organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Di­methyl-1,1′-[2,2-bis­­(bromo­methyl)propane-1,3-di­yl]dibenzimidazole hemihydrate

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: guangbocheujs@yahoo.com.cn

(Received 15 November 2011; accepted 21 February 2012; online 24 February 2012)

The title compound, C21H22Br2N4·0.5H2O, contains two benzimidazole groups which may provide two potential coordination nodes for the construction of metal–organic frameworks. The mean planes of the two imidazole groups are almost perpendicular, with a dihedral angle of 83.05 (2)°, and adjacent mol­ecules are linked into a one-dimensional chain by ππ stacking inter­actions between imidazole groups of different mol­ecules [centroid-to-centroid distances of 3.834 (2) and 3.522 (2) Å].

Related literature

For preparation of the N-donor compound, see: Bai et al. (2010[Bai, H. Y., Xia, D. C. & Ma, J. F. (2010). Z. Kristallogr. New Cryst. Struct. 225, 101-102.]). For a related structure, see: Wei et al. (2011[Wei, T.-B., Lu, Y.-Y., Cao, C., Yao, H. & Zhang, Y.-M. (2011). Acta Cryst. E67, o1833.]). For constructions and applications of metal–organic frameworks, see: Kuppler et al. (2009[Kuppler, R. J., Timmons, D. J., Fang, Q. R., Li, J. R., Makal, T. A., Young, M. D., Yuan, D. Q., Zhao, D., Zhuang, W. J. & Zhou, H. C. (2009). Coord. Chem. Rev. 253, 3042-3066.]); Wang et al. (2011[Wang, X. L., Zhang, J. X., Liu, G. C. & Lin, H. Y. (2011). J. Solid State Chem. 184, 280-288.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22Br2N4·0.5H2O

  • Mr = 499.26

  • Monoclinic, P 21 /c

  • a = 12.647 (3) Å

  • b = 8.1065 (16) Å

  • c = 20.580 (4) Å

  • β = 107.42 (3)°

  • V = 2013.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.04 mm−1

  • T = 153 K

  • 0.15 × 0.11 × 0.10 mm

Data collection
  • Rigaku Saturn 724+ CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.582, Tmax = 0.688

  • 9078 measured reflections

  • 3662 independent reflections

  • 2786 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.159

  • S = 1.13

  • 3662 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalClear and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Metal–organic frameworks have gained more and more attention not only because of their intriguing structures, but also because of their potential applications as functional materials (Kuppler et al. 2009). In general, noncovalent interactions such as ππ stacking, can be used to direct the supramolecular architectures (Wang et al. 2011). So the N-donor title compound (L) is expected to be a good choice for the construction of metal–organic frameworks, mainly because the two benzimidazol N atoms can be potentially active coordination sites (Bai et al. 2010), while the two planar groups in turn can freely twist around the quaternary C atom and the two -CH2- groups so as to match the requirements of various coordination geometries (Wei et al. 2011). In addition, π-=π interaction may occur between benzimidazol groups from different L molecules, to promote a supramolecular assembly.

Fig. 1 shows an ellipsoid plot of the asymmetric unit of (L). The dihedral angle between the mean planes of the two imidazol rings is 83.05 (2)°. In addition, ππ stacking interactions between imidazole groups from adjacent molecules (intercentroid distances: A: 3.834 (2) and B: 3.522 (2) Å) connect them into a 1D chain structure (Fig. 2).

Related literature top

For preparation of the N-donor compound, see: Bai et al. (2010). For a related structure, see: Wei et al. (2011). For constructions and applications of metal–organic frameworks, see: Kuppler et al. (2009); Wang et al. (2011).

Experimental top

The synthesis, initially aimed to produce a Cd complex, followed a previous literature procedure (Bai et al. 2010). However, the X-ray crystallographic study confirmed that the cation did not enter into the structure and the product corresponded to the title compound. A mixture of CdCl2 (0.0183 g, 0.1 mmol), L (0.0491 g, 0.1 mmol) and water (15 ml) was stirred for one hour, and then transferred to a 25 ml Teflon-lined stainless steel reactor. The reactor was heated to 433 K for 72 h, and cooled to room temperature in the autogenous conditions. Colourless block crystals of (L) were obtained with a yield of 65%.

Refinement top

H atoms attached to carbon were placed in calculated positions and refined as riding, with Uiso(H) = x Ueq(C) (C—H (methyl): 0.96 Å, x = 1.5; C—H (aromatic): 0.93 Å; x = 1.2; C—H (methylene): 0.97 Å, x = 1.2). The O atom of the water solvate is disordered around an inversion centre, for what its site occupation factor is 0.5. Its H atoms could not be found in the difference map.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalClear (Rigaku, 2007) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the title compound (50% probability ellipsoids). H atoms on the water molecule are not included in the model.
[Figure 2] Fig. 2. A view of the 1D chain structure formed by the ππ stacking interactions through b-axis. All the H atoms and water molecules were omitted for clarity. Intercentroid distances are A: 3.834 (2); B: 3.522 (2) Å.
2,2'-Dimethyl-1,1'-[2,2-bis(bromomethyl)propane-1,3-diyl]dibenzimidazole hemihydrate top
Crystal data top
C21H22Br2N4·0.5H2OF(000) = 1004
Mr = 499.26Dx = 1.647 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6583 reflections
a = 12.647 (3) Åθ = 2.5–29.1°
b = 8.1065 (16) ŵ = 4.04 mm1
c = 20.580 (4) ÅT = 153 K
β = 107.42 (3)°Prism, colourless
V = 2013.1 (7) Å30.15 × 0.11 × 0.10 mm
Z = 4
Data collection top
Rigaku Saturn 724+ CCD
diffractometer
3662 independent reflections
Radiation source: fine-focus sealed tube2786 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 28.5714 pixels mm-1θmax = 25.4°, θmin = 3.0°
ω scansh = 1415
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
k = 99
Tmin = 0.582, Tmax = 0.688l = 2024
9078 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.053P)2 + 5.0634P]
where P = (Fo2 + 2Fc2)/3
3662 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
C21H22Br2N4·0.5H2OV = 2013.1 (7) Å3
Mr = 499.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.647 (3) ŵ = 4.04 mm1
b = 8.1065 (16) ÅT = 153 K
c = 20.580 (4) Å0.15 × 0.11 × 0.10 mm
β = 107.42 (3)°
Data collection top
Rigaku Saturn 724+ CCD
diffractometer
3662 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
2786 reflections with I > 2σ(I)
Tmin = 0.582, Tmax = 0.688Rint = 0.059
9078 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.13Δρmax = 1.00 e Å3
3662 reflectionsΔρmin = 0.71 e Å3
253 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6424 (6)0.2016 (8)0.9301 (3)0.0256 (16)
H1A0.70090.18630.97260.031*
H1B0.60360.30250.93420.031*
C20.4530 (6)0.0612 (8)0.8838 (3)0.0242 (15)
C30.3807 (6)0.1770 (9)0.8446 (3)0.0297 (17)
H30.40430.28290.83860.036*
C40.2721 (6)0.1286 (10)0.8149 (4)0.0364 (18)
H40.22160.20400.78880.044*
C50.2365 (7)0.0308 (10)0.8233 (4)0.042 (2)
H50.16340.06000.80140.051*
C60.3062 (7)0.1452 (10)0.8627 (4)0.039 (2)
H60.28130.25020.86900.047*
C70.4159 (6)0.0989 (9)0.8933 (3)0.0308 (17)
C80.5876 (6)0.0897 (9)0.9525 (4)0.0308 (17)
C90.6978 (6)0.1342 (10)0.9993 (4)0.0386 (19)
H9A0.74790.04321.00280.058*
H9B0.72590.22890.98180.058*
H9C0.69110.15921.04340.058*
C100.8018 (5)0.3379 (8)0.8972 (3)0.0286 (16)
H10A0.83640.34350.86110.034*
H10B0.77690.44830.90340.034*
C111.0146 (6)0.1356 (10)0.9069 (4)0.0401 (19)
H11A0.95450.15030.86580.060*
H11B1.02830.02000.91530.060*
H11C1.08000.18770.90200.060*
C120.9851 (6)0.2113 (9)0.9649 (4)0.0354 (18)
C130.9953 (6)0.3007 (9)1.0651 (4)0.0327 (17)
C141.0284 (6)0.3408 (10)1.1335 (4)0.0362 (18)
H141.09590.30421.16230.043*
C150.9585 (7)0.4364 (10)1.1578 (4)0.044 (2)
H150.97910.46511.20370.052*
C160.8556 (7)0.4915 (9)1.1138 (4)0.0390 (19)
H160.80990.55721.13100.047*
C170.8226 (6)0.4492 (8)1.0462 (4)0.0300 (17)
H170.75510.48531.01720.036*
C200.8938 (6)0.3495 (8)1.0220 (3)0.0258 (16)
C210.7252 (6)0.0544 (9)0.8506 (4)0.0324 (18)
H21A0.66030.01560.84280.039*
H21B0.78330.00690.88800.039*
C220.6175 (6)0.3104 (9)0.8090 (3)0.0302 (17)
H22A0.55390.23970.78990.036*
H22B0.65530.32450.77470.036*
C230.6969 (5)0.2250 (8)0.8721 (3)0.0225 (15)
N10.5029 (5)0.1870 (7)0.9376 (3)0.0305 (14)
N20.5642 (5)0.0633 (7)0.9216 (3)0.0250 (13)
N30.8870 (5)0.2914 (7)0.9599 (3)0.0296 (14)
N41.0516 (5)0.2108 (8)1.0281 (3)0.0378 (16)
O1W0.5525 (10)0.4843 (13)1.0222 (6)0.055 (3)0.50
Br10.56570 (7)0.52696 (9)0.83015 (4)0.0391 (3)
Br20.77367 (7)0.05147 (10)0.76915 (4)0.0389 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.029 (4)0.022 (3)0.026 (4)0.006 (3)0.009 (3)0.005 (3)
C20.032 (4)0.021 (4)0.021 (4)0.003 (3)0.011 (3)0.005 (3)
C30.031 (4)0.037 (4)0.023 (4)0.002 (3)0.010 (3)0.000 (3)
C40.029 (4)0.050 (5)0.028 (4)0.001 (4)0.005 (3)0.003 (4)
C50.041 (5)0.051 (5)0.031 (4)0.015 (4)0.005 (4)0.010 (4)
C60.045 (5)0.039 (5)0.036 (5)0.020 (4)0.016 (4)0.014 (4)
C70.044 (5)0.024 (4)0.026 (4)0.003 (3)0.013 (4)0.008 (3)
C80.036 (4)0.032 (4)0.033 (4)0.004 (3)0.023 (4)0.004 (3)
C90.038 (5)0.041 (5)0.035 (4)0.008 (4)0.009 (4)0.003 (4)
C100.026 (4)0.029 (4)0.028 (4)0.006 (3)0.004 (3)0.006 (3)
C110.038 (5)0.049 (5)0.036 (5)0.002 (4)0.015 (4)0.001 (4)
C120.033 (4)0.039 (4)0.037 (5)0.003 (4)0.014 (4)0.001 (4)
C130.032 (4)0.036 (4)0.029 (4)0.007 (3)0.008 (4)0.002 (3)
C140.029 (4)0.044 (5)0.034 (4)0.004 (4)0.007 (4)0.001 (4)
C150.046 (5)0.052 (5)0.034 (5)0.020 (4)0.013 (4)0.002 (4)
C160.044 (5)0.035 (4)0.041 (5)0.013 (4)0.017 (4)0.008 (4)
C170.031 (4)0.020 (4)0.039 (4)0.005 (3)0.011 (4)0.000 (3)
C200.024 (4)0.032 (4)0.018 (4)0.012 (3)0.002 (3)0.005 (3)
C210.043 (5)0.031 (4)0.031 (4)0.006 (3)0.024 (4)0.004 (3)
C220.024 (4)0.043 (4)0.021 (4)0.004 (3)0.004 (3)0.000 (3)
C230.026 (4)0.020 (3)0.023 (4)0.003 (3)0.009 (3)0.000 (3)
N10.047 (4)0.021 (3)0.028 (3)0.000 (3)0.017 (3)0.003 (3)
N20.030 (3)0.028 (3)0.019 (3)0.002 (3)0.010 (3)0.001 (2)
N30.025 (3)0.027 (3)0.035 (4)0.003 (3)0.006 (3)0.002 (3)
N40.037 (4)0.041 (4)0.035 (4)0.006 (3)0.010 (3)0.002 (3)
O1W0.062 (8)0.031 (6)0.066 (9)0.007 (6)0.012 (7)0.014 (6)
Br10.0404 (5)0.0328 (5)0.0436 (5)0.0076 (3)0.0121 (4)0.0086 (3)
Br20.0469 (5)0.0441 (5)0.0302 (4)0.0022 (4)0.0184 (4)0.0040 (3)
Geometric parameters (Å, º) top
C1—N21.470 (8)C11—H11A0.9600
C1—C231.559 (9)C11—H11B0.9600
C1—H1A0.9700C11—H11C0.9600
C1—H1B0.9700C12—N41.321 (9)
C2—C31.388 (9)C12—N31.377 (9)
C2—N21.389 (9)C13—C201.381 (10)
C2—C71.413 (9)C13—C141.383 (10)
C3—C41.382 (10)C13—N41.393 (9)
C3—H30.9300C14—C151.377 (11)
C4—C51.396 (11)C14—H140.9300
C4—H40.9300C15—C161.417 (11)
C5—C61.367 (11)C15—H150.9300
C5—H50.9300C16—C171.372 (10)
C6—C71.392 (10)C16—H160.9300
C6—H60.9300C17—C201.408 (10)
C7—N11.397 (9)C17—H170.9300
C8—N11.291 (9)C20—N31.341 (8)
C8—N21.386 (9)C21—C231.526 (9)
C8—C91.481 (10)C21—Br21.951 (7)
C9—H9A0.9600C21—H21A0.9700
C9—H9B0.9600C21—H21B0.9700
C9—H9C0.9600C22—C231.547 (9)
C10—N31.460 (8)C22—Br11.968 (7)
C10—C231.567 (9)C22—H22A0.9700
C10—H10A0.9700C22—H22B0.9700
C10—H10B0.9700O1W—O1Wi1.39 (2)
C11—C121.486 (10)
N2—C1—C23115.9 (5)N4—C12—C11123.5 (7)
N2—C1—H1A108.3N3—C12—C11124.9 (7)
C23—C1—H1A108.3C20—C13—C14121.8 (7)
N2—C1—H1B108.3C20—C13—N4109.2 (6)
C23—C1—H1B108.3C14—C13—N4129.1 (7)
H1A—C1—H1B107.4C15—C14—C13118.1 (7)
C3—C2—N2134.2 (6)C15—C14—H14121.0
C3—C2—C7120.9 (7)C13—C14—H14121.0
N2—C2—C7104.9 (6)C14—C15—C16120.8 (8)
C4—C3—C2117.3 (7)C14—C15—H15119.6
C4—C3—H3121.3C16—C15—H15119.6
C2—C3—H3121.3C17—C16—C15120.8 (8)
C3—C4—C5121.5 (7)C17—C16—H16119.6
C3—C4—H4119.2C15—C16—H16119.6
C5—C4—H4119.2C16—C17—C20118.0 (7)
C6—C5—C4121.8 (7)C16—C17—H17121.0
C6—C5—H5119.1C20—C17—H17121.0
C4—C5—H5119.1N3—C20—C13107.1 (6)
C5—C6—C7117.6 (7)N3—C20—C17132.4 (7)
C5—C6—H6121.2C13—C20—C17120.5 (6)
C7—C6—H6121.2C23—C21—Br2114.9 (5)
C6—C7—N1129.8 (7)C23—C21—H21A108.5
C6—C7—C2120.8 (7)Br2—C21—H21A108.5
N1—C7—C2109.3 (6)C23—C21—H21B108.5
N1—C8—N2112.9 (6)Br2—C21—H21B108.5
N1—C8—C9123.9 (7)H21A—C21—H21B107.5
N2—C8—C9123.1 (7)C23—C22—Br1112.9 (4)
C8—C9—H9A109.5C23—C22—H22A109.0
C8—C9—H9B109.5Br1—C22—H22A109.0
H9A—C9—H9B109.5C23—C22—H22B109.0
C8—C9—H9C109.5Br1—C22—H22B109.0
H9A—C9—H9C109.5H22A—C22—H22B107.8
H9B—C9—H9C109.5C21—C23—C22108.2 (6)
N3—C10—C23118.0 (5)C21—C23—C1107.9 (5)
N3—C10—H10A107.8C22—C23—C1111.9 (5)
C23—C10—H10A107.8C21—C23—C10112.1 (6)
N3—C10—H10B107.8C22—C23—C10106.8 (5)
C23—C10—H10B107.8C1—C23—C10110.0 (5)
H10A—C10—H10B107.1C8—N1—C7106.2 (6)
C12—C11—H11A109.5C8—N2—C2106.7 (5)
C12—C11—H11B109.5C8—N2—C1125.7 (6)
H11A—C11—H11B109.5C2—N2—C1127.5 (6)
C12—C11—H11C109.5C20—N3—C12107.1 (6)
H11A—C11—H11C109.5C20—N3—C10124.8 (6)
H11B—C11—H11C109.5C12—N3—C10126.8 (6)
N4—C12—N3111.7 (6)C12—N4—C13104.9 (6)
N2—C2—C3—C4178.8 (7)N3—C10—C23—C2166.2 (8)
C7—C2—C3—C40.7 (10)N3—C10—C23—C22175.5 (6)
C2—C3—C4—C50.7 (10)N3—C10—C23—C153.8 (8)
C3—C4—C5—C62.0 (12)N2—C8—N1—C70.7 (8)
C4—C5—C6—C71.7 (12)C9—C8—N1—C7179.1 (6)
C5—C6—C7—N1177.4 (7)C6—C7—N1—C8179.0 (7)
C5—C6—C7—C20.3 (11)C2—C7—N1—C81.6 (8)
C3—C2—C7—C61.0 (10)N1—C8—N2—C20.5 (8)
N2—C2—C7—C6179.5 (6)C9—C8—N2—C2178.0 (6)
C3—C2—C7—N1176.7 (6)N1—C8—N2—C1178.2 (6)
N2—C2—C7—N11.9 (7)C9—C8—N2—C10.2 (10)
C20—C13—C14—C152.1 (11)C3—C2—N2—C8176.8 (7)
N4—C13—C14—C15178.0 (7)C7—C2—N2—C81.4 (7)
C13—C14—C15—C160.2 (11)C3—C2—N2—C10.8 (12)
C14—C15—C16—C170.8 (11)C7—C2—N2—C1179.1 (6)
C15—C16—C17—C200.1 (10)C23—C1—N2—C899.7 (7)
C14—C13—C20—N3179.9 (7)C23—C1—N2—C283.0 (8)
N4—C13—C20—N30.1 (8)C13—C20—N3—C121.5 (7)
C14—C13—C20—C173.0 (10)C17—C20—N3—C12175.1 (7)
N4—C13—C20—C17177.0 (6)C13—C20—N3—C10169.2 (6)
C16—C17—C20—N3178.2 (7)C17—C20—N3—C107.4 (11)
C16—C17—C20—C131.9 (10)N4—C12—N3—C202.6 (8)
Br2—C21—C23—C2249.9 (7)C11—C12—N3—C20176.8 (7)
Br2—C21—C23—C1171.1 (5)N4—C12—N3—C10169.9 (6)
Br2—C21—C23—C1067.6 (7)C11—C12—N3—C109.5 (11)
Br1—C22—C23—C21176.2 (4)C23—C10—N3—C2094.6 (8)
Br1—C22—C23—C157.5 (6)C23—C10—N3—C12100.1 (8)
Br1—C22—C23—C1062.9 (6)N3—C12—N4—C132.4 (8)
N2—C1—C23—C2140.4 (8)C11—C12—N4—C13177.0 (7)
N2—C1—C23—C2278.5 (7)C20—C13—N4—C121.5 (8)
N2—C1—C23—C10162.9 (5)C14—C13—N4—C12178.6 (8)
Symmetry code: (i) x+1, y1, z+2.

Experimental details

Crystal data
Chemical formulaC21H22Br2N4·0.5H2O
Mr499.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)12.647 (3), 8.1065 (16), 20.580 (4)
β (°) 107.42 (3)
V3)2013.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)4.04
Crystal size (mm)0.15 × 0.11 × 0.10
Data collection
DiffractometerRigaku Saturn 724+ CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.582, 0.688
No. of measured, independent and
observed [I > 2σ(I)] reflections
9078, 3662, 2786
Rint0.059
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.159, 1.13
No. of reflections3662
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 0.71

Computer programs: , SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalClear (Rigaku, 2007) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are very grateful to Jiangsu University for supporting this research.

References

First citationBai, H. Y., Xia, D. C. & Ma, J. F. (2010). Z. Kristallogr. New Cryst. Struct. 225, 101–102.  CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationKuppler, R. J., Timmons, D. J., Fang, Q. R., Li, J. R., Makal, T. A., Young, M. D., Yuan, D. Q., Zhao, D., Zhuang, W. J. & Zhou, H. C. (2009). Coord. Chem. Rev. 253, 3042–3066.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. L., Zhang, J. X., Liu, G. C. & Lin, H. Y. (2011). J. Solid State Chem. 184, 280–288.  Web of Science CSD CrossRef CAS Google Scholar
First citationWei, T.-B., Lu, Y.-Y., Cao, C., Yao, H. & Zhang, Y.-M. (2011). Acta Cryst. E67, o1833.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds