organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o662-o663

(6S,7S,8S,8aS)-6-Ethyl-3-oxo-1,2,3,5,6,7,8,8a-octa­hydro­indolizine-7,8-diyl di­acetate

aInstitute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and bInstitute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: viktor.vrabel@stuba.sk

(Received 2 February 2012; accepted 6 February 2012; online 10 February 2012)

In the mol­ecular structure of the title compound, C14H21NO5, the six-membered ring of the indolizine moiety adopts a chair conformation. There are two independent mol­ecules in the asymmetric unit. The oxopyrrolidine ring attached to the indolizine ring system is nearly planar, with mean deviations of 0.018 (3) and 0.010 (3) Å for the two mol­ecules. The absolute configuration of the title compound was assigned from the synthesis.

Related literature

For indolizine derivatives, see: Gubin et al. (1992[Gubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981-988.]); Gupta et al. (2003[Gupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867-873.]); Liu et al. (2007[Liu, Y., Song, Z. & Yan, B. (2007). Org. Lett. 9, 409-412.]); Medda et al. (2003[Medda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123-128.]); Molyneux & James (1982[Molyneux, R. J. & James, L. F. (1982). Science, 216, 190-191.]); Nash et al. (1988[Nash, R. J., Fellows, L. E., Dring, J. V., Stirton, C. H., Carter, D., Hegarty, M. P. & Bell, E. A. (1988). Phytochemistry, 27, 1403-1406.]); Pearson & Guo (2001[Pearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267-8271.]); Ruprecht et al. (1989[Ruprecht, R. M., Mullaney, S., Andersen, J. & Bronson, R. (1989). J. Acquir. Immune Defic. Syndr. 2, 149-157.]); Smith et al. (2007[Smith, C. R., Bunnelle, E. M., Rhodes, A. J. & Sarpong, R. (2007). Org. Lett. 9, 1169-1171.]); Teklu et al. (2005[Teklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Bioorg. Med. Chem. 13, 3127-3139.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1362.]). For the synthesis, see: Šafář et al. (2010[Šafář, P., Žužiová, J., Tóthová, E., Marchalín, Š., Prónayová, N., Švorc, Ľ., Vrábel, V., Comesse, S. & Daich, A. (2010). Tetrahedron Asymmetry, 21, 623-630.]). For related structures, see: Brown & Corbridge (1954[Brown, C. J. & Corbridge, D. E. C. (1954). Acta Cryst. 7, 711-715.]); Pedersen (1967[Pedersen, B. F. (1967). Acta Chem. Scand. 21, 1415-1424.]).

[Scheme 1]

Experimental

Crystal data
  • C14H21NO5

  • Mr = 283.32

  • Monoclinic, P 21

  • a = 11.5157 (2) Å

  • b = 9.8239 (1) Å

  • c = 14.0922 (2) Å

  • β = 99.035 (2)°

  • V = 1574.46 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.952, Tmax = 0.984

  • 37222 measured reflections

  • 3404 independent reflections

  • 2508 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.104

  • S = 1.03

  • 3404 reflections

  • 361 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Heterocycles are involved in a wide range of biologically important chemical reactions in living organisms, and therefore they form one of the most important and well investigated classes of organic compounds. One group of heterocycles, indolizines, has received much scientific attention during the recent years. Indolizine derivatives have been found to possess a variety of biological activities such as antibacterial, antiinflammatory, antiviral, (Nash et al., 1988; Molyneux & James, 1982; Medda et al., 2003), anti-HIV (Ruprecht et al., 1989), anti-cancer (Liu et al., 2007; Smith et al., 2007), and antitumor (Pearson & Guo, 2001). They have also shown to be calcium entry blockers (Gupta et al., 2003) and potent antioxidants inhibiting lipid peroxidation in vitro (Teklu et al., 2005). As such, indolizines are important synthetic targets in view of developing new pharmaceuticals for the treatment of cardiovascular diseases (Gubin et al., 1992). Based on these facts and in continuation of our interest in developing simple and efficient route for the synthesis of novel indolizine derivatives. We report here the synthesis, molecular and crystal structure of the title compound, (I), which crystallizes in the monoclinic space group P21 with two crystallographic independent molecules in asymmetric unit. The absolute configuration was established by synthesis. The expected stereochemistry of atoms C5, C6, C7 and C8 for molecule A and C19, C20, C21 and C22 for molecule B was confirmed for all as S, see Fig. 1. The central six-membered N-heterocyclic ring is not planar and adopts a chair conformation (Cremer & Pople, 1975). A calculation of least-squares planes shows that this ring is puckered in such a manner that the four atoms C5, C6, C8 and C9 (C19, C20, C22 and C23 for molecule B) are coplanar to within 0.018 (2)Å [0.019 (2)Å], while atoms N1 (N2) and C7 (C21) are displaced from this plane on opposite sides, with out-of-plane displacements of -0.593 (2)Å and 0.659 (2)Å [-0.581 (1)Å and 0.671 (2)Å for molecule B], respectively. In the molecule structure, the oxopyrrolidine ring N1/C2—C5 (N2/C16—C19) attached to the central six-membered ring is nearly planar (mean deviation is 0.018 (3)Å for molecule A and 0.010 (3)Å for molecule B). The dihedral angle between the plane of oxopyrrolidine ring and the plane of the four atoms C5, C6, C8 and C9 (C19, C20, C22 and C23) forming the base of the chair conformation is 51.0 (1)° (54.4 (1)°). The N1 (N2) atom is sp2 hybridized, as evidenced by the sum of the valence angles around it [359.9 (2)° for molecule A and 359.9 (2)° for molecule B]. These data are consistent with conjugative delocalization of the lone-pair electrons on N1 (N2) atom with the adjacent carbonyl C2=O1 (C16=O6) and agree with literature values for simple amides (Brown & Corbridge, 1954; Pedersen, 1967). The bond length of the carbonyl group C2=O1 (C16=O6) is 1.220 (3)Å [1.214 (3)Å], respectively, is somewhat longer than typical carbonyl bonds. This may be due to the fact that atoms O1 and O6 participate in intra- or intermolecular C—H···O contacts. The crystal structure is stabilized by weak intra- and intermolecular C—H···O hydrogen bonds.

Related literature top

For indolizine derivatives, see: Gubin et al. (1992); Gupta et al. (2003); Liu et al. (2007); Medda et al. (2003); Molyneux & James (1982); Nash et al. (1988); Pearson & Guo (2001); Ruprecht et al. (1989); Smith et al. (2007); Teklu et al. (2005). For ring conformations, see: Cremer & Pople (1975). For the synthesis, see: Šafář et al. (2010). For related structures, see: Brown & Corbridge (1954); Pedersen (1967).

Experimental top

The title compound was prepared according to a standard protocol described in literature (Šafář et al., 2010).

Refinement top

All H atoms were positioned with idealized geometry using a riding model with C—H distances in the range 0.93 - 0.98 Å. The Uiso(H) values were set at 1.2 Ueq(C-aromatic) or 1.5 Ueq(C-methyl). The absolute configuration could not be reliably determined for this compound using Mo radiation, and has been assigned according to the synthesis.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme of the two independent molecules. Displacement ellipsoids are drawn at the 50% probability level (Brandenburg, 2001).
(6S,7S,8S,8aS)-6-Ethyl-3-oxo- 1,2,3,5,6,7,8,8a-octahydroindolizine-7,8-diyl diacetate top
Crystal data top
C14H21NO5F(000) = 608
Mr = 283.32Dx = 1.195 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 37222 reflections
a = 11.5157 (2) Åθ = 4.1–26.4°
b = 9.8239 (1) ŵ = 0.09 mm1
c = 14.0922 (2) ÅT = 298 K
β = 99.035 (2)°Prism, colourless
V = 1574.46 (4) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
3404 independent reflections
Radiation source: fine-focus sealed tube2508 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.4340 pixels mm-1θmax = 26.4°, θmin = 4.1°
Rotation method data acquisition using ω and ϕ scansh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1212
Tmin = 0.952, Tmax = 0.984l = 1717
37222 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0702P)2]
where P = (Fo2 + 2Fc2)/3
3404 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.11 e Å3
1 restraintΔρmin = 0.14 e Å3
Crystal data top
C14H21NO5V = 1574.46 (4) Å3
Mr = 283.32Z = 4
Monoclinic, P21Mo Kα radiation
a = 11.5157 (2) ŵ = 0.09 mm1
b = 9.8239 (1) ÅT = 298 K
c = 14.0922 (2) Å0.40 × 0.30 × 0.20 mm
β = 99.035 (2)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
3404 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2508 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.984Rint = 0.028
37222 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.104H-atom parameters constrained
S = 1.03Δρmax = 0.11 e Å3
3404 reflectionsΔρmin = 0.14 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C20.8545 (2)0.0286 (3)0.56842 (19)0.0737 (7)
C30.7241 (3)0.0115 (3)0.5372 (3)0.0989 (9)
H3B0.69790.06390.47940.119*
H3A0.68130.04200.58730.119*
C40.7043 (3)0.1376 (3)0.5183 (3)0.0889 (8)
H4B0.65720.17590.56300.107*
H4A0.66370.15210.45340.107*
C50.8254 (2)0.2041 (2)0.53147 (16)0.0638 (6)
H5A0.84180.23760.46940.077*
C60.84460 (18)0.3181 (2)0.60532 (14)0.0556 (5)
H6A0.81440.29130.66380.067*
C70.97364 (18)0.3545 (2)0.62885 (14)0.0575 (5)
H7A0.99950.39220.57120.069*
C81.05094 (19)0.2324 (3)0.66341 (15)0.0631 (5)
H8A1.13310.26140.66810.076*
C91.0288 (2)0.1237 (3)0.58517 (16)0.0683 (6)
H9B1.05610.15600.52750.082*
H9A1.07220.04170.60650.082*
C100.6967 (2)0.4880 (3)0.60542 (19)0.0747 (7)
C110.6557 (3)0.6217 (4)0.5632 (3)0.1127 (11)
H11C0.59290.65510.59420.169*0.50
H11B0.62810.61090.49570.169*0.50
H11A0.71970.68540.57240.169*0.50
H11F0.70090.64580.51400.169*0.50
H11E0.66570.69000.61250.169*0.50
H11D0.57410.61550.53590.169*0.50
C121.0680 (2)0.5503 (3)0.70642 (16)0.0670 (6)
C131.0580 (3)0.6588 (3)0.7779 (2)0.0993 (9)
H13C1.11800.72590.77530.149*0.50
H13B1.06730.61980.84110.149*0.50
H13A0.98210.70110.76350.149*0.50
H13F0.99350.63860.81130.149*0.50
H13E1.04430.74470.74550.149*0.50
H13D1.12950.66340.82310.149*0.50
C141.0331 (3)0.1806 (3)0.76184 (18)0.0828 (7)
H14B1.03570.25730.80550.099*
H14A0.95570.13990.75660.099*
C151.1237 (3)0.0773 (4)0.8039 (3)0.1224 (13)
H15C1.10770.04890.86570.184*
H15B1.20060.11740.81070.184*
H15A1.12040.00010.76200.184*
C160.5132 (2)0.5197 (3)0.86454 (19)0.0705 (6)
C170.4201 (2)0.5033 (3)0.7765 (2)0.0829 (7)
H17B0.35420.56360.78000.099*
H17A0.45230.52380.71860.099*
C180.3821 (3)0.3583 (3)0.7768 (3)0.1040 (10)
H18B0.39320.31430.71720.125*
H18A0.29960.35270.78300.125*
C190.4576 (2)0.2884 (3)0.86243 (18)0.0696 (6)
H19A0.40680.25430.90680.084*
C200.5353 (2)0.1748 (2)0.83702 (15)0.0602 (5)
H20A0.57460.20180.78310.072*
C210.6251 (2)0.1355 (2)0.92278 (15)0.0629 (6)
H21A0.58440.09790.97290.076*
C220.69956 (19)0.2565 (3)0.96345 (15)0.0639 (6)
H22A0.74860.22631.02290.077*
C230.6164 (2)0.3658 (3)0.99042 (16)0.0716 (6)
H23B0.57730.33331.04220.086*
H23A0.66060.44691.01240.086*
C240.4582 (3)0.0020 (3)0.7247 (2)0.0877 (8)
C250.3881 (4)0.1254 (4)0.7148 (3)0.1301 (14)
H25C0.38810.16310.65190.195*0.50
H25B0.30870.10580.72350.195*0.50
H25A0.42200.18980.76240.195*0.50
H25F0.35780.14270.77330.195*0.50
H25E0.43710.19990.70170.195*0.50
H25D0.32390.11600.66280.195*0.50
C260.7488 (2)0.0597 (3)0.9512 (3)0.0968 (9)
C270.8059 (3)0.1700 (4)0.9024 (4)0.1403 (16)
H27C0.84450.23220.94970.210*0.50
H27B0.86270.13100.86730.210*0.50
H27A0.74730.21780.85900.210*0.50
H27F0.79180.15510.83430.210*0.50
H27E0.77370.25640.91670.210*0.50
H27D0.88900.16950.92500.210*0.50
C280.7819 (2)0.3082 (3)0.89634 (17)0.0788 (7)
H28B0.82240.23110.87370.095*
H28A0.73510.35030.84080.095*
C290.8716 (3)0.4091 (5)0.9418 (3)0.1207 (13)
H29C0.91330.44560.89370.181*
H29B0.92600.36450.99060.181*
H29A0.83280.48150.97010.181*
N10.90503 (17)0.09344 (19)0.56432 (13)0.0636 (5)
N20.53009 (18)0.3980 (2)0.90770 (15)0.0708 (5)
O10.9073 (2)0.1337 (2)0.59263 (17)0.1011 (6)
O20.78379 (13)0.43758 (17)0.56408 (11)0.0666 (4)
O30.6567 (2)0.4302 (3)0.66728 (17)0.1181 (8)
O40.98020 (13)0.46046 (18)0.70120 (10)0.0679 (4)
O51.14461 (16)0.5425 (2)0.65819 (12)0.0856 (5)
O60.56358 (19)0.6243 (2)0.89226 (16)0.0923 (6)
O70.46121 (14)0.05762 (17)0.81120 (11)0.0695 (4)
O80.5052 (3)0.0493 (4)0.66446 (17)0.1501 (12)
O90.69467 (16)0.0294 (2)0.88760 (13)0.0826 (5)
O100.7497 (2)0.0500 (3)1.0360 (2)0.1259 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0872 (17)0.0531 (15)0.0852 (15)0.0041 (14)0.0269 (13)0.0059 (12)
C30.0889 (19)0.0666 (18)0.144 (3)0.0067 (16)0.0265 (18)0.0090 (17)
C40.0780 (17)0.0680 (18)0.113 (2)0.0098 (15)0.0081 (14)0.0068 (16)
C50.0670 (13)0.0564 (13)0.0662 (12)0.0004 (11)0.0044 (10)0.0068 (11)
C60.0581 (12)0.0506 (11)0.0591 (11)0.0051 (10)0.0124 (9)0.0090 (10)
C70.0615 (12)0.0580 (13)0.0554 (11)0.0024 (11)0.0163 (9)0.0059 (10)
C80.0573 (12)0.0677 (14)0.0644 (12)0.0057 (12)0.0103 (9)0.0040 (11)
C90.0692 (14)0.0652 (14)0.0716 (13)0.0101 (12)0.0145 (10)0.0050 (11)
C100.0681 (14)0.0686 (16)0.0875 (16)0.0122 (13)0.0127 (13)0.0018 (13)
C110.104 (2)0.073 (2)0.161 (3)0.0268 (19)0.022 (2)0.007 (2)
C120.0729 (14)0.0590 (14)0.0651 (12)0.0023 (13)0.0017 (11)0.0075 (11)
C130.115 (2)0.0734 (19)0.106 (2)0.0096 (17)0.0070 (17)0.0213 (16)
C140.0967 (18)0.0839 (18)0.0657 (14)0.0198 (15)0.0066 (13)0.0070 (13)
C150.118 (3)0.116 (3)0.124 (2)0.016 (2)0.0097 (19)0.041 (2)
C160.0691 (14)0.0539 (15)0.0925 (16)0.0012 (12)0.0249 (12)0.0094 (13)
C170.0702 (15)0.0698 (17)0.1057 (18)0.0084 (13)0.0048 (13)0.0078 (14)
C180.101 (2)0.0642 (17)0.129 (2)0.0087 (16)0.0360 (18)0.0061 (17)
C190.0644 (13)0.0557 (14)0.0862 (15)0.0003 (11)0.0039 (11)0.0064 (12)
C200.0673 (13)0.0538 (13)0.0607 (11)0.0043 (11)0.0134 (10)0.0006 (10)
C210.0661 (13)0.0633 (14)0.0612 (12)0.0090 (12)0.0156 (10)0.0058 (11)
C220.0646 (12)0.0730 (16)0.0538 (11)0.0046 (12)0.0084 (9)0.0008 (11)
C230.0730 (14)0.0779 (16)0.0642 (13)0.0014 (13)0.0121 (11)0.0122 (12)
C240.105 (2)0.0780 (19)0.0827 (17)0.0088 (16)0.0217 (15)0.0191 (14)
C250.171 (4)0.081 (2)0.136 (3)0.035 (2)0.017 (3)0.043 (2)
C260.0648 (16)0.0689 (19)0.154 (3)0.0076 (15)0.0091 (18)0.018 (2)
C270.090 (2)0.078 (2)0.250 (5)0.0224 (19)0.018 (3)0.022 (3)
C280.0731 (15)0.0922 (19)0.0735 (14)0.0126 (15)0.0187 (11)0.0117 (14)
C290.104 (2)0.137 (3)0.126 (2)0.038 (2)0.0343 (19)0.032 (3)
N10.0686 (11)0.0508 (11)0.0703 (10)0.0038 (9)0.0073 (9)0.0014 (8)
N20.0679 (12)0.0571 (12)0.0838 (13)0.0019 (10)0.0007 (10)0.0106 (10)
O10.1129 (15)0.0586 (11)0.1369 (17)0.0145 (12)0.0351 (13)0.0165 (12)
O20.0688 (9)0.0574 (9)0.0749 (9)0.0083 (8)0.0157 (7)0.0120 (8)
O30.1130 (15)0.124 (2)0.1310 (17)0.0431 (15)0.0634 (14)0.0319 (16)
O40.0733 (9)0.0625 (10)0.0704 (8)0.0020 (9)0.0185 (7)0.0114 (8)
O50.0793 (10)0.0915 (13)0.0853 (10)0.0186 (10)0.0109 (9)0.0003 (10)
O60.0981 (13)0.0630 (12)0.1168 (14)0.0122 (11)0.0203 (11)0.0161 (11)
O70.0800 (10)0.0554 (9)0.0749 (9)0.0086 (8)0.0177 (7)0.0080 (8)
O80.203 (3)0.169 (3)0.0902 (13)0.078 (3)0.0596 (16)0.0421 (18)
O90.0816 (11)0.0694 (11)0.0993 (11)0.0176 (10)0.0223 (9)0.0020 (10)
O100.1194 (18)0.112 (2)0.1410 (19)0.0225 (16)0.0056 (15)0.0507 (19)
Geometric parameters (Å, º) top
C2—O11.220 (3)C16—O61.214 (3)
C2—N11.338 (3)C16—N21.342 (4)
C2—C31.506 (4)C16—C171.515 (4)
C3—C41.500 (5)C17—C181.490 (4)
C3—H3B0.9700C17—H17B0.9700
C3—H3A0.9700C17—H17A0.9700
C4—C51.525 (4)C18—C191.534 (4)
C4—H4B0.9700C18—H18B0.9700
C4—H4A0.9700C18—H18A0.9700
C5—N11.451 (3)C19—N21.448 (3)
C5—C61.521 (3)C19—C201.509 (3)
C5—H5A0.9800C19—H19A0.9800
C6—O21.441 (3)C20—O71.445 (3)
C6—C71.514 (3)C20—C211.512 (3)
C6—H6A0.9800C20—H20A0.9800
C7—O41.450 (3)C21—O91.449 (3)
C7—C81.527 (3)C21—C221.524 (3)
C7—H7A0.9800C21—H21A0.9800
C8—C141.521 (4)C22—C231.527 (3)
C8—C91.528 (3)C22—C281.527 (3)
C8—H8A0.9800C22—H22A0.9800
C9—N11.441 (3)C23—N21.443 (3)
C9—H9B0.9700C23—H23B0.9700
C9—H9A0.9700C23—H23A0.9700
C10—O31.192 (3)C24—O81.172 (4)
C10—O21.332 (3)C24—O71.331 (3)
C10—C111.488 (4)C24—C251.484 (5)
C11—H11C0.9600C25—H25C0.9600
C11—H11B0.9600C25—H25B0.9600
C11—H11A0.9600C25—H25A0.9600
C11—H11F0.9600C25—H25F0.9600
C11—H11E0.9600C25—H25E0.9600
C11—H11D0.9600C25—H25D0.9600
C12—O51.197 (3)C26—O101.198 (4)
C12—O41.336 (3)C26—O91.335 (4)
C12—C131.483 (4)C26—C271.490 (5)
C13—H13C0.9600C27—H27C0.9600
C13—H13B0.9600C27—H27B0.9600
C13—H13A0.9600C27—H27A0.9600
C13—H13F0.9600C27—H27F0.9600
C13—H13E0.9600C27—H27E0.9600
C13—H13D0.9600C27—H27D0.9600
C14—C151.508 (5)C28—C291.500 (5)
C14—H14B0.9700C28—H28B0.9700
C14—H14A0.9700C28—H28A0.9700
C15—H15C0.9600C29—H29C0.9600
C15—H15B0.9600C29—H29B0.9600
C15—H15A0.9600C29—H29A0.9600
O1—C2—N1124.7 (2)C16—C17—H17B110.6
O1—C2—C3127.3 (2)C18—C17—H17A110.6
N1—C2—C3108.0 (2)C16—C17—H17A110.6
C4—C3—C2106.1 (2)H17B—C17—H17A108.7
C4—C3—H3B110.5C17—C18—C19107.4 (2)
C2—C3—H3B110.5C17—C18—H18B110.2
C4—C3—H3A110.5C19—C18—H18B110.2
C2—C3—H3A110.5C17—C18—H18A110.2
H3B—C3—H3A108.7C19—C18—H18A110.2
C3—C4—C5106.7 (2)H18B—C18—H18A108.5
C3—C4—H4B110.4N2—C19—C20109.42 (18)
C5—C4—H4B110.4N2—C19—C18103.3 (2)
C3—C4—H4A110.4C20—C19—C18115.3 (2)
C5—C4—H4A110.4N2—C19—H19A109.5
H4B—C4—H4A108.6C20—C19—H19A109.5
N1—C5—C6108.47 (17)C18—C19—H19A109.5
N1—C5—C4103.7 (2)O7—C20—C19107.49 (17)
C6—C5—C4115.5 (2)O7—C20—C21107.50 (18)
N1—C5—H5A109.6C19—C20—C21110.83 (18)
C6—C5—H5A109.6O7—C20—H20A110.3
C4—C5—H5A109.6C19—C20—H20A110.3
O2—C6—C7107.10 (17)C21—C20—H20A110.3
O2—C6—C5108.32 (15)O9—C21—C20104.81 (18)
C7—C6—C5110.86 (17)O9—C21—C22112.40 (17)
O2—C6—H6A110.2C20—C21—C22112.06 (19)
C7—C6—H6A110.2O9—C21—H21A109.1
C5—C6—H6A110.2C20—C21—H21A109.1
O4—C7—C6105.33 (16)C22—C21—H21A109.1
O4—C7—C8112.09 (16)C21—C22—C23107.71 (18)
C6—C7—C8112.78 (18)C21—C22—C28113.21 (18)
O4—C7—H7A108.8C23—C22—C28113.2 (2)
C6—C7—H7A108.8C21—C22—H22A107.5
C8—C7—H7A108.8C23—C22—H22A107.5
C14—C8—C7113.47 (19)C28—C22—H22A107.5
C14—C8—C9113.1 (2)N2—C23—C22109.41 (18)
C7—C8—C9107.24 (16)N2—C23—H23B109.8
C14—C8—H8A107.6C22—C23—H23B109.8
C7—C8—H8A107.6N2—C23—H23A109.8
C9—C8—H8A107.6C22—C23—H23A109.8
N1—C9—C8109.81 (18)H23B—C23—H23A108.2
N1—C9—H9B109.7O8—C24—O7123.5 (3)
C8—C9—H9B109.7O8—C24—C25124.9 (3)
N1—C9—H9A109.7O7—C24—C25111.6 (3)
C8—C9—H9A109.7C24—C25—H25C109.5
H9B—C9—H9A108.2C24—C25—H25B109.5
O3—C10—O2123.1 (2)H25C—C25—H25B109.5
O3—C10—C11125.4 (3)C24—C25—H25A109.5
O2—C10—C11111.5 (3)H25C—C25—H25A109.5
C10—C11—H11C109.5H25B—C25—H25A109.5
C10—C11—H11B109.5C24—C25—H25F109.5
H11C—C11—H11B109.5H25C—C25—H25F141.1
C10—C11—H11A109.5H25B—C25—H25F56.3
H11C—C11—H11A109.5H25A—C25—H25F56.3
H11B—C11—H11A109.5C24—C25—H25E109.5
C10—C11—H11F109.5H25C—C25—H25E56.3
H11C—C11—H11F141.1H25B—C25—H25E141.1
H11B—C11—H11F56.3H25A—C25—H25E56.3
H11A—C11—H11F56.3H25F—C25—H25E109.5
C10—C11—H11E109.5C24—C25—H25D109.5
H11C—C11—H11E56.3H25C—C25—H25D56.3
H11B—C11—H11E141.1H25B—C25—H25D56.3
H11A—C11—H11E56.3H25A—C25—H25D141.1
H11F—C11—H11E109.5H25F—C25—H25D109.5
C10—C11—H11D109.5H25E—C25—H25D109.5
H11C—C11—H11D56.3O10—C26—O9123.2 (3)
H11B—C11—H11D56.3O10—C26—C27125.6 (4)
H11A—C11—H11D141.1O9—C26—C27111.1 (4)
H11F—C11—H11D109.5C26—C27—H27C109.5
H11E—C11—H11D109.5C26—C27—H27B109.5
O5—C12—O4123.0 (2)H27C—C27—H27B109.5
O5—C12—C13125.1 (3)C26—C27—H27A109.5
O4—C12—C13111.9 (2)H27C—C27—H27A109.5
C12—C13—H13C109.5H27B—C27—H27A109.5
C12—C13—H13B109.5C26—C27—H27F109.5
H13C—C13—H13B109.5H27C—C27—H27F141.1
C12—C13—H13A109.5H27B—C27—H27F56.3
H13C—C13—H13A109.5H27A—C27—H27F56.3
H13B—C13—H13A109.5C26—C27—H27E109.5
C12—C13—H13F109.5H27C—C27—H27E56.3
H13C—C13—H13F141.1H27B—C27—H27E141.1
H13B—C13—H13F56.3H27A—C27—H27E56.3
H13A—C13—H13F56.3H27F—C27—H27E109.5
C12—C13—H13E109.5C26—C27—H27D109.5
H13C—C13—H13E56.3H27C—C27—H27D56.3
H13B—C13—H13E141.1H27B—C27—H27D56.3
H13A—C13—H13E56.3H27A—C27—H27D141.1
H13F—C13—H13E109.5H27F—C27—H27D109.5
C12—C13—H13D109.5H27E—C27—H27D109.5
H13C—C13—H13D56.3C29—C28—C22114.1 (2)
H13B—C13—H13D56.3C29—C28—H28B108.7
H13A—C13—H13D141.1C22—C28—H28B108.7
H13F—C13—H13D109.5C29—C28—H28A108.7
H13E—C13—H13D109.5C22—C28—H28A108.7
C15—C14—C8113.6 (3)H28B—C28—H28A107.6
C15—C14—H14B108.9C28—C29—H29C109.5
C8—C14—H14B108.9C28—C29—H29B109.5
C15—C14—H14A108.9H29C—C29—H29B109.5
C8—C14—H14A108.9C28—C29—H29A109.5
H14B—C14—H14A107.7H29C—C29—H29A109.5
C14—C15—H15C109.5H29B—C29—H29A109.5
C14—C15—H15B109.5C2—N1—C9126.8 (2)
H15C—C15—H15B109.5C2—N1—C5115.3 (2)
C14—C15—H15A109.5C9—N1—C5117.79 (19)
H15C—C15—H15A109.5C16—N2—C23126.4 (2)
H15B—C15—H15A109.5C16—N2—C19115.5 (2)
O6—C16—N2125.5 (3)C23—N2—C19118.0 (2)
O6—C16—C17126.5 (3)C10—O2—C6118.56 (18)
N2—C16—C17108.0 (2)C12—O4—C7117.92 (17)
C18—C17—C16105.7 (2)C24—O7—C20119.2 (2)
C18—C17—H17B110.6C26—O9—C21117.9 (2)
O1—C2—C3—C4178.3 (3)C28—C22—C23—N270.5 (3)
N1—C2—C3—C42.4 (4)C21—C22—C28—C29169.1 (3)
C2—C3—C4—C54.3 (4)C23—C22—C28—C2967.9 (3)
C3—C4—C5—N14.5 (3)O1—C2—N1—C91.4 (4)
C3—C4—C5—C6123.1 (3)C3—C2—N1—C9178.0 (2)
N1—C5—C6—O2168.45 (16)O1—C2—N1—C5178.7 (2)
C4—C5—C6—O275.6 (2)C3—C2—N1—C50.7 (3)
N1—C5—C6—C751.2 (2)C8—C9—N1—C2123.6 (3)
C4—C5—C6—C7167.1 (2)C8—C9—N1—C559.2 (3)
O2—C6—C7—O463.58 (19)C6—C5—N1—C2126.7 (2)
C5—C6—C7—O4178.43 (16)C4—C5—N1—C23.3 (3)
O2—C6—C7—C8173.87 (15)C6—C5—N1—C955.8 (2)
C5—C6—C7—C855.9 (2)C4—C5—N1—C9179.1 (2)
O4—C7—C8—C1449.6 (3)O6—C16—N2—C234.8 (4)
C6—C7—C8—C1469.1 (3)C17—C16—N2—C23175.7 (2)
O4—C7—C8—C9175.27 (17)O6—C16—N2—C19178.6 (2)
C6—C7—C8—C956.6 (2)C17—C16—N2—C190.9 (3)
C14—C8—C9—N170.6 (3)C22—C23—N2—C16119.1 (3)
C7—C8—C9—N155.3 (2)C22—C23—N2—C1957.5 (3)
C7—C8—C14—C15169.6 (3)C20—C19—N2—C16122.6 (2)
C9—C8—C14—C1567.9 (3)C18—C19—N2—C160.8 (3)
O6—C16—C17—C18177.2 (3)C20—C19—N2—C2354.4 (3)
N2—C16—C17—C182.3 (3)C18—C19—N2—C23177.7 (2)
C16—C17—C18—C192.7 (4)O3—C10—O2—C69.7 (4)
C17—C18—C19—N22.2 (3)C11—C10—O2—C6171.5 (2)
C17—C18—C19—C20117.2 (3)C7—C6—O2—C10122.9 (2)
N2—C19—C20—O7168.15 (17)C5—C6—O2—C10117.4 (2)
C18—C19—C20—O775.9 (3)O5—C12—O4—C74.5 (3)
N2—C19—C20—C2150.9 (3)C13—C12—O4—C7175.3 (2)
C18—C19—C20—C21166.8 (2)C6—C7—O4—C12152.11 (19)
O7—C20—C21—O964.3 (2)C8—C7—O4—C1284.9 (2)
C19—C20—C21—O9178.50 (19)O8—C24—O7—C206.5 (5)
O7—C20—C21—C22173.53 (16)C25—C24—O7—C20173.8 (3)
C19—C20—C21—C2256.3 (2)C19—C20—O7—C24122.2 (2)
O9—C21—C22—C23175.42 (17)C21—C20—O7—C24118.5 (2)
C20—C21—C22—C2357.7 (2)O10—C26—O9—C215.7 (4)
O9—C21—C22—C2849.4 (3)C27—C26—O9—C21174.1 (2)
C20—C21—C22—C2868.3 (3)C20—C21—O9—C26154.8 (2)
C21—C22—C23—N255.4 (3)C22—C21—O9—C2683.3 (3)

Experimental details

Crystal data
Chemical formulaC14H21NO5
Mr283.32
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)11.5157 (2), 9.8239 (1), 14.0922 (2)
β (°) 99.035 (2)
V3)1574.46 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerOxford Diffraction Gemini R CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.952, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
37222, 3404, 2508
Rint0.028
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.104, 1.03
No. of reflections3404
No. of parameters361
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.14

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

 

Acknowledgements

The authors thank the Grant Agency of the Slovak Republic, grant Nos. 1/0429/11 and 1/0679/11, and the Slovak Research and Development Agency under contract No. APVV-0204–10 for the financial support for this research program.

References

First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, C. J. & Corbridge, D. E. C. (1954). Acta Cryst. 7, 711–715.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1362.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981–988.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867–873.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, Y., Song, Z. & Yan, B. (2007). Org. Lett. 9, 409–412.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMedda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123–128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMolyneux, R. J. & James, L. F. (1982). Science, 216, 190–191.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNash, R. J., Fellows, L. E., Dring, J. V., Stirton, C. H., Carter, D., Hegarty, M. P. & Bell, E. A. (1988). Phytochemistry, 27, 1403–1406.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267–8271.  Web of Science CrossRef CAS Google Scholar
First citationPedersen, B. F. (1967). Acta Chem. Scand. 21, 1415–1424.  CrossRef CAS Web of Science Google Scholar
First citationRuprecht, R. M., Mullaney, S., Andersen, J. & Bronson, R. (1989). J. Acquir. Immune Defic. Syndr. 2, 149–157.  CAS PubMed Web of Science Google Scholar
First citationŠafář, P., Žužiová, J., Tóthová, E., Marchalín, Š., Prónayová, N., Švorc, Ľ., Vrábel, V., Comesse, S. & Daich, A. (2010). Tetrahedron Asymmetry, 21, 623–630.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, C. R., Bunnelle, E. M., Rhodes, A. J. & Sarpong, R. (2007). Org. Lett. 9, 1169–1171.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Bioorg. Med. Chem. 13, 3127–3139.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o662-o663
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds