organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o816-o817

2-(8-Bromo­imidazo[1,2-a]pyridin-2-yl)-N′-[(E)-4-di­ethyl­amino-2-hy­dr­oxy­benzyl­­idene]acetohydrazide dihydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bOrganic Electronics Division, Department of Chemistry, National Institute of Technology - Karnataka, Surathkal, Mangalore 575 025, India, and cFaculty of Industrial Science and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 15 February 2012; accepted 15 February 2012; online 24 February 2012)

In the title compound, C20H22BrN5O2·2H2O, the Schiff base mol­ecule exists in an E conformation with respect to the acyclic C=N bond. An S(6) ring motif is formed via an intra­molecular O—H⋯N hydrogen bond. The dihedral angle between the imidazo[1,2-a]pyridine system and the benzene ring is 84.62 (5)°. In the crystal, N—H⋯O, O—H⋯O, O—H⋯N, C—H⋯O and C—H⋯Br hydrogen bonds link the mol­ecules into a three-dimensional network. The crystal packing is further stabilized by C—H⋯π and ππ inter­actions [centroid–centroid distance = 3.5365 (7) Å].

Related literature

For background to and applications of hydrazones, see: Seleem et al. (2011[Seleem, H. S., El-Inany, G. A., El-Shetary, B. A. & Mousa, M. A. (2011). Chem. Cent. J. doi:10.1186/1752-153X-5-2.]); Rollas & Küçükgüzel (2007[Rollas, S. & Küçükgüzel, Ş. G. (2007). Molecules, 12, 1910-1939.]). For background to and applications of imidazopyridine, see: Ertepinarl et al. (1995[Ertepinarl, H., Gök, Y., Geban, Ö. & Özden, S. (1995). Eur. J. Med. Chem. 30, 171-175.]); Liang et al. (2007[Liang, G.-B., Qian, X., Feng, D., Fisher, M., Brown, C. M., Gurnett, A., Leavitt, P. S., Liberator, P. A., Misura, A. S., Tamas, T., Schmatz, D. M., Wyvratt, M. & Biftu, T. (2007). Bioorg. Med. Chem. Lett. 17, 3558-3561.]); Hamdouchi et al. (1999[Hamdouchi, C., Ezquerra, J., Vega, J. A., Vaquero, J. J., Alvarez-Builla, J. & Heinz, B. A. (1999). Bioorg. Med. Chem. Lett. 9, 1391-1394.]); Gudmundsson & Johns (2007[Gudmundsson, K. S. & Johns, B. A. (2007). Bioorg. Med. Chem. Lett. 17, 2735-2739.]); Biftu et al. (2006[Biftu, T. et al. (2006). Bioorg. Med. Chem. Lett. 16, 2479-2483.]); Fisher & Lusi (1972[Fisher, M. H. & Lusi, A. (1972). J. Med. Chem. 15, 982-985.]); Bochis et al. (1981[Bochis, R. J., Olen, L. E., Waksmunski, F. S., Mrozik, H., Eskola, P., Kulsa, P., Wilks, G., Taylor, J. E., Egerton, J. R., Ostlind, D. A. & Olson, G. (1981). J. Med. Chem. 24, 1518-1521.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22BrN5O2·2H2O

  • Mr = 480.37

  • Triclinic, [P \overline 1]

  • a = 8.4370 (4) Å

  • b = 10.6711 (5) Å

  • c = 11.7559 (5) Å

  • α = 92.914 (1)°

  • β = 96.949 (1)°

  • γ = 93.978 (1)°

  • V = 1046.23 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.00 mm−1

  • T = 100 K

  • 0.37 × 0.20 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.529, Tmax = 0.869

  • 22937 measured reflections

  • 6491 independent reflections

  • 5841 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.077

  • S = 1.05

  • 6491 reflections

  • 297 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1/N2/C6/C7 ring and Cg3 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯O2Wi 0.894 (17) 1.908 (17) 2.7956 (15) 171.7 (17)
O2—H1O2⋯O1Wii 0.87 (3) 2.42 (3) 2.9423 (15) 119 (2)
O2—H1O2⋯N4 0.87 (3) 1.99 (3) 2.7181 (16) 142 (2)
O1W—H1W1⋯N1 0.86 (2) 1.98 (2) 2.8315 (14) 176 (2)
O1W—H2W1⋯O1iii 0.85 (3) 1.92 (2) 2.7361 (14) 162 (2)
O2W—H1W2⋯O1Wi 0.80 (2) 2.08 (2) 2.8311 (15) 157 (2)
O2W—H2W2⋯O1W 0.86 (2) 1.87 (2) 2.7245 (15) 172.9 (17)
C5—H5A⋯O1iv 0.93 2.50 3.3121 (17) 146
C10—H10A⋯O2Wi 0.93 2.54 3.3256 (17) 142
C17—H17B⋯Br1v 0.97 2.85 3.6569 (15) 142
C3—H3ACg3vi 0.93 2.61 3.4734 (15) 154
C17—H17ACg1vii 0.97 2.70 3.5863 (15) 152
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y, z; (iii) x+1, y, z; (iv) -x, -y+1, -z+1; (v) -x+1, -y, -z+2; (vi) x+1, y+1, z; (vii) -x, -y, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazones constitute an important class of biologically active drug molecules (Seleem et al., 2011) which has attracted attention of medicinal chemists due to their wide range of pharmacological properties. These compounds are being synthesized as drugs by many researchers in order to combat diseases with minimal toxicity and maximal effects. A number of hydrazone derivatives have been reported to exert notably antimicrobial, antihypertensive, anticonvulsant, analgesic, anti-inflammatory, antituberculosis, antitumoral, antiproliferative and antimalarial activities (Rollas & Küçükgüzel, 2007). Imidazopyridine is the fundamental heterocyclic component of principal anthelmintic drugs. In addition, the imidazopyridine ring possesses many anti-infective properties including antibacterial (Ertepinarl et al., 1995; Liang et al., 2007), antiviral (Hamdouchi et al., 1999; Gudmundsson & Johns, 2007), antiprotozoal (Biftu et al., 2006) and especially anthelmintic (Fisher & Lusi, 1972; Bochis et al., 1981) activities. Therefore, the imidazopyridine ring could replace the benzimidazole ring in the design and the development of new anthelmintic agents. In view of its biological importance, we hereby report the crystal structure of (I).

The title compound (Fig. 1) consists of one 2-(8-bromoimidazo[1,2-a]pyridin-3-yl)-N'-{(E)- [4-(diethylamino)-2-hydroxyphenyl]methylidene}acetohydrazide molecule and two water molecules. The Schiff base molecule exists in an E configuration with respect to the acyclic CN bond. An S(6) ring motif (Bernstein et al., 1995) is formed via the intramolecular O2—H1O2···N4 hydrogen bond. The dihedral angle between the imidazo[1,2-a]pyridine (C1–C5/N2/C6/C7/N1) and the benzene (C11–C16) rings is 84.62 (5)°.

In the crystal packing (Fig. 2), intermolecular N3—H1N3···O2W, O2—H1O2···O1W, O2—H1O2···N4, O1W—H1W1···N1, O1W—H2W1···O1, O2W—H1W2···O1W, O2W—H2W2···O1W, C5—H5A···O1, C10—H10A···O2W and C17—H17B···Br1 hydrogen bonds link the molecules into a three-dimensional network. The crystal packing is further stabilized by C—H···π interactions, involving the 1H-imidazole (N1/C1/N2/C6/C7; Cg1; Table 1) and benzene (Cg3; Table 1) rings. Weak ππ interactions were observed involving 1H-imidazole, pyridine (N2/C1–C5; Cg2) and benzene rings. [Cg1···Cg1 = 3.5365 (7) Å; symmetry code: 1 - x, 1 - y, 1 - z; Cg1···Cg2 = 3.6210 (7) Å; symmetry code: 1 - x, 1 - y, 1 - z; Cg3···Cg3 = 3.6253 (8) Å; symmetry code: -x, -y, 2 - z].

Related literature top

For background to and applications of hydrazones, see: Seleem et al. (2011); Rollas & Küçükgüzel (2007). For background to and applications of imidazopyridine, see: Ertepinarl et al. (1995); Liang et al. (2007); Hamdouchi et al. (1999); Gudmundsson & Johns (2007); Biftu et al. (2006); Fisher & Lusi (1972); Bochis et al. (1981). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The mixture of 2-(8-bromoimidazo[1,2-a]pyridine-3-yl)acetohydrazide (200 mg, 0.00074 mol), 4-(diethylamino)-2-hydroxy benzaldehyde (143.6 mg, 0.00074 mol) and a catalytic quantity of acetic acid (0.1 ml) and ethanol (10 ml) was stirred overnight at 90°C. On cooling, orange plate-shaped crystals of the product begins to separate. It was collected by filtration and recrystallized from ethanol. Yield: 307.7 mg, 93.2%. m.p. 401–402 K.

Refinement top

O- and N-bound H atoms were located from the difference Fourier map and were refined freely [O—H = 0.80 (3) to 0.87 (3) Å; N—H = 0.896 (19) Å]. The remaining H atoms were positioned geometrically and refined with a riding model with Uiso(H) = 1.2 or 1.5Ueq(C) [C—H = 0.93 to 0.97 Å]. A rotating group model was applied to the methyl groups. Three outliners were omitted in the final refinement, 230, 541 and 365.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis, showing the three-dimensional network. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
2-(8-Bromoimidazo[1,2-a]pyridin-2-yl)-N'-[(E)- 4-diethylamino-2-hydroxybenzylidene]acetohydrazide dihydrate top
Crystal data top
C20H22BrN5O2·2H2OZ = 2
Mr = 480.37F(000) = 496
Triclinic, P1Dx = 1.525 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4370 (4) ÅCell parameters from 9983 reflections
b = 10.6711 (5) Åθ = 2.4–30.9°
c = 11.7559 (5) ŵ = 2.00 mm1
α = 92.914 (1)°T = 100 K
β = 96.949 (1)°Plate, orange
γ = 93.978 (1)°0.37 × 0.20 × 0.07 mm
V = 1046.23 (8) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
6491 independent reflections
Radiation source: fine-focus sealed tube5841 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 30.9°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.529, Tmax = 0.869k = 1515
22937 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.2952P]
where P = (Fo2 + 2Fc2)/3
6491 reflections(Δ/σ)max = 0.002
297 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C20H22BrN5O2·2H2Oγ = 93.978 (1)°
Mr = 480.37V = 1046.23 (8) Å3
Triclinic, P1Z = 2
a = 8.4370 (4) ÅMo Kα radiation
b = 10.6711 (5) ŵ = 2.00 mm1
c = 11.7559 (5) ÅT = 100 K
α = 92.914 (1)°0.37 × 0.20 × 0.07 mm
β = 96.949 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6491 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5841 reflections with I > 2σ(I)
Tmin = 0.529, Tmax = 0.869Rint = 0.023
22937 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.63 e Å3
6491 reflectionsΔρmin = 0.24 e Å3
297 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.789019 (15)0.424051 (13)0.748329 (12)0.02141 (5)
O10.05933 (11)0.23815 (10)0.52050 (9)0.02047 (19)
O20.26058 (13)0.04472 (10)0.79255 (9)0.0227 (2)
N10.44340 (12)0.35221 (10)0.59413 (9)0.01348 (19)
N20.35279 (12)0.54369 (10)0.61740 (9)0.01344 (19)
N30.10753 (13)0.09994 (10)0.60467 (9)0.01444 (19)
N40.00110 (13)0.05569 (10)0.67606 (9)0.0150 (2)
N50.25929 (13)0.22618 (11)1.10154 (9)0.0164 (2)
C10.47756 (14)0.46769 (11)0.64404 (10)0.0127 (2)
C20.61422 (15)0.52232 (12)0.71616 (11)0.0147 (2)
C30.62011 (16)0.64472 (13)0.75761 (11)0.0174 (2)
H3A0.70930.67990.80590.021*
C40.48898 (17)0.71799 (12)0.72639 (11)0.0182 (2)
H4A0.49350.80150.75420.022*
C50.35760 (16)0.66812 (12)0.65681 (11)0.0175 (2)
H5A0.27250.71670.63610.021*
C60.23518 (14)0.47094 (12)0.54616 (11)0.0153 (2)
H6A0.13710.49570.51350.018*
C70.29303 (14)0.35486 (12)0.53359 (10)0.0134 (2)
C80.20850 (15)0.23836 (12)0.46996 (11)0.0155 (2)
H8A0.28310.17370.46490.019*
H8B0.16740.25740.39260.019*
C90.07088 (14)0.19108 (12)0.53330 (11)0.0143 (2)
C100.05212 (15)0.02976 (12)0.74143 (11)0.0158 (2)
H10A0.15190.05820.73260.019*
C110.03602 (15)0.08324 (12)0.82756 (11)0.0146 (2)
C120.03051 (15)0.17581 (13)0.89465 (12)0.0175 (2)
H12A0.12740.20480.87880.021*
C130.04169 (15)0.22574 (12)0.98328 (11)0.0173 (2)
H13A0.00550.28831.02470.021*
C140.18834 (15)0.18158 (12)1.01136 (10)0.0144 (2)
C150.25764 (15)0.08989 (12)0.94303 (11)0.0156 (2)
H15A0.35490.06100.95820.019*
C160.18382 (15)0.04205 (12)0.85370 (11)0.0147 (2)
C170.19118 (17)0.32564 (13)1.16815 (12)0.0196 (2)
H17A0.23260.32431.24160.024*
H17B0.07600.30761.18310.024*
C180.2262 (2)0.45760 (14)1.11027 (14)0.0265 (3)
H18A0.16910.51641.15550.040*
H18B0.19260.45861.03510.040*
H18C0.33910.48081.10380.040*
C190.41481 (16)0.18615 (13)1.12605 (11)0.0186 (2)
H19A0.41490.09581.12020.022*
H19B0.42860.20391.20450.022*
C200.55683 (17)0.25000 (16)1.04598 (13)0.0252 (3)
H20A0.65420.21761.06520.038*
H20B0.56150.33911.05440.038*
H20C0.54400.23340.96800.038*
O1W0.64543 (12)0.15365 (9)0.57170 (9)0.01893 (19)
O2W0.60246 (12)0.01353 (10)0.36855 (10)0.01989 (19)
H1N30.205 (2)0.0710 (17)0.6120 (15)0.018 (4)*
H1O20.209 (3)0.069 (3)0.737 (2)0.058 (8)*
H1W10.587 (3)0.215 (2)0.582 (2)0.041 (6)*
H2W10.742 (3)0.181 (2)0.5720 (18)0.031 (5)*
H1W20.518 (3)0.026 (2)0.369 (2)0.041 (6)*
H2W20.608 (2)0.060 (2)0.4315 (18)0.026 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01455 (7)0.02522 (8)0.02311 (8)0.00475 (5)0.00432 (5)0.00016 (5)
O10.0123 (4)0.0243 (5)0.0255 (5)0.0016 (3)0.0027 (4)0.0083 (4)
O20.0220 (5)0.0254 (5)0.0236 (5)0.0075 (4)0.0069 (4)0.0106 (4)
N10.0117 (4)0.0156 (5)0.0132 (5)0.0004 (4)0.0019 (4)0.0016 (4)
N20.0121 (4)0.0152 (5)0.0133 (5)0.0009 (3)0.0018 (4)0.0027 (4)
N30.0107 (4)0.0166 (5)0.0165 (5)0.0009 (4)0.0041 (4)0.0021 (4)
N40.0126 (4)0.0178 (5)0.0147 (5)0.0017 (4)0.0037 (4)0.0009 (4)
N50.0165 (5)0.0194 (5)0.0136 (5)0.0012 (4)0.0030 (4)0.0031 (4)
C10.0115 (5)0.0154 (5)0.0115 (5)0.0013 (4)0.0022 (4)0.0031 (4)
C20.0130 (5)0.0177 (6)0.0131 (5)0.0007 (4)0.0007 (4)0.0020 (4)
C30.0179 (6)0.0194 (6)0.0138 (5)0.0021 (4)0.0005 (4)0.0001 (4)
C40.0229 (6)0.0151 (5)0.0167 (6)0.0017 (4)0.0036 (5)0.0013 (4)
C50.0199 (6)0.0156 (6)0.0178 (6)0.0040 (4)0.0036 (5)0.0036 (4)
C60.0109 (5)0.0197 (6)0.0148 (5)0.0000 (4)0.0001 (4)0.0026 (4)
C70.0118 (5)0.0171 (5)0.0115 (5)0.0009 (4)0.0030 (4)0.0024 (4)
C80.0136 (5)0.0188 (6)0.0140 (5)0.0030 (4)0.0039 (4)0.0004 (4)
C90.0122 (5)0.0160 (5)0.0141 (5)0.0030 (4)0.0017 (4)0.0001 (4)
C100.0129 (5)0.0173 (6)0.0169 (6)0.0007 (4)0.0024 (4)0.0003 (4)
C110.0131 (5)0.0164 (5)0.0139 (5)0.0013 (4)0.0010 (4)0.0009 (4)
C120.0132 (5)0.0200 (6)0.0193 (6)0.0014 (4)0.0017 (4)0.0029 (5)
C130.0154 (5)0.0187 (6)0.0176 (6)0.0012 (4)0.0004 (4)0.0041 (4)
C140.0155 (5)0.0152 (5)0.0113 (5)0.0022 (4)0.0003 (4)0.0002 (4)
C150.0145 (5)0.0173 (6)0.0152 (6)0.0010 (4)0.0023 (4)0.0007 (4)
C160.0144 (5)0.0150 (5)0.0144 (5)0.0004 (4)0.0008 (4)0.0007 (4)
C170.0227 (6)0.0207 (6)0.0158 (6)0.0017 (5)0.0024 (5)0.0040 (5)
C180.0312 (8)0.0201 (7)0.0288 (8)0.0007 (5)0.0058 (6)0.0029 (5)
C190.0193 (6)0.0230 (6)0.0145 (6)0.0023 (5)0.0055 (5)0.0016 (5)
C200.0177 (6)0.0342 (8)0.0235 (7)0.0006 (5)0.0040 (5)0.0005 (6)
O1W0.0137 (4)0.0173 (4)0.0263 (5)0.0007 (3)0.0043 (4)0.0026 (4)
O2W0.0150 (4)0.0182 (4)0.0270 (5)0.0005 (3)0.0057 (4)0.0000 (4)
Geometric parameters (Å, º) top
Br1—C21.8809 (13)C8—H8B0.9700
O1—C91.2354 (16)C10—C111.4444 (17)
O2—C161.3534 (16)C10—H10A0.9300
O2—H1O20.87 (3)C11—C121.4007 (18)
N1—C11.3350 (16)C11—C161.4134 (17)
N1—C71.3804 (16)C12—C131.3804 (18)
N2—C51.3802 (16)C12—H12A0.9300
N2—C61.3837 (16)C13—C141.4232 (18)
N2—C11.3887 (15)C13—H13A0.9300
N3—C91.3443 (17)C14—C151.4108 (17)
N3—N41.3906 (14)C15—C161.3856 (18)
N3—H1N30.896 (19)C15—H15A0.9300
N4—C101.2915 (17)C17—C181.526 (2)
N5—C141.3690 (16)C17—H17A0.9700
N5—C171.4594 (17)C17—H17B0.9700
N5—C191.4642 (17)C18—H18A0.9600
C1—C21.4170 (17)C18—H18B0.9600
C2—C31.3662 (18)C18—H18C0.9600
C3—C41.4216 (19)C19—C201.528 (2)
C3—H3A0.9300C19—H19A0.9700
C4—C51.3548 (19)C19—H19B0.9700
C4—H4A0.9300C20—H20A0.9600
C5—H5A0.9300C20—H20B0.9600
C6—C71.3701 (17)C20—H20C0.9600
C6—H6A0.9300O1W—H1W10.86 (3)
C7—C81.5057 (17)O1W—H2W10.84 (2)
C8—C91.5242 (17)O2W—H1W20.80 (3)
C8—H8A0.9700O2W—H2W20.86 (2)
C16—O2—H1O2111.7 (18)C12—C11—C16116.99 (11)
C1—N1—C7105.16 (10)C12—C11—C10119.37 (11)
C5—N2—C6130.13 (11)C16—C11—C10123.53 (12)
C5—N2—C1123.09 (11)C13—C12—C11122.76 (12)
C6—N2—C1106.77 (10)C13—C12—H12A118.6
C9—N3—N4120.60 (10)C11—C12—H12A118.6
C9—N3—H1N3121.0 (12)C12—C13—C14120.09 (12)
N4—N3—H1N3118.2 (12)C12—C13—H13A120.0
C10—N4—N3113.55 (10)C14—C13—H13A120.0
C14—N5—C17120.87 (11)N5—C14—C15121.23 (11)
C14—N5—C19121.09 (11)N5—C14—C13121.24 (12)
C17—N5—C19117.68 (11)C15—C14—C13117.54 (11)
N1—C1—N2111.09 (10)C16—C15—C14121.34 (12)
N1—C1—C2131.60 (11)C16—C15—H15A119.3
N2—C1—C2117.31 (11)C14—C15—H15A119.3
C3—C2—C1120.47 (12)O2—C16—C15116.85 (11)
C3—C2—Br1121.18 (10)O2—C16—C11121.89 (12)
C1—C2—Br1118.31 (9)C15—C16—C11121.25 (12)
C2—C3—C4119.53 (12)N5—C17—C18114.42 (12)
C2—C3—H3A120.2N5—C17—H17A108.7
C4—C3—H3A120.2C18—C17—H17A108.7
C5—C4—C3121.06 (12)N5—C17—H17B108.7
C5—C4—H4A119.5C18—C17—H17B108.7
C3—C4—H4A119.5H17A—C17—H17B107.6
C4—C5—N2118.52 (12)C17—C18—H18A109.5
C4—C5—H5A120.7C17—C18—H18B109.5
N2—C5—H5A120.7H18A—C18—H18B109.5
C7—C6—N2105.77 (11)C17—C18—H18C109.5
C7—C6—H6A127.1H18A—C18—H18C109.5
N2—C6—H6A127.1H18B—C18—H18C109.5
C6—C7—N1111.22 (11)N5—C19—C20113.89 (11)
C6—C7—C8127.58 (11)N5—C19—H19A108.8
N1—C7—C8121.11 (11)C20—C19—H19A108.8
C7—C8—C9109.35 (10)N5—C19—H19B108.8
C7—C8—H8A109.8C20—C19—H19B108.8
C9—C8—H8A109.8H19A—C19—H19B107.7
C7—C8—H8B109.8C19—C20—H20A109.5
C9—C8—H8B109.8C19—C20—H20B109.5
H8A—C8—H8B108.3H20A—C20—H20B109.5
O1—C9—N3124.94 (11)C19—C20—H20C109.5
O1—C9—C8120.90 (12)H20A—C20—H20C109.5
N3—C9—C8114.12 (11)H20B—C20—H20C109.5
N4—C10—C11123.10 (12)H1W1—O1W—H2W1110 (2)
N4—C10—H10A118.5H1W2—O2W—H2W2101 (2)
C11—C10—H10A118.5
C9—N3—N4—C10178.57 (11)C7—C8—C9—O181.70 (15)
C7—N1—C1—N20.28 (13)C7—C8—C9—N395.99 (13)
C7—N1—C1—C2179.63 (13)N3—N4—C10—C11175.89 (11)
C5—N2—C1—N1179.26 (11)N4—C10—C11—C12179.87 (12)
C6—N2—C1—N10.44 (13)N4—C10—C11—C164.1 (2)
C5—N2—C1—C20.66 (17)C16—C11—C12—C130.39 (19)
C6—N2—C1—C2179.48 (11)C10—C11—C12—C13175.88 (12)
N1—C1—C2—C3179.62 (13)C11—C12—C13—C141.3 (2)
N2—C1—C2—C30.47 (18)C17—N5—C14—C15176.84 (12)
N1—C1—C2—Br12.65 (19)C19—N5—C14—C153.84 (18)
N2—C1—C2—Br1177.26 (8)C17—N5—C14—C133.34 (18)
C1—C2—C3—C41.02 (19)C19—N5—C14—C13176.34 (12)
Br1—C2—C3—C4176.64 (10)C12—C13—C14—N5177.55 (12)
C2—C3—C4—C50.5 (2)C12—C13—C14—C152.28 (19)
C3—C4—C5—N20.6 (2)N5—C14—C15—C16178.18 (12)
C6—N2—C5—C4179.72 (12)C13—C14—C15—C161.64 (18)
C1—N2—C5—C41.20 (19)C14—C15—C16—O2179.42 (11)
C5—N2—C6—C7179.12 (12)C14—C15—C16—C110.03 (19)
C1—N2—C6—C70.41 (13)C12—C11—C16—O2178.35 (12)
N2—C6—C7—N10.25 (14)C10—C11—C16—O25.54 (19)
N2—C6—C7—C8176.21 (11)C12—C11—C16—C151.06 (18)
C1—N1—C7—C60.01 (14)C10—C11—C16—C15175.04 (12)
C1—N1—C7—C8176.73 (11)C14—N5—C17—C1878.07 (16)
C6—C7—C8—C968.28 (16)C19—N5—C17—C1895.16 (14)
N1—C7—C8—C9107.87 (13)C14—N5—C19—C2077.22 (16)
N4—N3—C9—O13.51 (19)C17—N5—C19—C2096.00 (14)
N4—N3—C9—C8174.06 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1/N2/C6/C7 ring and Cg3 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O2Wi0.894 (17)1.908 (17)2.7956 (15)171.7 (17)
O2—H1O2···O1Wii0.87 (3)2.42 (3)2.9423 (15)119 (2)
O2—H1O2···N40.87 (3)1.99 (3)2.7181 (16)142 (2)
O1W—H1W1···N10.86 (2)1.98 (2)2.8315 (14)176 (2)
O1W—H2W1···O1iii0.85 (3)1.92 (2)2.7361 (14)162 (2)
O2W—H1W2···O1Wi0.80 (2)2.08 (2)2.8311 (15)157 (2)
O2W—H2W2···O1W0.86 (2)1.87 (2)2.7245 (15)172.9 (17)
C5—H5A···O1iv0.932.503.3121 (17)146
C10—H10A···O2Wi0.932.543.3256 (17)142
C17—H17B···Br1v0.972.853.6569 (15)142
C3—H3A···Cg3vi0.932.613.4734 (15)154
C17—H17A···Cg1vii0.972.703.5863 (15)152
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x, y+1, z+1; (v) x+1, y, z+2; (vi) x+1, y+1, z; (vii) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC20H22BrN5O2·2H2O
Mr480.37
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.4370 (4), 10.6711 (5), 11.7559 (5)
α, β, γ (°)92.914 (1), 96.949 (1), 93.978 (1)
V3)1046.23 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.00
Crystal size (mm)0.37 × 0.20 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.529, 0.869
No. of measured, independent and
observed [I > 2σ(I)] reflections
22937, 6491, 5841
Rint0.023
(sin θ/λ)max1)0.721
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.077, 1.05
No. of reflections6491
No. of parameters297
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1/N2/C6/C7 ring and Cg3 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O2Wi0.894 (17)1.908 (17)2.7956 (15)171.7 (17)
O2—H1O2···O1Wii0.87 (3)2.42 (3)2.9423 (15)119 (2)
O2—H1O2···N40.87 (3)1.99 (3)2.7181 (16)142 (2)
O1W—H1W1···N10.86 (2)1.98 (2)2.8315 (14)176 (2)
O1W—H2W1···O1iii0.85 (3)1.92 (2)2.7361 (14)162 (2)
O2W—H1W2···O1Wi0.80 (2)2.08 (2)2.8311 (15)157 (2)
O2W—H2W2···O1W0.86 (2)1.87 (2)2.7245 (15)172.9 (17)
C5—H5A···O1iv0.93002.50003.3121 (17)146.00
C10—H10A···O2Wi0.93002.54003.3256 (17)142.00
C17—H17B···Br1v0.97002.85003.6569 (15)142.00
C3—H3A···Cg3vi0.93002.613.4734 (15)154
C17—H17A···Cg1vii0.97002.703.5863 (15)152
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x, y+1, z+1; (v) x+1, y, z+2; (vi) x+1, y+1, z; (vii) x, y, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for Research University Grant No. 1001/PFIZIK/811160. WSL also thanks the Malaysian Government and USM for the award of the post of Research Officer under Research University Grant No. 1001/PFIZIK/811160. AMI thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for a Young Scientist award.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBiftu, T. et al. (2006). Bioorg. Med. Chem. Lett. 16, 2479–2483.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBochis, R. J., Olen, L. E., Waksmunski, F. S., Mrozik, H., Eskola, P., Kulsa, P., Wilks, G., Taylor, J. E., Egerton, J. R., Ostlind, D. A. & Olson, G. (1981). J. Med. Chem. 24, 1518–1521.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationErtepinarl, H., Gök, Y., Geban, Ö. & Özden, S. (1995). Eur. J. Med. Chem. 30, 171–175.  Google Scholar
First citationFisher, M. H. & Lusi, A. (1972). J. Med. Chem. 15, 982–985.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGudmundsson, K. S. & Johns, B. A. (2007). Bioorg. Med. Chem. Lett. 17, 2735–2739.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHamdouchi, C., Ezquerra, J., Vega, J. A., Vaquero, J. J., Alvarez-Builla, J. & Heinz, B. A. (1999). Bioorg. Med. Chem. Lett. 9, 1391–1394.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiang, G.-B., Qian, X., Feng, D., Fisher, M., Brown, C. M., Gurnett, A., Leavitt, P. S., Liberator, P. A., Misura, A. S., Tamas, T., Schmatz, D. M., Wyvratt, M. & Biftu, T. (2007). Bioorg. Med. Chem. Lett. 17, 3558–3561.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRollas, S. & Küçükgüzel, Ş. G. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeleem, H. S., El-Inany, G. A., El-Shetary, B. A. & Mousa, M. A. (2011). Chem. Cent. J. doi:10.1186/1752-153X-5-2.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o816-o817
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds