organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-Butyl-3-(3,4-dihy­dr­oxy­phen­yl)acryl­amide hemihydrate

aCollege of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang, Henan 453003, People's Republic of China
*Correspondence e-mail: yanhan1980@126.com

(Received 4 December 2011; accepted 8 February 2012; online 17 February 2012)

In the title compound, C13H17NO3·0.5H2O, a new caffeic acid amide derivative, the solvent water mol­ecule lies on a twofold axis and the terminal ethyl group appears disordered with occupancy factors of 0.525 (6) and 0.475 (6). The benzene ring makes an angle of 17.3 (2)° with the C=C—C—O linker. The presence of an ethyl­enic spacer in the caffeic acid amide mol­ecule allows the formation of a conjugated system, strongly stabilized through π-electron delocalization. The C=C double bond in the linker is trans, similar to those previously reported in caffeic esters. The crystal is stabilized by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds. The mol­ecules of the caffeic acid amide form a supermolecular planar structure through O—H⋯O hydrogen bonds between a hy­droxy group of one caffeic acid mol­ecule and a carbonyl O atom of another. These planes inter­act via C—H⋯O, O—H⋯O and N—H⋯O hydrogen bonds to form a three-dimensional network.

Related literature

For phenolic acid compounds used in biology and medicine, see: Altuğ et al. (2008[Altuğ, M. E., Serarslan, Y., Bal, R., Konta, T., Ekici, F., Melek, I. M., Aslan, H. & Duman, T. (2008). Brain Res. 1201, 135-142.]). For synthetic work on the similar compounds, see: Bylov et al. (1999[Bylov, E. I., Vasylev, V. M. & Bilokin, V. Y. (1999). Eur. J. Med. Chem. 34, 997-1001.]). For compounds with similar properties, see: Son & Lewis (2002[Son, S. & Lewis, B. A. (2002). J. Agric. Food Chem. 50, 468-472.]); Menezes et al. (2001[Menezes, J. C. J. M. D. S., Kamat, S. P., Cavaleiro, J. A. S., Gaspar, A., Garrido, J. & Borges, F. (2001). Eur. J. Med. Chem. 133, 89-96.]); Lee et al. (2005[Lee, Y. T., Don, M. J., Liao, C. H., Chiou, H. W., Chena, C. F. & Ho, L. K. (2005). Clin. Chim. Acta, 352, 135-141.]). For the structure analysis of a similar compound, see: Xia et al. (2008[Xia, C. N., Hu, W. X., Zhou, W. & Wang, G. H. (2008). J. Chem. Crystallogr. 38, 583-586.]).

[Scheme 1]

Experimental

Crystal data
  • C13H17NO3·0.5H2O

  • Mr = 244.29

  • Monoclinic, C 2/c

  • a = 12.860 (7) Å

  • b = 14.928 (8) Å

  • c = 15.015 (11) Å

  • β = 113.967 (6)°

  • V = 2634 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.28 × 0.22 × 0.19 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.977, Tmax = 0.983

  • 7822 measured reflections

  • 2581 independent reflections

  • 1895 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.120

  • S = 1.04

  • 2581 reflections

  • 180 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3i 0.85 1.91 2.7402 (19) 165
O4—H4B⋯O3ii 0.85 1.91 2.7402 (19) 165
N1—H1B⋯O2iii 0.86 2.29 3.129 (2) 165
N1—H1B⋯O1iii 0.86 2.58 3.143 (3) 124
O1—H1A⋯O3iv 0.82 1.94 2.7378 (19) 162
O2—H2A⋯O4v 0.82 2.00 2.8217 (18) 177
C7—H7⋯O3 0.93 2.48 2.837 (2) 103
C8—H8⋯O2iii 0.93 2.55 3.330 (2) 142
Symmetry codes: (i) x, y, z+1; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phenolic acids and their derivatives (esters, amides) are widely distributed in plants and can be present in considerable amounts in the human diet, which attract much attention in biology and medicine (Altuğ et al., 2008). Phenolic acid amides, is a large class of organic compounds formed by the condensation reaction of aromatic acid and amine (Bylov et al., 1999). The –CO—NH– backbone makes amides have the pharmacological functionality such as anti-proliferative, antiviral, antimalarial, general anesthetics and antimicrobials. Therefore, more and more phenolic acid amides have already been researched purposively and developed as potential anti-proliferative, antiviral, antimalarial, and antimicrobials drugs in recent years (Son & Lewis, 2002; Menezes et al., 2001; Lee et al., 2005). So in this paper, we synthesized and report on the structure of a new caffeic acid amide derivative, (E)-N-butyl-3-(3,4-dihydroxyphenyl)acrylamide monohydrate.

In the title compound (Fig. 1), all values of the geometric parameters are normal, the terminal C12—C13 group being disorderd with occupation factors of 0.525/0.475 (6) for both moieties. The benzene ring is planar within experimental observation (r.m.s. deviation: 0.005Å) and it makes an angle of 17.3 (2)° to the (C7—C8—C9—O3) linker. In the case of caffeic amide, the presence of an ethylenic spacer allows the formation of a conjugated system, strongly stabilized through π-electron delocalization. The C7C8 bond is a trans-double bond, the same as in caffeic esters reported before (Xia et al., 2008).

The crystal is stabilized by intermolecular O—H···O, N—H···O, O—H···N and C—H···O hydrogen bonds (Fig. 2). The molecules of the caffeic acid amide form a supermolecule plane structure through O—H···O hydrogen bonds between a hydroxyl of a caffeic acid and carbonyl O atom from another caffeic acid molecule. The supermolecule plane interacts with the another plane with C—H···O, O—H···O, N—H···O and O—H···N hydrogen bonds to form a three-dimensional network.

Related literature top

For phenolic acid compounds used in biology and medicine, see: Altuğ et al. (2008). For synthetic work on the similar compounds, see: Bylov et al. (1999). For compounds with similar properties, see: Son & Lewis (2002); Menezes et al. (2001); Lee et al. (2005). For the structure analysis of other caffeic esters, see: Xia et al. (2008). [Please check added text]

Experimental top

To a stirred THF solution (15 ml) of commercial caffeic acid (0.179 g, 1 mmol) was added DCC (1.5 mmol) in THF (5 ml) at 0°C. The reaction mixture was stirred for 2 h at 0°C and n-butylamine (0.088 g, 1.2 mmol) was added for reacting overnight at room temperature, and then the precipitated dicyclohexylurea was filtered and washed with tetrahydrofuran. The combined filtrates were evaporated, the residue was extracted with EtOAc, and the extract was washed with 1 N NaHCO3, H2O, and 1 N HCl, dried over Na2SO4, and evaporated. The title compound was obtained by elution of the column with 25% petrole:EtOAc and recrystallized to give the pale yellow block crystal.

Refinement top

All the H atoms were seen in a difference map but repositioned geometrically (C—H = 0.93–0.97, N—H = 0.86 and O—H = 0.85 Å) and refined as riding with Uiso = 1.2Ueq. The C12—C13 pair is disordered into two moieties with occupancies of 0.525/0.475 (6).

Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (E)-N-butyl-3-(3,4-dihydroxyphenyl)acrylamide monohydrate with displacement ellipsoids at the 30% probability level. In open bonds, the minor part of the disordered tail.
[Figure 2] Fig. 2. The two-dimensional plane formed by the hydrogen bonds of the molecules (Dashed lines represent hydrogen bonds, some of the H and C atoms have been omitted)
(E)-N-Butyl-3-(3,4-dihydroxyphenyl)acrylamide monohydrate top
Crystal data top
C13H17NO3·0.5H2OF(000) = 1048
Mr = 244.29Dx = 1.232 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2581 reflections
a = 12.860 (7) Åθ = 2.2–26.0°
b = 14.928 (8) ŵ = 0.09 mm1
c = 15.015 (11) ÅT = 296 K
β = 113.967 (6)°Block, yellow
V = 2634 (3) Å30.28 × 0.22 × 0.19 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
2581 independent reflections
Radiation source: fine-focus sealed tube1895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1515
Tmin = 0.977, Tmax = 0.983k = 1815
7822 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0532P)2 + 1.0544P]
where P = (Fo2 + 2Fc2)/3
2581 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H17NO3·0.5H2OV = 2634 (3) Å3
Mr = 244.29Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.860 (7) ŵ = 0.09 mm1
b = 14.928 (8) ÅT = 296 K
c = 15.015 (11) Å0.28 × 0.22 × 0.19 mm
β = 113.967 (6)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2581 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
1895 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.983Rint = 0.025
7822 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
2581 reflectionsΔρmin = 0.21 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. The terminal C13 and methylene C12 have been treated disorderd.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O40.50000.79934 (9)0.75000.0471 (4)
H4A0.50470.76590.79730.057*0.50
H4B0.49530.76590.70270.057*0.50
N10.63571 (12)0.56741 (9)0.01730 (9)0.0517 (4)
H1B0.68780.55870.04010.062*
O10.83466 (10)0.95089 (8)0.33417 (8)0.0653 (4)
H1A0.87850.90990.33750.098*
O20.67900 (9)1.07499 (8)0.30337 (8)0.0558 (3)
H2A0.62541.11010.28690.084*
O30.51295 (9)0.66595 (7)0.12054 (7)0.0493 (3)
C10.53067 (15)0.93015 (13)0.09233 (13)0.0656 (6)
H10.46110.92680.03880.079*
C20.55145 (15)1.00043 (13)0.15684 (13)0.0638 (5)
H20.49621.04430.14590.077*
C30.65313 (13)1.00632 (11)0.23735 (11)0.0491 (4)
C40.73642 (13)0.94036 (11)0.25296 (11)0.0479 (4)
C50.71557 (13)0.87094 (11)0.18753 (11)0.0498 (4)
H50.77130.82770.19770.060*
C60.61164 (14)0.86440 (12)0.10578 (11)0.0522 (4)
C70.58305 (13)0.79218 (12)0.03400 (12)0.0520 (4)
H70.51890.80170.02330.062*
C80.63569 (13)0.71565 (11)0.03940 (11)0.0483 (4)
H80.70260.70380.09350.058*
C90.59066 (12)0.64825 (10)0.03873 (10)0.0410 (4)
C100.60274 (16)0.49214 (12)0.08466 (13)0.0608 (5)
H10A0.57500.51450.15090.073*
H10B0.54110.45980.07760.073*
C110.69973 (18)0.42951 (12)0.06711 (14)0.0678 (5)
H11A0.73260.40950.00020.081*
H11B0.75850.45820.08190.081*
C120.6467 (8)0.3505 (6)0.1365 (8)0.077 (2)0.525 (6)
H12A0.59090.32060.11880.093*0.525 (6)
H12B0.60880.37200.20290.093*0.525 (6)
C130.7411 (5)0.2857 (3)0.1286 (4)0.097 (2)0.525 (6)
H13A0.79330.31480.15030.146*0.525 (6)
H13B0.70890.23420.16860.146*0.525 (6)
H13C0.78080.26730.06200.146*0.525 (6)
C12'0.6881 (7)0.3529 (8)0.1425 (9)0.073 (2)0.475 (6)
H12C0.65530.37660.20830.088*0.475 (6)
H12D0.76240.32830.13050.088*0.475 (6)
C13'0.6133 (5)0.2818 (4)0.1313 (4)0.098 (2)0.475 (6)
H13D0.64530.25990.06550.147*0.475 (6)
H13E0.60740.23340.17520.147*0.475 (6)
H13F0.53910.30610.14580.147*0.475 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0635 (10)0.0324 (8)0.0410 (8)0.0000.0166 (7)0.000
N10.0572 (8)0.0449 (8)0.0358 (7)0.0049 (6)0.0011 (6)0.0003 (6)
O10.0455 (6)0.0695 (9)0.0532 (7)0.0148 (6)0.0085 (5)0.0213 (6)
O20.0493 (6)0.0568 (7)0.0478 (7)0.0099 (5)0.0059 (5)0.0159 (5)
O30.0523 (6)0.0427 (7)0.0359 (6)0.0050 (5)0.0005 (5)0.0034 (5)
C10.0442 (9)0.0799 (14)0.0484 (10)0.0186 (9)0.0062 (8)0.0193 (9)
C20.0478 (9)0.0726 (13)0.0521 (10)0.0236 (9)0.0006 (8)0.0175 (9)
C30.0446 (8)0.0536 (10)0.0400 (8)0.0058 (7)0.0079 (7)0.0120 (7)
C40.0378 (8)0.0562 (10)0.0373 (8)0.0061 (7)0.0024 (6)0.0053 (7)
C50.0412 (8)0.0523 (10)0.0447 (9)0.0120 (7)0.0060 (7)0.0071 (7)
C60.0457 (9)0.0580 (11)0.0399 (9)0.0090 (7)0.0042 (7)0.0110 (8)
C70.0413 (8)0.0614 (11)0.0389 (8)0.0057 (7)0.0015 (7)0.0087 (7)
C80.0424 (8)0.0521 (10)0.0372 (8)0.0028 (7)0.0025 (7)0.0036 (7)
C90.0393 (7)0.0435 (9)0.0344 (8)0.0038 (6)0.0092 (6)0.0020 (6)
C100.0609 (11)0.0474 (11)0.0547 (10)0.0030 (8)0.0033 (9)0.0042 (8)
C110.0828 (14)0.0510 (11)0.0556 (11)0.0111 (10)0.0138 (10)0.0000 (9)
C120.096 (6)0.048 (4)0.090 (4)0.003 (4)0.040 (4)0.018 (3)
C130.141 (5)0.061 (3)0.106 (4)0.029 (3)0.067 (3)0.009 (2)
C12'0.076 (5)0.066 (5)0.089 (4)0.003 (4)0.044 (4)0.008 (3)
C13'0.113 (5)0.074 (4)0.109 (4)0.002 (3)0.046 (4)0.001 (3)
Geometric parameters (Å, º) top
O4—H4A0.8501C8—C91.474 (2)
O4—H4B0.8501C8—H80.9300
N1—C91.321 (2)C10—C111.494 (3)
N1—C101.455 (2)C10—H10A0.9700
N1—H1B0.8600C10—H10B0.9700
O1—C41.3624 (19)C11—C121.537 (9)
O1—H1A0.8200C11—C12'1.574 (11)
O2—C31.3699 (19)C11—H11A0.9700
O2—H2A0.8200C11—H11B0.9700
O3—C91.2571 (18)C12—C131.519 (10)
C1—C21.378 (2)C12—H12A0.9700
C1—C61.385 (2)C12—H12B0.9700
C1—H10.9300C13—H13A0.9600
C2—C31.377 (2)C13—H13B0.9600
C2—H20.9300C13—H13C0.9600
C3—C41.403 (2)C12'—C13'1.487 (11)
C4—C51.377 (2)C12'—H12C0.9700
C5—C61.403 (2)C12'—H12D0.9700
C5—H50.9300C13'—H13D0.9600
C6—C71.462 (2)C13'—H13E0.9600
C7—C81.314 (2)C13'—H13F0.9600
C7—H70.9300
H4A—O4—H4B108.0N1—C10—C11111.97 (15)
C9—N1—C10124.15 (14)N1—C10—H10A109.2
C9—N1—H1B117.9C11—C10—H10A109.2
C10—N1—H1B117.9N1—C10—H10B109.2
C4—O1—H1A109.5C11—C10—H10B109.2
C3—O2—H2A109.5H10A—C10—H10B107.9
C2—C1—C6121.15 (15)C10—C11—C12104.6 (4)
C2—C1—H1119.4C10—C11—C12'120.0 (4)
C6—C1—H1119.4C10—C11—H11A110.8
C3—C2—C1120.63 (15)C12—C11—H11A110.8
C3—C2—H2119.7C12'—C11—H11A113.6
C1—C2—H2119.7C10—C11—H11B110.8
O2—C3—C2123.23 (14)C12—C11—H11B110.8
O2—C3—C4117.38 (14)C12'—C11—H11B90.6
C2—C3—C4119.37 (15)H11A—C11—H11B108.9
O1—C4—C5124.49 (14)C13—C12—C11108.4 (6)
O1—C4—C3115.86 (14)C13—C12—H12A110.0
C5—C4—C3119.65 (14)C11—C12—H12A110.0
C4—C5—C6121.09 (14)C13—C12—H12B110.0
C4—C5—H5119.5C11—C12—H12B110.0
C6—C5—H5119.5H12A—C12—H12B108.4
C1—C6—C5118.09 (15)C13'—C12'—C11108.3 (6)
C1—C6—C7117.78 (15)C13'—C12'—H12C110.0
C5—C6—C7124.13 (15)C11—C12'—H12C110.0
C8—C7—C6128.82 (15)C13'—C12'—H12D110.0
C8—C7—H7115.6C11—C12'—H12D110.0
C6—C7—H7115.6H12C—C12'—H12D108.4
C7—C8—C9121.24 (15)C12'—C13'—H13D109.5
C7—C8—H8119.4C12'—C13'—H13E109.5
C9—C8—H8119.4H13D—C13'—H13E109.5
O3—C9—N1121.73 (14)C12'—C13'—H13F109.5
O3—C9—C8122.27 (14)H13D—C13'—H13F109.5
N1—C9—C8116.00 (13)H13E—C13'—H13F109.5
C6—C1—C2—C30.9 (3)C5—C6—C7—C812.7 (3)
C1—C2—C3—O2179.32 (18)C6—C7—C8—C9176.70 (16)
C1—C2—C3—C40.6 (3)C10—N1—C9—O31.0 (2)
O2—C3—C4—O11.2 (2)C10—N1—C9—C8179.89 (15)
C2—C3—C4—O1179.99 (17)C7—C8—C9—O312.8 (2)
O2—C3—C4—C5178.59 (15)C7—C8—C9—N1166.28 (16)
C2—C3—C4—C50.2 (3)C9—N1—C10—C11148.87 (17)
O1—C4—C5—C6179.54 (17)N1—C10—C11—C12174.2 (4)
C3—C4—C5—C60.7 (3)N1—C10—C11—C12'169.8 (4)
C2—C1—C6—C50.4 (3)C10—C11—C12—C13176.3 (5)
C2—C1—C6—C7179.91 (18)C12'—C11—C12—C1337.4 (19)
C4—C5—C6—C10.4 (3)C10—C11—C12'—C13'74.3 (8)
C4—C5—C6—C7179.25 (17)C12—C11—C12'—C13'27.1 (17)
C1—C6—C7—C8166.91 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3i0.851.912.7402 (19)165
O4—H4B···O3ii0.851.912.7402 (19)165
N1—H1B···O2iii0.862.293.129 (2)165
N1—H1B···O1iii0.862.583.143 (3)124
O1—H1A···O3iv0.821.942.7378 (19)162
O2—H2A···O4v0.822.002.8217 (18)177
C7—H7···O30.932.482.837 (2)103
C8—H8···O2iii0.932.553.330 (2)142
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x+1/2, y+3/2, z+1/2; (v) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC13H17NO3·0.5H2O
Mr244.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)12.860 (7), 14.928 (8), 15.015 (11)
β (°) 113.967 (6)
V3)2634 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.22 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.977, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
7822, 2581, 1895
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 1.04
No. of reflections2581
No. of parameters180
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: SMART (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3i0.851.912.7402 (19)164.7
O4—H4B···O3ii0.851.912.7402 (19)164.7
N1—H1B···O2iii0.862.293.129 (2)165.0
N1—H1B···O1iii0.862.583.143 (3)123.6
O1—H1A···O3iv0.821.942.7378 (19)162.4
O2—H2A···O4v0.822.002.8217 (18)177.2
C7—H7···O30.932.482.837 (2)102.9
C8—H8···O2iii0.932.553.330 (2)141.9
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x+1/2, y+3/2, z+1/2; (v) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by Xinxiang University.

References

First citationAltuğ, M. E., Serarslan, Y., Bal, R., Konta, T., Ekici, F., Melek, I. M., Aslan, H. & Duman, T. (2008). Brain Res. 1201, 135–142.  Web of Science PubMed Google Scholar
First citationBruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBylov, E. I., Vasylev, V. M. & Bilokin, V. Y. (1999). Eur. J. Med. Chem. 34, 997–1001.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, Y. T., Don, M. J., Liao, C. H., Chiou, H. W., Chena, C. F. & Ho, L. K. (2005). Clin. Chim. Acta, 352, 135–141.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMenezes, J. C. J. M. D. S., Kamat, S. P., Cavaleiro, J. A. S., Gaspar, A., Garrido, J. & Borges, F. (2001). Eur. J. Med. Chem. 133, 89–96.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSon, S. & Lewis, B. A. (2002). J. Agric. Food Chem. 50, 468–472.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXia, C. N., Hu, W. X., Zhou, W. & Wang, G. H. (2008). J. Chem. Crystallogr. 38, 583–586.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds