflectionsl = 2929
1945 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0598P)2]
where P = (Fo2 + 2Fc2)/3
1945 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 0.15 e Å3
21 restraintsΔρmin = 0.15 e Å3
Crystal data top
C21H24O4V = 1811.1 (7) Å3
Mr = 340.40Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.1627 (17) ŵ = 0.09 mm1
b = 10.276 (2) ÅT = 298 K
c = 24.605 (6) Å0.40 × 0.40 × 0.40 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1701 reflections with I > 2σ(I)
20061 measured reflectionsRint = 0.037
1945 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03521 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.12Δρmax = 0.15 e Å3
1945 reflectionsΔρmin = 0.15 e Å3
241 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.2416 (2)0.31693 (16)0.75432 (6)0.0714 (5)
O20.0374 (2)0.52184 (18)0.78161 (7)0.0781 (5)
O30.6537 (2)0.35107 (13)0.92670 (5)0.0575 (4)
C20.4000 (4)0.2430 (2)0.75866 (9)0.0744 (7)
H20.42390.17170.73640.089*
C30.5167 (3)0.2821 (2)0.79734 (9)0.0609 (6)
C40.4777 (3)0.48417 (18)0.86340 (7)0.0474 (5)
C50.3937 (4)0.6883 (2)0.91708 (8)0.0600 (6)
H50.47980.65180.94400.072*
C60.2181 (4)0.7334 (2)0.94676 (10)0.0741 (7)
H6A0.17980.66680.97230.089*
H6B0.24630.81170.96720.089*
C70.0626 (4)0.7604 (2)0.90877 (11)0.0724 (7)
H70.02480.82390.91760.087*
C80.0457 (3)0.6957 (2)0.86251 (10)0.0618 (6)
H80.05260.71540.83920.074*
C90.1341 (3)0.5079 (2)0.80519 (8)0.0529 (5)
C100.2624 (3)0.4122 (2)0.79325 (7)0.0521 (5)
C110.4302 (3)0.39708 (18)0.82102 (7)0.0487 (5)
C120.3504 (3)0.58296 (18)0.87563 (7)0.0464 (5)
C130.1786 (3)0.59388 (19)0.84724 (7)0.0500 (5)
C140.6933 (4)0.2148 (3)0.81219 (10)0.0830 (8)
H14A0.70650.13750.79070.124*
H14B0.69030.19190.85000.124*
H14C0.79710.27170.80550.124*
C150.6592 (3)0.4671 (2)0.89264 (8)0.0561 (5)
H15A0.75970.45930.86640.067*
H15B0.68360.54290.91500.067*
C160.4913 (4)0.8027 (2)0.88907 (12)0.0783 (8)
H16A0.41440.83430.86000.117*
H16B0.60910.77430.87470.117*
H16C0.51160.87120.91500.117*
C170.6327 (3)0.3665 (2)0.97976 (9)0.0557 (5)
O40.5953 (19)0.4714 (3)0.99988 (18)0.074 (2)0.76 (3)
O4A0.697 (5)0.4664 (12)0.9991 (6)0.071 (4)0.24 (3)
C180.6328 (3)0.2407 (2)1.00916 (8)0.0562 (5)
C190.6373 (3)0.2364 (2)1.06292 (10)0.0677 (6)
H190.63660.15321.07780.081*
C200.6433 (5)0.3438 (3)1.10315 (9)0.0836 (8)
H20A0.51850.37191.11110.125*
H20B0.71330.41531.08850.125*
H20C0.70210.31381.13590.125*
C210.6300 (4)0.1180 (2)0.97545 (11)0.0767 (7)
H21A0.61390.04400.99880.115*
H21B0.74570.10990.95610.115*
H21C0.52850.12190.95000.115*
C220.0716 (4)0.4709 (3)0.72916 (10)0.0860 (8)
H22A0.08710.37830.73140.129*
H22B0.03220.49060.70590.129*
H22C0.18300.50930.71460.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0921 (12)0.0633 (10)0.0588 (9)0.0009 (10)0.0122 (9)0.0173 (8)
O20.0667 (10)0.0908 (12)0.0767 (11)0.0047 (10)0.0186 (9)0.0119 (10)
O30.0778 (9)0.0467 (7)0.0479 (7)0.0093 (8)0.0067 (8)0.0009 (6)
C20.111 (2)0.0586 (14)0.0541 (13)0.0083 (16)0.0060 (14)0.0168 (11)
C30.0824 (15)0.0526 (12)0.0477 (11)0.0086 (12)0.0124 (11)0.0027 (10)
C40.0607 (12)0.0424 (10)0.0390 (10)0.0013 (10)0.0045 (9)0.0044 (8)
C50.0849 (16)0.0449 (11)0.0501 (11)0.0098 (12)0.0100 (11)0.0052 (9)
C60.115 (2)0.0514 (13)0.0554 (12)0.0123 (14)0.0105 (13)0.0075 (11)
C70.0786 (16)0.0509 (13)0.0878 (18)0.0144 (14)0.0141 (14)0.0071 (13)
C80.0660 (14)0.0470 (11)0.0724 (14)0.0065 (12)0.0023 (12)0.0059 (11)
C90.0608 (12)0.0493 (11)0.0486 (10)0.0041 (11)0.0022 (10)0.0068 (9)
C100.0702 (13)0.0453 (11)0.0407 (9)0.0046 (11)0.0000 (10)0.0025 (9)
C110.0669 (12)0.0402 (10)0.0389 (9)0.0001 (10)0.0074 (9)0.0027 (8)
C120.0636 (12)0.0372 (9)0.0385 (9)0.0001 (10)0.0013 (9)0.0035 (8)
C130.0648 (12)0.0396 (10)0.0455 (10)0.0014 (10)0.0036 (10)0.0069 (8)
C140.101 (2)0.0752 (17)0.0732 (16)0.0340 (16)0.0106 (15)0.0099 (13)
C150.0649 (12)0.0520 (12)0.0514 (11)0.0023 (12)0.0032 (10)0.0045 (10)
C160.0901 (18)0.0530 (13)0.0918 (18)0.0111 (14)0.0088 (15)0.0155 (13)
C170.0678 (13)0.0483 (12)0.0509 (11)0.0002 (11)0.0043 (11)0.0024 (9)
O40.123 (6)0.0456 (13)0.0548 (15)0.0098 (19)0.006 (2)0.0040 (11)
O4A0.105 (11)0.050 (4)0.059 (5)0.003 (6)0.020 (6)0.009 (4)
C180.0589 (13)0.0493 (11)0.0603 (13)0.0018 (11)0.0077 (10)0.0068 (10)
C190.0669 (14)0.0678 (14)0.0685 (14)0.0039 (13)0.0034 (12)0.0160 (12)
C200.099 (2)0.0994 (19)0.0529 (13)0.0107 (19)0.0019 (14)0.0008 (13)
C210.0969 (19)0.0458 (13)0.0873 (16)0.0053 (13)0.0173 (16)0.0029 (12)
C220.0881 (18)0.105 (2)0.0646 (14)0.0133 (19)0.0220 (14)0.0098 (14)
Geometric parameters (Å, º) top
O1—C21.370 (3)C10—C111.392 (3)
O1—C101.378 (2)C12—C131.420 (3)
O2—C91.366 (3)C14—H14A0.9600
O2—C221.414 (3)C14—H14B0.9600
O3—C171.324 (2)C14—H14C0.9600
O3—C151.458 (2)C15—H15A0.9700
C2—C31.329 (3)C15—H15B0.9700
C2—H20.9300C16—H16A0.9600
C3—C111.456 (3)C16—H16B0.9600
C3—C141.487 (4)C16—H16C0.9600
C4—C121.397 (3)C17—O41.216 (3)
C4—C111.415 (3)C17—O4A1.221 (8)
C4—C151.497 (3)C17—C181.481 (3)
C5—C121.519 (3)C18—C191.324 (3)
C5—C61.527 (4)C18—C211.510 (3)
C5—C161.532 (4)C19—C201.483 (4)
C5—H50.9800C19—H190.9300
C6—C71.480 (4)C20—H20A0.9600
C6—H6A0.9700C20—H20B0.9600
C6—H6B0.9700C20—H20C0.9600
C7—C81.324 (3)C21—H21A0.9600
C7—H70.9300C21—H21B0.9600
C8—C131.463 (3)C21—H21C0.9600
C8—H80.9300C22—H22A0.9600
C9—C101.377 (3)C22—H22B0.9600
C9—C131.397 (3)C22—H22C0.9600
C2—O1—C10104.50 (17)C3—C14—H14B109.5
C9—O2—C22120.3 (2)H14A—C14—H14B109.5
C17—O3—C15118.19 (16)C3—C14—H14C109.5
C3—C2—O1114.2 (2)H14A—C14—H14C109.5
C3—C2—H2122.9H14B—C14—H14C109.5
O1—C2—H2122.9O3—C15—C4110.43 (18)
C2—C3—C11105.3 (2)O3—C15—H15A109.6
C2—C3—C14124.8 (2)C4—C15—H15A109.6
C11—C3—C14129.9 (2)O3—C15—H15B109.6
C12—C4—C11117.49 (19)C4—C15—H15B109.6
C12—C4—C15123.27 (18)H15A—C15—H15B108.1
C11—C4—C15119.24 (19)C5—C16—H16A109.5
C12—C5—C6111.7 (2)C5—C16—H16B109.5
C12—C5—C16109.76 (18)H16A—C16—H16B109.5
C6—C5—C16111.0 (2)C5—C16—H16C109.5
C12—C5—H5108.1H16A—C16—H16C109.5
C6—C5—H5108.1H16B—C16—H16C109.5
C16—C5—H5108.1O4—C17—O3122.2 (3)
C7—C6—C5112.01 (19)O4A—C17—O3116.2 (10)
C7—C6—H6A109.2O4—C17—C18125.1 (3)
C5—C6—H6A109.2O4A—C17—C18122.9 (6)
C7—C6—H6B109.2O3—C17—C18112.17 (19)
C5—C6—H6B109.2C19—C18—C17121.1 (2)
H6A—C6—H6B107.9C19—C18—C21121.5 (2)
C8—C7—C6121.2 (2)C17—C18—C21117.43 (18)
C8—C7—H7119.4C18—C19—C20130.0 (2)
C6—C7—H7119.4C18—C19—H19115.0
C7—C8—C13121.4 (2)C20—C19—H19115.0
C7—C8—H8119.3C19—C20—H20A109.5
C13—C8—H8119.3C19—C20—H20B109.5
O2—C9—C10125.7 (2)H20A—C20—H20B109.5
O2—C9—C13116.9 (2)C19—C20—H20C109.5
C10—C9—C13117.22 (19)H20A—C20—H20C109.5
O1—C10—C9125.70 (19)H20B—C20—H20C109.5
O1—C10—C11110.82 (18)C18—C21—H21A109.5
C9—C10—C11123.45 (19)C18—C21—H21B109.5
C10—C11—C4119.90 (19)H21A—C21—H21B109.5
C10—C11—C3105.17 (19)C18—C21—H21C109.5
C4—C11—C3134.9 (2)H21A—C21—H21C109.5
C4—C12—C13121.13 (17)H21B—C21—H21C109.5
C4—C12—C5121.96 (19)O2—C22—H22A109.5
C13—C12—C5116.80 (18)O2—C22—H22B109.5
C9—C13—C12120.79 (19)H22A—C22—H22B109.5
C9—C13—C8119.6 (2)O2—C22—H22C109.5
C12—C13—C8119.60 (18)H22A—C22—H22C109.5
C3—C14—H14A109.5H22B—C22—H22C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O2i0.972.623.536 (3)157
C6—H6B···O4ii0.972.613.42142
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formulaC21H24O4
Mr340.40
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.1627 (17), 10.276 (2), 24.605 (6)
V3)1811.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.40 × 0.40
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20061, 1945, 1701
Rint0.037
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.12
No. of reflections1945
No. of parameters241
No. of restraints21
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O2i0.972.6223.536 (3)156.9
C6—H6B···O4ii0.972.6053.42141.7
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+3/2, z+2.
 

Acknowledgements

NRV acknowledges a scholarship and financial support provided by the Conseja Nacional de Ciencia y Tecnología (CONACyT: 101038) and the Programa en Ciencias Biologicas of the Universidad Nacional Autónoma de México (UNAM).

References

First citationAbdo, S., Bernardi, M., Marinoni, G., Mellerio, G., Samaniego, S., Vidari, G. & Vita Finzi, P. (1992). Phytochemistry, 31, 3937–3941.  CrossRef CAS Web of Science Google Scholar
First citationAcevedo-Quiroz, N., Domínguez-Villegas, V. & Garduño-Ramírez, M. L. (2008). Nat. Prod. Commun. 3, 313–317.  CAS Google Scholar
First citationAlarcón-Aguilar, F. J., Jiménez-Estrada, M., Reyes-Chilpa, R., González-Paredes, B., Contreras-Weber, C. C. & Roman-Ramos, R. (2000). J. Ethnopharmacol. 69, 207–215.  Web of Science PubMed Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBohlmann, F., Knoll, K. H., Zedro, C., Mahanta, P. K., Grenz, M., Suwita, A., Ehlers, D., Le Van, N., Abraham, W. R. & Natu, A. A. (1977). Phytochemistry, 16, 965–985.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBye, R., Linares, E. & Estrada, H. (1995). Phytochemistry of Medicinal Plants, pp. 65-82. New York: Plenum Press.  Google Scholar
First citationContreras-Weber, C., Perez-Gutierrez, S., Alarcón-Aguilar, F. J. & Roman-Ramos, R. (2002). Proc. West. Pharmacol. Soc. 45, 134–136.  PubMed Google Scholar
First citationJimenez-Estrada, M., Reyes, R., Ramirez, T., Lledias, F., Hansberg, W., Arrieta, D. & Alarcón-Aguilar, F. J. (2006). J. Ethnopharmacol. 105, 34–38.  Web of Science PubMed CAS Google Scholar
First citationRomo de Vivar, A., Pérez-Castorena, A. L., Arciniegas, A. & Villaseñor, J. L. (2007). J. Mex. Chem. Soc. 51, 160–172.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o672-o673
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds