metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(benzamidato-κN)bis­­[3,5-di­fluoro-2-(pyridin-2-yl)phenyl-κC1]iridium(III) methanol monosolvate

aSchool of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
*Correspondence e-mail: yding@jiangnan.edu.cn

(Received 21 November 2011; accepted 10 February 2012; online 17 February 2012)

In the title compound, [Ir(C11H6F2N)2(C7H6NO)(H2O)]·CH3OH, the IrIII ion adopts an octa­hedral geometry, and is coordinated by two 3,5-difluoro-2-(pyridin-2-yl)phenyl ligands, one mol­ecule of water and one benzamidate anion. The two 2-(4,6-difluoro­phen­yl)pyridyl ligands are arranged in a cis-C,C′ and trans-N,N′ fashion. Additionally, there is a bystanding methanol mol­ecule outside the coordination sphere of the IrIII ion. In the crystal, mol­ecules of the title compound are linked by O—H⋯O and O—H⋯N hydrogen bonds. One F atom of each ligand is equally disordered over two sites. The C atom of the solvent molecule is likewise disordered over two sites in a 0.589 (11):0.411 (11) ratio.

Related literature

For related cyclo­metallated IrIII complexes containing a κ2-bound benzaminate anion, see: Yang et al. (2011[Yang, W., Fu, H., Song, Q., Zhang, M. & Ding, Y. (2011). Organometallics, 30, 77-83.]); Wang et al. (2008[Wang, W., Zhu, T., Chen, G., Li, C., Di, H., Ren, C. & Ding, Y. (2008). Synth. Met. 158, 1022-1027.]); Zhang et al. (2011[Zhang, S., Wu, F., Yang, W. & Ding, Y. (2011). Inorg. Chem. Commun. 14, 1414-1417.]). For the coordination geometry of some homoleptic meridional and heteroleptic iridium(III) complexes, see: Tamayo et al. (2003[Tamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S. L., Tsyba, I., Ho, N. N., Bau, R. & Thompson, M. E. (2003). J. Am. Chem. Soc. 125, 7377-7387.]); Yang et al. (2007[Yang, C. H., Cheng, Y. M., Chi, Y., Hsu, C. J., Fang, F. C., Wong, K. T., Chou, P. T., Chang, C. H., Tsai, M. H. & Wu, C. C. (2007). Angew. Chem. Int. Ed. 46, 2418-2421.]); You & Park (2005[You, Y. & Park, S. Y. (2005). J. Am. Chem. Soc. 127, 12438-12439.]); Zhang et al. (2011[Zhang, S., Wu, F., Yang, W. & Ding, Y. (2011). Inorg. Chem. Commun. 14, 1414-1417.]). For the general procedure of preparing a chloride-bridged IrIII dimer, see: Nonoyama (1974[Nonoyama, M. (1974). Bull. Chem. Soc. Jpn, 47, 767-768.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C11H6F2N)2(C7H6NO)(H2O)]·CH4O

  • Mr = 742.74

  • Monoclinic, C 2/c

  • a = 29.544 (4) Å

  • b = 11.6258 (12) Å

  • c = 20.247 (3) Å

  • β = 129.391 (2)°

  • V = 5374.5 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.04 mm−1

  • T = 223 K

  • 0.34 × 0.25 × 0.24 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.279, Tmax = 0.378

  • 14977 measured reflections

  • 6122 independent reflections

  • 5277 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.101

  • S = 1.09

  • 6122 reflections

  • 392 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.20 e Å−3

  • Δρmin = −1.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯N3 0.85 (1) 2.54 (6) 3.029 (7) 117 (6)
O2—H2B⋯O1 0.85 (1) 1.74 (3) 2.560 (6) 161 (7)
O2—H2A⋯N1 0.85 (1) 2.45 (6) 2.960 (6) 119 (6)
O2—H2A⋯O1i 0.85 (1) 1.97 (4) 2.700 (7) 142 (6)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound was obtained unexpectedly during our study on the preparation of bis(2-(4,6-difluorophenyl)pyridyl)iridium(III) κ2-benzamidate complex. Ancillary κ2-amidate ligands have been shown to have a great influence on the photophysical and electrochemical properties of cyclometalated Ir(III) complexes (Yang et al., 2011; Wang et al., 2008). We have synthesized several such bis(2-(4,6-difluorophenyl)pyridyl)iridium(III) κ2-amidate complexes, in all of which, there is a substitutent on the amide nitrogen atom (Zhang et al., 2011). When benzamide lacking a substituent on the amide nitrogen atom was subjected to the reaction condition for the preparation of Ir(III) κ2-amidate complexes, an unexpected Ir(III) complex with a N-bound benzamidate ligand and an O-bound water ligand, i.e., the title compound, was obtained. As shown in Fig. 1, the iridium center adopts an octahedral geometry. The two 2-(4,6-difluorophenyl)pyridyl ligands are arranged in a cis-C, C' and trans-N, N' fashion, which have already been observed in some homoleptic meridional iridium(III) complexes (Tamayo et al., 2003) and also some heteroleptic iridium(III) complexes (Yang et al., 2007; You & Park, 2005; Zhang et al., 2011). The remaining two coordination sites were occupied by benzamidate nitrogen atom and water oxygen atom, respectively. The methanol molecule outside the coordination sphere of the Ir center should result from the deprotonation of the benzamide ligand by the intermediate Ir-OMe complex, which is generated by reaction of chloro-bridged Ir(III) dimer with sodium methoxide. However, there is still some uncertainties about the nature of the bystanding solvent molecule or how it is arranged. In the crystal, there should be intermolecular hydrogen bonds, such as O-H-O and N-H-O, as shown by Fig. 2.

Related literature top

For related cyclometallated IrIII complexes containing a κ2-bound amidate ligand, see: Yang et al. (2011); Wang et al. (2008); Zhang et al. (2011). For the coordination geometry of some homoleptic meridional and heteroleptic iridium(III) complexes, see: Tamayo et al. (2003); Yang et al. (2007); You & Park (2005); Zhang et al. (2011). For the general procedure of preparing a chloro-bridged IrIII dimer, see: Nonoyama (1974).

Experimental top

Into a Schlenk tube containing chloro-bridged bis(2-(4,6-difluorophenyl)pyridyl) Ir(III) dimer (1 eq.), benzamide (2.5 eq.) and sodium methoxide (10 eq.) was added dichloromethane solvent under dinitrogen. The chloro-bridged Ir(III) dimer was obtained by reaction of IrCl3.3H2O with 2-(4,6-difluorophenyl)pyridine ligand in ethoxyethanol solvent under dinitrogen atmosphere according to the general procedure reported by Nonoyama (1974). The mixture was stirred for 48 h at room temperature, resulting in the formation of an orange solution. The CH2Cl2 solvent in the crude product mixture was then evaporated and the residue was then washed by dried ether. The crystal of the title compound was obtained by recrystallization of the solid in CH2Cl2/cyclohexane mixed solvent.

Refinement top

Hydrogen atoms bound to carbon atoms were positioned geometrically with C—H = 0.93 Å or 0.96 Å and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). Hydrogen atoms bound to nitrogen and oxygen atoms were located in difference maps and refined subject to a restraint of N—H = 0.87 (2) Å and O—H = 0.85 (2) Å respectively. The methanol molecule in the crystal should come from the deprotonation of benzamide ligand by intermediate Ir(III)-OMe complex, which is supposed to be generated by transmetalation of chloro-bridged Ir(III) dimer with added sodium methoxide. Due to the disorder of the methanol molecule, the positions of hydrogen atoms on methanol are difficult to determine. Furthermore, this would lead to some disorder in the positions of fluorine atoms on the phenyl ring because there should be some interaction between the methanol hydrogen atoms with the fluorine atoms. This is believed to be the most probable structure of the title compound.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular drawing of the title compound at 30% probability level. Hydrogen atoms are omitted for clarity. There are some disorder for the two fluorine atoms bound to C9 and C18 of phenyl rings.
[Figure 2] Fig. 2. Hydrogen bonding.
Aqua(benzamidato-κN)bis[3,5-difluoro-2-(pyridin-2-yl)phenyl- κC1]iridium(III) methanol monosolvate top
Crystal data top
[Ir(C11H6F2N)2(C7H6NO)(H2O)]·CH4OF(000) = 2960
Mr = 742.74Dx = 1.846 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 11541 reflections
a = 29.544 (4) Åθ = 3.1–27.5°
b = 11.6258 (12) ŵ = 5.04 mm1
c = 20.247 (3) ÅT = 223 K
β = 129.391 (2)°Block, yellow
V = 5374.5 (12) Å30.34 × 0.25 × 0.24 mm
Z = 8
Data collection top
Rigaku Saturn
diffractometer
6122 independent reflections
Radiation source: fine-focus sealed tube5277 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 14.63 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 3830
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1512
Tmin = 0.279, Tmax = 0.378l = 2126
14977 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0407P)2 + 26.4741P]
where P = (Fo2 + 2Fc2)/3
6122 reflections(Δ/σ)max = 0.002
392 parametersΔρmax = 1.20 e Å3
4 restraintsΔρmin = 1.18 e Å3
Crystal data top
[Ir(C11H6F2N)2(C7H6NO)(H2O)]·CH4OV = 5374.5 (12) Å3
Mr = 742.74Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.544 (4) ŵ = 5.04 mm1
b = 11.6258 (12) ÅT = 223 K
c = 20.247 (3) Å0.34 × 0.25 × 0.24 mm
β = 129.391 (2)°
Data collection top
Rigaku Saturn
diffractometer
6122 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
5277 reflections with I > 2σ(I)
Tmin = 0.279, Tmax = 0.378Rint = 0.031
14977 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0454 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0407P)2 + 26.4741P]
where P = (Fo2 + 2Fc2)/3
6122 reflectionsΔρmax = 1.20 e Å3
392 parametersΔρmin = 1.18 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.347048 (9)0.650175 (18)0.014534 (14)0.03168 (9)
F10.4503 (2)1.0543 (4)0.0772 (3)0.0836 (15)
F20.3963 (8)0.9191 (12)0.1797 (9)0.054 (4)0.50
F2A0.4011 (16)0.913 (3)0.175 (2)0.170 (12)0.50
F30.438 (3)0.306 (5)0.067 (4)0.073 (8)0.50
F3A0.451 (3)0.326 (5)0.049 (4)0.089 (12)0.50
F40.5660 (2)0.4827 (5)0.2118 (4)0.0969 (18)
O10.22923 (18)0.5920 (4)0.0254 (3)0.0452 (11)
O20.26439 (19)0.7445 (4)0.0750 (3)0.0416 (10)
H2A0.279 (3)0.774 (6)0.027 (2)0.050*
H2B0.249 (3)0.688 (4)0.070 (5)0.050*
N10.3828 (2)0.7418 (4)0.0941 (3)0.0371 (11)
N20.3159 (2)0.5635 (4)0.1235 (3)0.0385 (11)
N30.3141 (2)0.5160 (4)0.0160 (3)0.0368 (11)
H30.33520.45370.03590.044*
C10.3830 (3)0.7075 (6)0.1581 (4)0.0487 (16)
H10.36780.63480.15500.058*
C20.4049 (3)0.7770 (8)0.2280 (5)0.063 (2)
H20.40510.75070.27200.076*
C30.4262 (3)0.8823 (8)0.2333 (5)0.063 (2)
H3A0.44020.93050.28010.075*
C40.4271 (3)0.9189 (6)0.1684 (4)0.0505 (17)
H40.44210.99180.17130.061*
C50.4058 (3)0.8471 (5)0.1000 (4)0.0402 (14)
C60.4042 (3)0.8707 (5)0.0273 (4)0.0382 (13)
C70.4257 (3)0.9693 (6)0.0165 (4)0.0493 (16)
C80.4244 (3)0.9879 (6)0.0520 (5)0.0551 (18)
H80.43951.05510.05750.066*
C90.3994 (3)0.9010 (7)0.1115 (5)0.0535 (18)
C100.3775 (3)0.8013 (6)0.1057 (4)0.0411 (14)
H100.36160.74450.14820.049*
C110.3791 (2)0.7851 (5)0.0359 (4)0.0331 (12)
C120.2627 (3)0.5836 (6)0.1998 (4)0.0524 (17)
H120.23850.64030.20340.063*
C130.2430 (4)0.5236 (7)0.2718 (5)0.070 (2)
H130.20580.53870.32420.084*
C140.2788 (5)0.4403 (8)0.2660 (6)0.078 (3)
H140.26610.39720.31430.093*
C150.3329 (4)0.4215 (7)0.1894 (6)0.069 (2)
H150.35780.36670.18560.083*
C160.3516 (3)0.4824 (6)0.1166 (5)0.0498 (17)
C170.4074 (3)0.4732 (6)0.0308 (5)0.0468 (16)
C180.4528 (4)0.3966 (7)0.0035 (6)0.063 (2)
C190.5056 (4)0.3973 (7)0.0764 (7)0.072 (3)
H190.53540.34500.09290.086*
C200.5129 (3)0.4784 (7)0.1314 (6)0.065 (2)
C210.4706 (3)0.5553 (6)0.1116 (5)0.0520 (17)
H210.47800.60800.15270.062*
C220.4169 (3)0.5537 (5)0.0303 (4)0.0408 (14)
C230.2672 (2)0.5124 (5)0.0096 (4)0.0353 (13)
C240.2570 (3)0.4127 (5)0.0461 (4)0.0359 (13)
C250.2003 (3)0.3869 (6)0.0129 (5)0.0505 (16)
H250.16900.43170.03190.061*
C260.1894 (4)0.2950 (7)0.0454 (6)0.065 (2)
H260.15070.27740.02210.078*
C270.2346 (4)0.2312 (7)0.1105 (6)0.063 (2)
H270.22710.16910.13210.076*
C280.2916 (4)0.2567 (7)0.1455 (5)0.062 (2)
H280.32270.21240.19080.075*
C290.3025 (3)0.3481 (6)0.1133 (5)0.0506 (17)
H290.34130.36610.13760.061*
O30.44588 (19)0.2099 (4)0.2396 (3)0.0543 (12)
C300.4370 (5)0.2603 (9)0.1702 (7)0.0543 (12)0.589 (11)
C30A0.4817 (6)0.2785 (10)0.2269 (12)0.0543 (12)0.411 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.03266 (13)0.03359 (13)0.03432 (13)0.00037 (10)0.02386 (11)0.00088 (10)
F10.097 (4)0.068 (3)0.087 (3)0.037 (3)0.059 (3)0.021 (3)
F20.087 (10)0.054 (6)0.046 (6)0.033 (7)0.054 (7)0.011 (5)
F2A0.18 (3)0.22 (3)0.18 (2)0.02 (2)0.15 (2)0.03 (2)
F30.10 (2)0.048 (10)0.11 (2)0.003 (11)0.09 (2)0.026 (12)
F3A0.10 (2)0.07 (2)0.11 (2)0.010 (16)0.07 (2)0.021 (15)
F40.047 (3)0.089 (4)0.114 (4)0.020 (3)0.032 (3)0.024 (3)
O10.038 (2)0.042 (2)0.063 (3)0.004 (2)0.035 (2)0.006 (2)
O20.037 (2)0.046 (3)0.047 (2)0.004 (2)0.029 (2)0.009 (2)
N10.033 (3)0.044 (3)0.034 (3)0.002 (2)0.021 (2)0.001 (2)
N20.045 (3)0.039 (3)0.043 (3)0.009 (2)0.033 (3)0.001 (2)
N30.039 (3)0.035 (3)0.043 (3)0.002 (2)0.029 (2)0.003 (2)
C10.053 (4)0.059 (4)0.040 (3)0.005 (3)0.033 (3)0.002 (3)
C20.061 (5)0.081 (6)0.051 (4)0.013 (4)0.037 (4)0.018 (4)
C30.051 (4)0.089 (6)0.046 (4)0.005 (4)0.031 (4)0.023 (4)
C40.044 (4)0.050 (4)0.056 (4)0.007 (3)0.031 (3)0.013 (3)
C50.030 (3)0.045 (3)0.040 (3)0.005 (3)0.020 (3)0.002 (3)
C60.033 (3)0.039 (3)0.039 (3)0.002 (3)0.021 (3)0.001 (3)
C70.040 (3)0.046 (4)0.054 (4)0.013 (3)0.026 (3)0.010 (3)
C80.051 (4)0.052 (4)0.068 (5)0.011 (3)0.040 (4)0.002 (4)
C90.061 (4)0.060 (4)0.056 (4)0.010 (4)0.045 (4)0.005 (4)
C100.046 (4)0.045 (3)0.045 (3)0.003 (3)0.035 (3)0.004 (3)
C110.027 (3)0.036 (3)0.038 (3)0.005 (2)0.022 (3)0.005 (3)
C120.057 (4)0.055 (4)0.043 (4)0.014 (4)0.031 (4)0.003 (3)
C130.093 (6)0.065 (5)0.045 (4)0.033 (5)0.041 (5)0.011 (4)
C140.121 (8)0.071 (6)0.065 (5)0.043 (6)0.070 (6)0.036 (5)
C150.106 (7)0.061 (5)0.084 (6)0.014 (5)0.082 (6)0.017 (5)
C160.072 (5)0.042 (4)0.068 (5)0.010 (3)0.059 (4)0.007 (3)
C170.051 (4)0.047 (4)0.070 (4)0.002 (3)0.051 (4)0.002 (3)
C180.081 (6)0.045 (4)0.108 (7)0.003 (4)0.081 (6)0.003 (5)
C190.057 (5)0.058 (5)0.113 (8)0.023 (4)0.060 (6)0.024 (5)
C200.040 (4)0.059 (5)0.081 (6)0.009 (4)0.032 (4)0.021 (4)
C210.040 (4)0.050 (4)0.065 (4)0.001 (3)0.033 (4)0.003 (4)
C220.040 (3)0.037 (3)0.062 (4)0.000 (3)0.040 (3)0.005 (3)
C230.035 (3)0.037 (3)0.036 (3)0.007 (3)0.024 (3)0.008 (3)
C240.047 (3)0.032 (3)0.041 (3)0.005 (3)0.034 (3)0.003 (3)
C250.051 (4)0.052 (4)0.056 (4)0.007 (3)0.037 (4)0.004 (3)
C260.090 (6)0.051 (4)0.091 (6)0.026 (5)0.075 (6)0.017 (5)
C270.104 (7)0.044 (4)0.077 (5)0.013 (4)0.073 (6)0.002 (4)
C280.087 (6)0.057 (4)0.057 (4)0.007 (4)0.053 (5)0.013 (4)
C290.057 (4)0.052 (4)0.050 (4)0.002 (3)0.038 (4)0.005 (3)
O30.036 (2)0.031 (2)0.092 (3)0.0002 (17)0.038 (2)0.017 (2)
C300.036 (2)0.031 (2)0.092 (3)0.0002 (17)0.038 (2)0.017 (2)
C30A0.036 (2)0.031 (2)0.092 (3)0.0002 (17)0.038 (2)0.017 (2)
Geometric parameters (Å, º) top
Ir1—C221.991 (6)C9—C101.367 (9)
Ir1—C112.016 (6)C10—C111.397 (8)
Ir1—N12.035 (5)C10—H100.9400
Ir1—N22.038 (5)C12—C131.370 (10)
Ir1—N32.127 (5)C12—H120.9400
Ir1—O22.207 (4)C13—C141.383 (13)
F1—C71.371 (8)C13—H130.9400
F2—C91.340 (15)C14—C151.364 (13)
F2A—C91.33 (3)C14—H140.9400
F3—C181.49 (4)C15—C161.395 (10)
F3A—C181.21 (5)C15—H150.9400
F4—C201.368 (9)C16—C171.454 (10)
O1—C231.268 (7)C17—C181.398 (10)
O2—H2A0.854 (10)C17—C221.429 (9)
O2—H2B0.849 (10)C18—C191.360 (12)
N1—C11.353 (8)C19—C201.368 (12)
N1—C51.368 (8)C19—H190.9400
N2—C121.353 (8)C20—C211.374 (10)
N2—C161.353 (8)C21—C221.383 (9)
N3—C231.309 (7)C21—H210.9400
N3—H30.8700C23—C241.504 (8)
C1—C21.382 (10)C24—C291.379 (9)
C1—H10.9400C24—C251.384 (9)
C2—C31.350 (12)C25—C261.397 (10)
C2—H20.9400C25—H250.9400
C3—C41.397 (10)C26—C271.356 (12)
C3—H3A0.9400C26—H260.9400
C4—C51.380 (9)C27—C281.382 (11)
C4—H40.9400C27—H270.9400
C5—C61.470 (9)C28—C291.388 (10)
C6—C71.392 (9)C28—H280.9400
C6—C111.404 (8)C29—H290.9400
C7—C81.379 (10)O3—C301.387 (9)
C8—C91.374 (10)O3—C30A1.472 (9)
C8—H80.9400
C22—Ir1—C1192.5 (2)C10—C11—Ir1127.1 (5)
C22—Ir1—N197.2 (2)C6—C11—Ir1113.8 (4)
C11—Ir1—N180.3 (2)N2—C12—C13121.9 (8)
C22—Ir1—N280.8 (2)N2—C12—H12119.1
C11—Ir1—N295.9 (2)C13—C12—H12119.1
N1—Ir1—N2175.72 (19)C12—C13—C14118.7 (8)
C22—Ir1—N389.3 (2)C12—C13—H13120.6
C11—Ir1—N3175.3 (2)C14—C13—H13120.6
N1—Ir1—N395.12 (19)C15—C14—C13119.4 (7)
N2—Ir1—N388.66 (18)C15—C14—H14120.3
C22—Ir1—O2174.2 (2)C13—C14—H14120.3
C11—Ir1—O290.00 (19)C14—C15—C16120.8 (8)
N1—Ir1—O288.38 (18)C14—C15—H15119.6
N2—Ir1—O293.72 (19)C16—C15—H15119.6
N3—Ir1—O288.65 (17)N2—C16—C15119.0 (7)
Ir1—O2—H2A90 (5)N2—C16—C17113.2 (6)
Ir1—O2—H2B92 (5)C15—C16—C17127.8 (7)
H2A—O2—H2B95 (7)C18—C17—C22117.6 (7)
C1—N1—C5118.7 (5)C18—C17—C16126.5 (7)
C1—N1—Ir1124.4 (4)C22—C17—C16115.9 (6)
C5—N1—Ir1116.8 (4)F3A—C18—C19112 (3)
C12—N2—C16120.2 (6)F3A—C18—C17124 (3)
C12—N2—Ir1123.3 (5)C19—C18—C17123.7 (8)
C16—N2—Ir1116.5 (4)F3A—C18—F311 (5)
C23—N3—Ir1130.2 (4)C19—C18—F3121 (3)
C23—N3—H3114.9C17—C18—F3115 (3)
Ir1—N3—H3114.9C18—C19—C20116.3 (7)
N1—C1—C2121.5 (7)C18—C19—H19121.9
N1—C1—H1119.3C20—C19—H19121.9
C2—C1—H1119.3C19—C20—F4117.6 (7)
C3—C2—C1120.3 (7)C19—C20—C21124.5 (8)
C3—C2—H2119.9F4—C20—C21117.9 (8)
C1—C2—H2119.9C20—C21—C22118.8 (7)
C2—C3—C4119.2 (7)C20—C21—H21120.6
C2—C3—H3A120.4C22—C21—H21120.6
C4—C3—H3A120.4C21—C22—C17119.1 (6)
C5—C4—C3119.4 (7)C21—C22—Ir1127.5 (5)
C5—C4—H4120.3C17—C22—Ir1113.4 (5)
C3—C4—H4120.3O1—C23—N3122.5 (5)
N1—C5—C4120.9 (6)O1—C23—C24117.1 (5)
N1—C5—C6112.4 (5)N3—C23—C24120.4 (5)
C4—C5—C6126.7 (6)C29—C24—C25118.9 (6)
C7—C6—C11118.1 (6)C29—C24—C23122.1 (6)
C7—C6—C5125.6 (6)C25—C24—C23119.0 (6)
C11—C6—C5116.3 (5)C24—C25—C26120.5 (7)
F1—C7—C8116.6 (6)C24—C25—H25119.8
F1—C7—C6119.2 (6)C26—C25—H25119.8
C8—C7—C6124.1 (6)C27—C26—C25119.8 (8)
C9—C8—C7115.0 (6)C27—C26—H26120.1
C9—C8—H8122.5C25—C26—H26120.1
C7—C8—H8122.5C26—C27—C28120.6 (7)
F2A—C9—F26 (2)C26—C27—H27119.7
F2A—C9—C10118.9 (16)C28—C27—H27119.7
F2—C9—C10119.5 (8)C27—C28—C29119.7 (8)
F2A—C9—C8116.3 (16)C27—C28—H28120.2
F2—C9—C8115.9 (8)C29—C28—H28120.2
C10—C9—C8124.6 (7)C24—C29—C28120.5 (7)
C9—C10—C11119.1 (6)C24—C29—H29119.7
C9—C10—H10120.4C28—C29—H29119.7
C11—C10—H10120.4C30—O3—C30A44.6 (8)
C10—C11—C6119.0 (5)C30Ai—C30A—O3111 (2)
C22—Ir1—N1—C186.8 (5)O2—Ir1—N1—C191.6 (5)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···N30.85 (1)2.54 (6)3.029 (7)117 (6)
O2—H2B···O10.85 (1)1.74 (3)2.560 (6)161 (7)
O2—H2A···N10.85 (1)2.45 (6)2.960 (6)119 (6)
O2—H2A···O1ii0.85 (1)1.97 (4)2.700 (7)142 (6)
Symmetry code: (ii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Ir(C11H6F2N)2(C7H6NO)(H2O)]·CH4O
Mr742.74
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)29.544 (4), 11.6258 (12), 20.247 (3)
β (°) 129.391 (2)
V3)5374.5 (12)
Z8
Radiation typeMo Kα
µ (mm1)5.04
Crystal size (mm)0.34 × 0.25 × 0.24
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.279, 0.378
No. of measured, independent and
observed [I > 2σ(I)] reflections
14977, 6122, 5277
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.101, 1.09
No. of reflections6122
No. of parameters392
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0407P)2 + 26.4741P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.20, 1.18

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···N30.849 (10)2.54 (6)3.029 (7)117 (6)
O2—H2B···O10.849 (10)1.74 (3)2.560 (6)161 (7)
O2—H2A···N10.854 (10)2.45 (6)2.960 (6)119 (6)
O2—H2A···O1i0.854 (10)1.97 (4)2.700 (7)142 (6)
Symmetry code: (i) x+1/2, y+3/2, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (NNSFC grant No. 20971058) and the Fundamental Research Funds for the Central Universities (grant No. JUSRP 11105) for financial support.

References

First citationJacobson, R. (1998). REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationNonoyama, M. (1974). Bull. Chem. Soc. Jpn, 47, 767–768.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S. L., Tsyba, I., Ho, N. N., Bau, R. & Thompson, M. E. (2003). J. Am. Chem. Soc. 125, 7377–7387.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, W., Zhu, T., Chen, G., Li, C., Di, H., Ren, C. & Ding, Y. (2008). Synth. Met. 158, 1022–1027.  Web of Science CrossRef CAS Google Scholar
First citationYang, C. H., Cheng, Y. M., Chi, Y., Hsu, C. J., Fang, F. C., Wong, K. T., Chou, P. T., Chang, C. H., Tsai, M. H. & Wu, C. C. (2007). Angew. Chem. Int. Ed. 46, 2418–2421.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, W., Fu, H., Song, Q., Zhang, M. & Ding, Y. (2011). Organometallics, 30, 77–83.  Web of Science CSD CrossRef CAS Google Scholar
First citationYou, Y. & Park, S. Y. (2005). J. Am. Chem. Soc. 127, 12438–12439.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, S., Wu, F., Yang, W. & Ding, Y. (2011). Inorg. Chem. Commun. 14, 1414–1417.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds