organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-{[(4-methyl­phen­yl)sulfon­yl]amino}­benzoate

aForman Christian College (A Chartered University), Ferozepur Road, Lahore 54600, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, cDepartment of Chemistry, GC University, Lahore 54000, Pakistan, and dDepartment of Chemistry, University of Gujrat, Gujrat, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 2 February 2012; accepted 3 February 2012; online 10 February 2012)

In the mol­ecule of the title compound, C15H15NO4S, the dihedral angle between the two rings is 88.05 (7)°. The methyl ester group is nearly coplanar with the adjacent ring [dihedral angle = 2.81 (10)°], whereas it is oriented at 86.90 (9)° with respect to the plane of the ring attached to the –SO2– group. Weak intra­molecular C—H⋯O hydrogen bonding completes S(5) and S(6) ring motifs. The mol­ecules form one-dimensional polymeric C(8) chains along the [010] direction due to N—H⋯O hydrogen bonding and these chains are linked by C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For related crystal structures, see: Mustafa et al. (2011[Mustafa, G., Khan, I. U., Zia-ur-Rehman, M., Sharif, S. & Arshad, M. N. (2011). Acta Cryst. E67, o1018.]); Nan & Xing (2006[Nan, Z.-H. & Xing, J.-D. (2006). Acta Cryst. E62, o1978-o1979.]); Xing & Nan (2005[Xing, J.-D. & Nan, Z.-H. (2005). Acta Cryst. E61, o4320-o4321.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl., 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO4S

  • Mr = 305.34

  • Monoclinic, P 21 /n

  • a = 7.9332 (2) Å

  • b = 8.2265 (2) Å

  • c = 22.7419 (5) Å

  • β = 92.769 (1)°

  • V = 1482.46 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.35 × 0.25 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.915, Tmax = 0.938

  • 11165 measured reflections

  • 2677 independent reflections

  • 2234 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.113

  • S = 1.05

  • 2677 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.1800 2.878 (2) 138
C2—H2⋯O1 0.93 2.5200 2.898 (3) 105
C3—H3⋯O2ii 0.93 2.5500 3.431 (3) 159
C7—H7C⋯O1iii 0.96 2.5700 3.396 (3) 145
C9—H9⋯O1 0.93 2.3600 3.009 (3) 126
C10—H10⋯O2iv 0.93 2.5400 3.456 (2) 166
C15—H15A⋯O1v 0.96 2.5300 3.463 (3) 162
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) x, y-1, z; (v) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I), (Fig. 1) has been synthesized as a part of the series of new sulfonamide derivatives. The aim of our research work is to find the potential sulfonamide derivatives possessing anti-microbial etc.

The crystal structures of (II) i.e, 4-(((4-methylphenyl)sulfonyl)amino)benzoic acid (Mustafa et al. 2011; Nan & Xing, 2006) and (III) i.e. N-(4-(ethoxycarbonyl)phenyl)-p-tolylsulfonamide (Xing & Nan, 2005) have been published which are related to (I).

In (I), the phenyl rings A (C1–C6) and B (C8—C13) are planar with r.m.s. deviation of 0.0043 Å and 0.0039 Å, respectively. The dihedral angle between A/B is 88.05 (7)°. The methyl ester moiety C (O3/C14/O4/C15) is also planar with r.m.s. deviation of 0.0015 Å. The dihedral angle between A/C and B/C is 86.90 (9)° and 2.81 (10)°, respectively. There exist intramolecular H-bonding of C—H···O type (Table 1, Fig. 1) forming an S(5) and S(6) ring motifs (Bernstein et al., 1995). There exist also intermolecular H-bondings of N—H···O type (Table 1, Fig. 2) due to which the molecules form C(8) one-dimensional polymeric chains extending along the [010] direction. There exist R22(9) ring motifs due to intermolecular H-bondings of C—H···O and N—H···O types (Table 1, Fig. 2). The other intermolecular H-bondings of C—H···O type interlink these polymeric chains to stabilize the molecules in the form of three-dimensional polymeric network.

Related literature top

For related crystal structures, see: Mustafa et al. (2011); Nan & Xing (2006); Xing & Nan (2005). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

2-(Diethylamino)ethyl 4-aminobenzoate hydrogen chloride (2.728 g, 10 mmol) was dissolved in distilled water (20 ml). The pH of the solution was maintained strictly at 8 to 9 using 1 M Na2CO3 solution. 4-Methyl sulfonyl chloride (1.906 g, 10 mmol) was then added to the solution while stirring at room temperature. On completion of the reaction the pH was adjusted to 1–2, using 1 N HCl while stirring. The precipitates obtained were filtered off, washed with distilled water, dried and subjected to re-crystallization using methanol to afford colorless prisms of (I). m.p. 343 K.

Refinement top

The H atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl groups and x = 1.2 for all H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form polymeric chains extending along [010] direction. The H atoms not involved in H-bondings are omitted for clarity.
Methyl 4-{[(4-methylphenyl)sulfonyl]amino}benzoate top
Crystal data top
C15H15NO4SF(000) = 640
Mr = 305.34Dx = 1.368 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2488 reflections
a = 7.9332 (2) Åθ = 2.6–25.3°
b = 8.2265 (2) ŵ = 0.23 mm1
c = 22.7419 (5) ÅT = 296 K
β = 92.769 (1)°Prism, colourless
V = 1482.46 (6) Å30.35 × 0.25 × 0.22 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2677 independent reflections
Radiation source: fine-focus sealed tube2234 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 8.00 pixels mm-1θmax = 25.3°, θmin = 2.6°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 99
Tmin = 0.915, Tmax = 0.938l = 2727
11165 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.5778P]
where P = (Fo2 + 2Fc2)/3
2677 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C15H15NO4SV = 1482.46 (6) Å3
Mr = 305.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9332 (2) ŵ = 0.23 mm1
b = 8.2265 (2) ÅT = 296 K
c = 22.7419 (5) Å0.35 × 0.25 × 0.22 mm
β = 92.769 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2677 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2234 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.938Rint = 0.020
11165 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
2677 reflectionsΔρmin = 0.27 e Å3
192 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.44553 (6)0.55050 (6)0.13445 (2)0.0511 (2)
O10.55975 (19)0.43449 (19)0.16030 (7)0.0678 (5)
O20.4968 (2)0.71630 (18)0.12957 (7)0.0652 (5)
O30.2286 (2)0.24936 (18)0.00003 (8)0.0721 (6)
O40.1308 (2)0.11198 (18)0.07868 (7)0.0622 (5)
N10.3940 (2)0.4952 (2)0.06731 (7)0.0521 (5)
C10.2595 (2)0.5454 (2)0.17369 (8)0.0449 (6)
C20.2551 (3)0.4587 (3)0.22508 (10)0.0659 (8)
C30.1124 (3)0.4643 (3)0.25712 (10)0.0711 (9)
C40.0272 (3)0.5533 (3)0.23879 (9)0.0552 (7)
C50.0206 (3)0.6378 (3)0.18633 (9)0.0586 (7)
C60.1211 (3)0.6352 (3)0.15395 (9)0.0538 (6)
C70.1815 (3)0.5595 (4)0.27480 (11)0.0781 (10)
C80.3434 (2)0.3396 (2)0.04751 (8)0.0451 (6)
C90.3805 (3)0.1972 (3)0.07832 (10)0.0588 (7)
C100.3323 (3)0.0495 (2)0.05412 (9)0.0574 (7)
C110.2481 (2)0.0400 (2)0.00030 (8)0.0466 (6)
C120.2112 (3)0.1827 (3)0.03051 (9)0.0536 (6)
C130.2571 (3)0.3307 (2)0.00672 (9)0.0525 (6)
C140.2038 (3)0.1214 (3)0.02501 (9)0.0520 (7)
C150.0800 (3)0.2637 (3)0.10630 (12)0.0721 (9)
H10.398160.569490.040820.0625*
H20.347550.396720.238150.0791*
H30.110330.406280.292180.0853*
H50.114030.697500.172720.0703*
H60.123720.693590.118980.0645*
H7A0.220710.669610.276940.1174*
H7B0.153500.520020.313790.1174*
H7C0.268530.492720.256640.1174*
H90.437300.201360.115030.0705*
H100.357180.045580.074910.0688*
H120.154690.178320.067280.0642*
H130.229910.425660.027250.0630*
H15A0.178430.326850.113870.1082*
H15B0.018100.241830.142750.1082*
H15C0.009910.323220.080620.1082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0506 (3)0.0488 (3)0.0540 (3)0.0005 (2)0.0037 (2)0.0092 (2)
O10.0567 (8)0.0731 (10)0.0721 (10)0.0153 (7)0.0114 (7)0.0152 (8)
O20.0702 (9)0.0558 (9)0.0707 (10)0.0156 (7)0.0161 (8)0.0158 (7)
O30.0901 (12)0.0417 (9)0.0834 (12)0.0012 (8)0.0057 (9)0.0020 (8)
O40.0744 (10)0.0548 (9)0.0572 (9)0.0059 (7)0.0018 (7)0.0106 (7)
N10.0674 (10)0.0418 (9)0.0478 (9)0.0040 (8)0.0107 (8)0.0028 (7)
C10.0516 (10)0.0397 (10)0.0432 (10)0.0008 (8)0.0008 (8)0.0022 (8)
C20.0750 (14)0.0629 (14)0.0600 (13)0.0175 (11)0.0052 (11)0.0180 (11)
C30.0922 (17)0.0678 (15)0.0543 (13)0.0031 (13)0.0145 (12)0.0197 (11)
C40.0620 (12)0.0560 (12)0.0480 (11)0.0152 (10)0.0081 (9)0.0109 (9)
C50.0540 (11)0.0682 (14)0.0534 (12)0.0063 (10)0.0005 (9)0.0017 (10)
C60.0584 (11)0.0590 (12)0.0439 (10)0.0046 (10)0.0018 (9)0.0095 (9)
C70.0740 (15)0.097 (2)0.0652 (15)0.0211 (14)0.0218 (12)0.0148 (14)
C80.0479 (10)0.0424 (10)0.0460 (10)0.0000 (8)0.0127 (8)0.0030 (8)
C90.0733 (14)0.0487 (12)0.0532 (12)0.0034 (10)0.0090 (10)0.0004 (9)
C100.0723 (13)0.0408 (11)0.0583 (12)0.0038 (9)0.0037 (10)0.0050 (9)
C110.0484 (10)0.0434 (10)0.0486 (10)0.0000 (8)0.0082 (8)0.0015 (8)
C120.0671 (12)0.0503 (11)0.0431 (10)0.0013 (10)0.0005 (9)0.0009 (9)
C130.0678 (12)0.0420 (10)0.0478 (11)0.0007 (9)0.0039 (9)0.0050 (9)
C140.0512 (11)0.0482 (12)0.0573 (12)0.0006 (9)0.0095 (9)0.0038 (10)
C150.0735 (15)0.0665 (15)0.0773 (16)0.0151 (12)0.0126 (12)0.0254 (13)
Geometric parameters (Å, º) top
S1—O11.4234 (16)C10—C111.380 (3)
S1—O21.4292 (16)C11—C141.478 (3)
S1—N11.6264 (17)C11—C121.384 (3)
S1—C11.7617 (17)C12—C131.374 (3)
O3—C141.208 (3)C2—H20.9300
O4—C141.328 (3)C3—H30.9300
O4—C151.446 (3)C5—H50.9300
N1—C81.409 (2)C6—H60.9300
N1—H10.8600C7—H7A0.9600
C1—C61.380 (3)C7—H7B0.9600
C1—C21.371 (3)C7—H7C0.9600
C2—C31.376 (3)C9—H90.9300
C3—C41.375 (3)C10—H100.9300
C4—C71.506 (3)C12—H120.9300
C4—C51.384 (3)C13—H130.9300
C5—C61.374 (3)C15—H15A0.9600
C8—C131.383 (3)C15—H15B0.9600
C8—C91.389 (3)C15—H15C0.9600
C9—C101.380 (3)
O1—S1—O2119.61 (9)O3—C14—O4122.5 (2)
O1—S1—N1109.05 (9)O3—C14—C11124.98 (19)
O1—S1—C1107.88 (9)C1—C2—H2120.00
O2—S1—N1104.69 (9)C3—C2—H2120.00
O2—S1—C1108.10 (9)C2—C3—H3119.00
N1—S1—C1106.87 (8)C4—C3—H3119.00
C14—O4—C15116.68 (18)C4—C5—H5119.00
S1—N1—C8127.52 (13)C6—C5—H5119.00
S1—N1—H1116.00C1—C6—H6120.00
C8—N1—H1116.00C5—C6—H6120.00
S1—C1—C2120.04 (15)C4—C7—H7A109.00
C2—C1—C6120.20 (18)C4—C7—H7B109.00
S1—C1—C6119.68 (15)C4—C7—H7C109.00
C1—C2—C3119.3 (2)H7A—C7—H7B109.00
C2—C3—C4121.9 (2)H7A—C7—H7C110.00
C5—C4—C7121.2 (2)H7B—C7—H7C109.00
C3—C4—C5117.7 (2)C8—C9—H9120.00
C3—C4—C7121.1 (2)C10—C9—H9120.00
C4—C5—C6121.4 (2)C9—C10—H10119.00
C1—C6—C5119.5 (2)C11—C10—H10119.00
N1—C8—C13117.01 (15)C11—C12—H12120.00
C9—C8—C13119.26 (17)C13—C12—H12120.00
N1—C8—C9123.70 (17)C8—C13—H13120.00
C8—C9—C10119.6 (2)C12—C13—H13120.00
C9—C10—C11121.35 (18)O4—C15—H15A109.00
C10—C11—C12118.60 (17)O4—C15—H15B109.00
C12—C11—C14122.18 (18)O4—C15—H15C109.00
C10—C11—C14119.21 (16)H15A—C15—H15B109.00
C11—C12—C13120.68 (19)H15A—C15—H15C109.00
C8—C13—C12120.54 (17)H15B—C15—H15C110.00
O4—C14—C11112.48 (19)
O1—S1—N1—C847.14 (18)C2—C3—C4—C7179.3 (2)
O2—S1—N1—C8176.25 (15)C3—C4—C5—C60.9 (4)
C1—S1—N1—C869.23 (17)C7—C4—C5—C6178.7 (2)
O1—S1—C1—C29.46 (19)C4—C5—C6—C10.6 (4)
O1—S1—C1—C6173.61 (16)N1—C8—C9—C10177.01 (19)
O2—S1—C1—C2121.20 (17)C13—C8—C9—C100.7 (3)
O2—S1—C1—C655.73 (18)N1—C8—C13—C12176.58 (19)
N1—S1—C1—C2126.60 (17)C9—C8—C13—C121.2 (3)
N1—S1—C1—C656.47 (18)C8—C9—C10—C110.2 (3)
C15—O4—C14—O30.5 (3)C9—C10—C11—C120.4 (3)
C15—O4—C14—C11178.99 (17)C9—C10—C11—C14178.2 (2)
S1—N1—C8—C921.7 (3)C10—C11—C12—C130.2 (3)
S1—N1—C8—C13160.56 (16)C14—C11—C12—C13178.7 (2)
S1—C1—C2—C3175.92 (17)C10—C11—C14—O33.6 (3)
C6—C1—C2—C31.0 (3)C10—C11—C14—O4176.90 (19)
S1—C1—C6—C5176.55 (17)C12—C11—C14—O3177.8 (2)
C2—C1—C6—C50.4 (3)C12—C11—C14—O41.7 (3)
C1—C2—C3—C40.7 (4)C11—C12—C13—C81.0 (3)
C2—C3—C4—C50.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.18002.878 (2)138
C2—H2···O10.932.52002.898 (3)105
C3—H3···O2ii0.932.55003.431 (3)159
C7—H7C···O1iii0.962.57003.396 (3)145
C9—H9···O10.932.36003.009 (3)126
C10—H10···O2iv0.932.54003.456 (2)166
C15—H15A···O1v0.962.53003.463 (3)162
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x1, y, z; (iv) x, y1, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H15NO4S
Mr305.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.9332 (2), 8.2265 (2), 22.7419 (5)
β (°) 92.769 (1)
V3)1482.46 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.35 × 0.25 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.915, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
11165, 2677, 2234
Rint0.020
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 1.05
No. of reflections2677
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.18002.878 (2)138
C2—H2···O10.932.52002.898 (3)105
C3—H3···O2ii0.932.55003.431 (3)159
C7—H7C···O1iii0.962.57003.396 (3)145
C9—H9···O10.932.36003.009 (3)126
C10—H10···O2iv0.932.54003.456 (2)166
C15—H15A···O1v0.962.53003.463 (3)162
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x1, y, z; (iv) x, y1, z; (v) x+1, y, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement for this work by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl., 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMustafa, G., Khan, I. U., Zia-ur-Rehman, M., Sharif, S. & Arshad, M. N. (2011). Acta Cryst. E67, o1018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNan, Z.-H. & Xing, J.-D. (2006). Acta Cryst. E62, o1978–o1979.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXing, J.-D. & Nan, Z.-H. (2005). Acta Cryst. E61, o4320–o4321.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds