organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o779-o780

2,4-Bis(4-eth­­oxy­phen­yl)-7-methyl-3-aza­bi­cyclo­[3.3.1]nonan-9-one

aDepartment of Biomedicinal Chemistry, Inje University, Gimhae, Gyeongnam 621 749, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai 600 036, TamilNadu, India
*Correspondence e-mail: parthisivam@yahoo.co.in

(Received 7 February 2012; accepted 14 February 2012; online 17 February 2012)

The mol­ecule of the title compound, C25H31NO3, exists in a twin-chair conformation with an equatorial orientation of the 4-eth­oxy­phenyl groups, as observed for its ortho isomer [Parthiban, Ramkumar, Park & Jeong (2011b[Parthiban, P., Ramkumar, V., Park, D. H. & Jeong, Y. T. (2011b). Acta Cryst. E67, o1475-o1476.]), Acta Cryst. E67, o1475–o1476]. The methyl and 4-eth­oxy­phenyl groups are also equatorially oriented on the bicycle, as in the ortho analogue. In particular, although the cyclo­hexa­none ring deviates from an ideal chair, the piperidone ring is closer to an ideal chair, whereas in the ortho isomer both rings are significantly puckered and deviate from ideal chairs. The 4-eth­oxy­phenyl groups on both sides of the secondary amine group are oriented at an angle of 26.11 (3)° with respect to each other, but the 2-eth­oxy­phenyl groups in the ortho isomer are oriented by less than half this [12.41 (4)°]. In contrast to the absence of any significant inter­actions in the crystal packing of the ortho isomer, the title compound features N—H⋯O inter­actions, linking the mol­ecules along the b axis.

Related literature

For the synthesis and stereochemistry of 3-aza­bicyclo­[3.3.1] nonan-9-ones, see: Park et al. (2011[Park, D. H., Jeong, Y. T. & Parthiban, P. (2011). J. Mol. Struct. 1005, 31-44.]). For the biological activities of 3-aza­bicyclo­[3.3.1]nonan-9-ones, see: Barker et al. (2005[Barker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565-4575.]); Parthiban et al. (2009[Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981-6985.], 2010a[Parthiban, P., Rathika, P., Ramkumar, V., Son, S. M. & Jeong, Y. T. (2010a). Bioorg. Med. Chem. Lett. 20, 1642-1647.],b[Parthiban, P., Rathika, P., Park, K. S. & Jeong, Y. T. (2010b). Monatsh. Chem. 141, 79-93.],2011a[Parthiban, P., Subalakshmi, V., Balasubramanian, K., Islam, Md. N., Choi, J. S. & Jeong, Y. T. (2011a). Bioorg. Med. Chem. Lett. 21, 2287-2296.]). For a related structure, see: Parthiban et al. (2011b[Parthiban, P., Ramkumar, V., Park, D. H. & Jeong, Y. T. (2011b). Acta Cryst. E67, o1475-o1476.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C25H31NO3

  • Mr = 393.51

  • Orthorhombic, P m n 21

  • a = 19.329 (4) Å

  • b = 6.7967 (12) Å

  • c = 8.2501 (16) Å

  • V = 1083.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.35 × 0.28 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.992

  • 1565 measured reflections

  • 1165 independent reflections

  • 950 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.094

  • S = 1.05

  • 1165 reflections

  • 150 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 (2) 2.26 (2) 3.073 (4) 158 (3)
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The 3-azabicyclononane nucleus is an important class of pharmacophore due to its broad-spectrum of biological actions ranging from antibacterial to anticancer (Barker et al., 2005; Parthiban et al., 2009, 2010a,b, 2011a). Owing to their broad-spectrum of biological actions, synthesis as well as isolaton of new molecules from the natural products, and their stereochemical analysis are considered as important in the field of medicinal chemistry. Hence, we synthesized the title compound by a modified and an optimized successive double Mannich condensation. Thus the obtained crystal was undertaken for this study to explore its stereochemistry in the solid-state.

The crystallographic parameters viz. torsion angles, asymmetry parameters and ring puckering parameters calculated for the title compound show that the piperidone ring adopts a near ideal chair conformation, according to Cremer & Pople and Nardelli (Fig. 1). The total puckering amplitude, QT is 0.607 (6) Å, the phase angle θ is 7.7 (6)° and ϕ is 180.0° (Cremer & Pople, 1975). The smallest displacement asymmetry parameters q2 and q3 are 0.081 (6) Å and 0.601 (6) Å, respectively (Nardelli, 1983). On the other hand, the cyclohexane ring deviates from the ideal chair conformation by QT = 0.536 (6), θ = 170.2 (7)° and ϕ = 240.0° (Cremer & Pople, 1975) as well as Nardelli by q2 = 0.092 (7) and q3 = 0.528 (6)° (Nardelli, 1983). In its ortho isomer, that is, 2,4-bis(2-ethoxyphenyl)-7-methyl-3-azabicyclo[3.3.1]nonan-9-one (Parthiban et al., 2011b), both the piperidone and cyclohexanone rings deviated the ideal chair as follows (QT = 0.5889 (18), θ = 7.19 (18)° and QT = 0.554 (2), θ = 12.2 (2)°, respectively).

The aryl groups are orientated at an angle of 26.11 (3)° to each other. The center of symmetry passes through C6 C5 C3 N1 and O1. The torsion angle of C3—C2—C1—C7 and its mirror image is -176.7 (5)°. The angle with C&P plane normal of bonds C1—C7 as well as C1a—C7a and C5—C6 are 73.27 and 65.36 (2), respectively, conforms the equatorial disposition of the aryl and alkyl groups on the bicycle. Hence, the title compound C25H31NO3, exists in a double-chair conformation with an equatorial orientation of the 4-ethoxyphenyl groups on both sides of the secondary amino group on the heterocycle and exocyclic orientation of the methyl on the cyclohexane ring.

The crystal packing is stabilized by an intermolecular N—H···O interaction of 2.26 (2) Å (Table 1 and Fig. 2).

Related literature top

For the synthesis and stereochemistry of 3-azabicyclo[3.3.1] nonan-9-ones, see: Park et al. (2011). For the biological activities of 3-azabicyclo[3.3.1]nonan-9-ones, see: Barker et al. (2005); Parthiban et al. (2009, 2010a,b). For a related structure, see: Parthiban et al. (2011). For ring-puckering parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

The 2,4-bis(4-ethoxyphenyl)-7-methyl-3-azabicyclo[3.3.1]nonan-9-one was synthesized by a modified and an optimized Mannich condensation in one-pot, using 4-ethoxybenzaldehyde (0.1 mol, 15.018 g/13.91 ml), cyclohexanone (0.05 mol, 5.61 g/6.14 ml) and ammonium acetate (0.075 mol, 5.78 g) in a 50 ml of absolute ethanol (Park et al., 2001). The mixture was gently warmed on a hot plate at 303–308 K (30–35° C) with moderate stirring till the complete consumption of the starting materials, which was monitored by TLC. At the end, the crude azabicyclic ketone was separated by filtration and gently washed with 1:5 cold ethanol–ether mixture. X-ray diffraction quality crystals of the title compound were obtained by slow evaporation from ethanol.

Refinement top

The nitrogen H atom and C6 H atoms were located by difference Fourier map and refined isotropically. Other H atoms were fixed geometrically and allowed to ride on the parent C atoms with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98 Å and methylene C—H = 0.97 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C) and for methyl H atoms at Uiso(H) = 1.5Ueq(C). Because of the meaningless of the absolute structure parameter, 400 Friedel-pairs were merged before final refinement

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code for the half part of the molecule: -x, y, z.
[Figure 2] Fig. 2. The packing of the title compound along b-axis. Dashed line shows intermolecular N—H···O H-bonds.
2,4-Bis(4-ethoxyphenyl)-7-methyl-3-azabicyclo[3.3.1]nonan-9-one top
Crystal data top
C25H31NO3F(000) = 424
Mr = 393.51Dx = 1.206 Mg m3
Orthorhombic, Pmn21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac -2Cell parameters from 1281 reflections
a = 19.329 (4) Åθ = 2.5–22.3°
b = 6.7967 (12) ŵ = 0.08 mm1
c = 8.2501 (16) ÅT = 298 K
V = 1083.8 (4) Å3Block, colourless
Z = 20.35 × 0.28 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1165 independent reflections
Radiation source: fine-focus sealed tube950 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 023
Tmin = 0.973, Tmax = 0.992k = 08
1565 measured reflectionsl = 710
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.0596P]
where P = (Fo2 + 2Fc2)/3
1165 reflections(Δ/σ)max < 0.001
150 parametersΔρmax = 0.12 e Å3
4 restraintsΔρmin = 0.16 e Å3
Crystal data top
C25H31NO3V = 1083.8 (4) Å3
Mr = 393.51Z = 2
Orthorhombic, Pmn21Mo Kα radiation
a = 19.329 (4) ŵ = 0.08 mm1
b = 6.7967 (12) ÅT = 298 K
c = 8.2501 (16) Å0.35 × 0.28 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1165 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
950 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.992Rint = 0.015
1565 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0374 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.12 e Å3
1165 reflectionsΔρmin = 0.16 e Å3
150 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.06340 (12)0.4381 (3)0.8529 (3)0.0363 (6)
H10.06320.40850.73660.044*
C20.06391 (13)0.2389 (3)0.9456 (3)0.0389 (6)
H20.10440.16280.91120.047*
C30.00000.1332 (5)0.8932 (5)0.0415 (8)
C40.06491 (14)0.2575 (4)1.1304 (3)0.0477 (7)
H4A0.07140.12761.17670.057*
H4B0.10440.33701.16150.057*
C50.00000.3480 (6)1.2034 (4)0.0489 (10)
H50.00000.48871.17720.059*
C60.00000.3276 (10)1.3882 (6)0.0786 (15)
C70.12754 (11)0.5559 (3)0.8882 (3)0.0349 (6)
C80.12963 (12)0.7124 (4)0.9938 (3)0.0397 (6)
H80.08950.74771.04890.048*
C90.18980 (12)0.8191 (4)1.0205 (3)0.0434 (6)
H90.18980.92481.09210.052*
C100.24949 (12)0.7671 (4)0.9402 (3)0.0415 (6)
C110.24911 (14)0.6067 (4)0.8392 (4)0.0517 (8)
H110.28980.56760.78850.062*
C120.18887 (13)0.5027 (4)0.8122 (4)0.0463 (6)
H120.18930.39560.74210.056*
C130.31170 (14)1.0533 (4)1.0305 (4)0.0610 (8)
H13A0.30571.03571.14630.073*
H13B0.27411.13430.99050.073*
C140.37939 (15)1.1511 (5)0.9972 (5)0.0731 (10)
H14A0.41621.07301.04140.110*
H14B0.37981.27901.04660.110*
H14C0.38561.16430.88230.110*
N10.00000.5455 (4)0.8897 (4)0.0361 (7)
O10.00000.0133 (4)0.8084 (4)0.0603 (8)
O20.31106 (9)0.8665 (3)0.9511 (3)0.0599 (6)
H1A0.00000.656 (3)0.840 (4)0.033 (10)*
H6A0.0436 (13)0.385 (5)1.427 (5)0.091 (12)*
H6B0.00000.189 (4)1.421 (7)0.089 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0373 (14)0.0399 (13)0.0318 (12)0.0017 (10)0.0031 (10)0.0015 (11)
C20.0344 (13)0.0350 (12)0.0471 (13)0.0070 (10)0.0024 (12)0.0050 (13)
C30.050 (2)0.0315 (18)0.0426 (18)0.0000.0000.0048 (19)
C40.0452 (17)0.0520 (15)0.0459 (14)0.0029 (12)0.0086 (12)0.0147 (14)
C50.057 (3)0.053 (2)0.0369 (18)0.0000.0000.005 (2)
C60.095 (4)0.103 (4)0.038 (2)0.0000.0000.008 (3)
C70.0319 (13)0.0376 (13)0.0353 (12)0.0030 (10)0.0060 (10)0.0055 (12)
C80.0310 (12)0.0453 (13)0.0428 (13)0.0050 (10)0.0055 (10)0.0038 (13)
C90.0406 (14)0.0435 (13)0.0461 (13)0.0031 (11)0.0023 (12)0.0054 (14)
C100.0334 (13)0.0414 (13)0.0498 (13)0.0003 (11)0.0052 (12)0.0004 (13)
C110.0369 (15)0.0466 (15)0.0717 (19)0.0010 (12)0.0197 (14)0.0083 (16)
C120.0442 (16)0.0390 (13)0.0556 (14)0.0017 (12)0.0131 (12)0.0078 (14)
C130.0543 (18)0.0615 (18)0.0672 (19)0.0074 (13)0.0053 (15)0.0171 (18)
C140.065 (2)0.076 (2)0.079 (2)0.0226 (17)0.0056 (18)0.021 (2)
N10.0317 (16)0.0324 (16)0.0441 (16)0.0000.0000.0075 (14)
O10.073 (2)0.0366 (14)0.0713 (18)0.0000.0000.0071 (16)
O20.0388 (10)0.0547 (11)0.0862 (14)0.0084 (9)0.0101 (10)0.0158 (13)
Geometric parameters (Å, º) top
C1—N11.458 (3)C8—C91.388 (3)
C1—C71.504 (3)C8—H80.9300
C1—C21.555 (3)C9—C101.376 (3)
C1—H10.9800C9—H90.9300
C2—C31.493 (3)C10—O21.371 (3)
C2—C41.530 (4)C10—C111.373 (4)
C2—H20.9800C11—C121.380 (3)
C3—O11.216 (4)C11—H110.9300
C3—C2i1.493 (3)C12—H120.9300
C4—C51.521 (4)C13—O21.429 (3)
C4—H4A0.9700C13—C141.493 (4)
C4—H4B0.9700C13—H13A0.9700
C5—C4i1.521 (4)C13—H13B0.9700
C5—C61.531 (6)C14—H14A0.9600
C5—H50.9800C14—H14B0.9600
C6—H6A0.980 (18)C14—H14C0.9600
C6—H6B0.98 (2)N1—C1i1.458 (3)
C7—C81.375 (3)N1—H1A0.855 (18)
C7—C121.389 (3)
N1—C1—C7112.68 (19)C12—C7—C1118.5 (2)
N1—C1—C2109.8 (2)C7—C8—C9122.0 (2)
C7—C1—C2111.28 (19)C7—C8—H8119.0
N1—C1—H1107.6C9—C8—H8119.0
C7—C1—H1107.6C10—C9—C8119.4 (2)
C2—C1—H1107.6C10—C9—H9120.3
C3—C2—C4109.8 (2)C8—C9—H9120.3
C3—C2—C1105.8 (2)O2—C10—C11115.8 (2)
C4—C2—C1114.7 (2)O2—C10—C9124.7 (2)
C3—C2—H2108.8C11—C10—C9119.5 (2)
C4—C2—H2108.8C10—C11—C12120.6 (2)
C1—C2—H2108.8C10—C11—H11119.7
O1—C3—C2124.08 (16)C12—C11—H11119.7
O1—C3—C2i124.08 (16)C11—C12—C7120.9 (3)
C2—C3—C2i111.6 (3)C11—C12—H12119.5
C5—C4—C2114.6 (2)C7—C12—H12119.5
C5—C4—H4A108.6O2—C13—C14108.6 (2)
C2—C4—H4A108.6O2—C13—H13A110.0
C5—C4—H4B108.6C14—C13—H13A110.0
C2—C4—H4B108.6O2—C13—H13B110.0
H4A—C4—H4B107.6C14—C13—H13B110.0
C4i—C5—C4111.1 (3)H13A—C13—H13B108.3
C4i—C5—C6110.9 (2)C13—C14—H14A109.5
C4—C5—C6110.9 (2)C13—C14—H14B109.5
C4i—C5—H5107.9H14A—C14—H14B109.5
C4—C5—H5107.9C13—C14—H14C109.5
C6—C5—H5107.9H14A—C14—H14C109.5
C5—C6—H6A107 (3)H14B—C14—H14C109.5
C5—C6—H6B111 (4)C1i—N1—C1114.3 (3)
H6A—C6—H6B107 (3)C1i—N1—H1A109.9 (10)
C8—C7—C12117.5 (2)C1—N1—H1A109.9 (10)
C8—C7—C1124.0 (2)C10—O2—C13118.37 (19)
N1—C1—C2—C357.5 (3)C12—C7—C8—C92.2 (4)
C7—C1—C2—C3177.0 (2)C1—C7—C8—C9178.9 (2)
N1—C1—C2—C463.6 (3)C7—C8—C9—C100.4 (4)
C7—C1—C2—C461.9 (3)C8—C9—C10—O2176.9 (2)
C4—C2—C3—O1125.3 (4)C8—C9—C10—C112.1 (4)
C1—C2—C3—O1110.4 (4)O2—C10—C11—C12176.3 (3)
C4—C2—C3—C2i59.6 (4)C9—C10—C11—C122.8 (4)
C1—C2—C3—C2i64.7 (3)C10—C11—C12—C71.0 (4)
C3—C2—C4—C553.1 (3)C8—C7—C12—C111.5 (4)
C1—C2—C4—C565.9 (3)C1—C7—C12—C11179.5 (2)
C2—C4—C5—C4i46.1 (4)C7—C1—N1—C1i178.43 (16)
C2—C4—C5—C6170.0 (3)C2—C1—N1—C1i56.9 (3)
N1—C1—C7—C822.0 (3)C11—C10—O2—C13169.0 (3)
C2—C1—C7—C8101.9 (3)C9—C10—O2—C1310.0 (4)
N1—C1—C7—C12159.1 (2)C14—C13—O2—C10168.2 (3)
C2—C1—C7—C1277.1 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.86 (2)2.26 (2)3.073 (4)158 (3)
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC25H31NO3
Mr393.51
Crystal system, space groupOrthorhombic, Pmn21
Temperature (K)298
a, b, c (Å)19.329 (4), 6.7967 (12), 8.2501 (16)
V3)1083.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.28 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.973, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
1565, 1165, 950
Rint0.015
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.05
No. of reflections1165
No. of parameters150
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.16

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.855 (18)2.26 (2)3.073 (4)158 (3)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This research was supported by the International Research Foundation of Korea. The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationBarker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565–4575.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPark, D. H., Jeong, Y. T. & Parthiban, P. (2011). J. Mol. Struct. 1005, 31–44.  Web of Science CrossRef CAS Google Scholar
First citationParthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981–6985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParthiban, P., Ramkumar, V., Park, D. H. & Jeong, Y. T. (2011b). Acta Cryst. E67, o1475–o1476.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParthiban, P., Rathika, P., Park, K. S. & Jeong, Y. T. (2010b). Monatsh. Chem. 141, 79–93.  Web of Science CrossRef CAS Google Scholar
First citationParthiban, P., Rathika, P., Ramkumar, V., Son, S. M. & Jeong, Y. T. (2010a). Bioorg. Med. Chem. Lett. 20, 1642–1647.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationParthiban, P., Subalakshmi, V., Balasubramanian, K., Islam, Md. N., Choi, J. S. & Jeong, Y. T. (2011a). Bioorg. Med. Chem. Lett. 21, 2287–2296.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o779-o780
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds