metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m233-m234

Tris(2,2′-bi­pyridine-κ2N,N′)cobalt(III) tris­­(oxalato-κ2O1,O2)ferrate(III) mono­hydrate

aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrs'ka Street, Kyiv 01601, Ukraine, and bSTC `Institute for Single Crystals', National Academy of Sciences of Ukraine, 60 Lenina Avenue, Kharkiv 61001, Ukraine
*Correspondence e-mail: chigorin@mail.univ.kiev.ua

(Received 29 December 2011; accepted 25 January 2012; online 4 February 2012)

The title compound, [Co(C10H8N2)3][Fe(C2O4)3]·H2O, con­sists of two discrete tris­(chelate) metal ions (CoIIIN6 and FeIIIO6 chromophores) and a water mol­ecule. The structure is highly symmetrical; the CoIII and FeIII ions occupy positions with site symmetry 3.2. The coordination polyhedra of the metal atoms have a nearly octa­hedral geometry with noticeable trigonal distortions. The Co—N and Fe—O bond lengths are equal by symmetry, viz. 1.981 (2) and 1.998 (4) Å, respectively. The cations and anions are arranged alternately along their threefold rotation axes parallel to [001], forming chains that are packed in a hexa­gonal manner. The water mol­ecules occupy voids between the chains. The crystal under investigation was an inversion twin.

Related literature

For general background to direct synthesis, see: Makhankova (2011[Makhankova, V. G. (2011). Global J. Inorg. Chem. 2, 265-285.]). For bond-valance sum calculation, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) (http://www.iucr.org/resources/data/datasets/bond-valence-parameters ). For related structures, see: Chygorin et al. (2010[Chygorin, E. N., Makhankova, V. G., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V. & Jezierska, J. (2010). Inorg. Chem. Commun. 13, 1509-1511.]); Coronado et al. (2000[Coronado, E., Galan-Mascaros, J. R. & Gomez-Garcia, C. J. (2000). J. Chem. Soc. Dalton Trans. pp. 205-210.]); Devi et al. (2003[Devi, R. N., Burkholder, E. & Zubieta, J. (2003). Inorg. Chim. Acta, 348, 150-156.]); Jun & Zhang (2010[Jun, Q. & Zhang, C. (2010). Acta Cryst. E66, m12.]); Yanagi et al. (1981[Yanagi, K., Ohashi, Y., Sasada, Y., Kaizu, Y. & Kobayashi, H. (1981). Bull. Chem. Soc. Jpn, 54, 118-126.]); Zhang et al. (2009[Zhang, B., Zhang, Y., Liu, F. & Guo, Y. (2009). CrystEngComm, 11, 2523-2528.]). For measuring of trigonal distortion angles, see: Muetterties & Guggenberger (1974[Muetterties, E. L. & Guggenberger, L. J. (1974). J. Am. Chem. Soc. 96, 1748-1756.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H8N2)3][Fe(C2O4)3]·H2O

  • Mr = 865.42

  • Hexagonal, P 622

  • a = 13.056 (2) Å

  • c = 12.480 (3) Å

  • V = 1842.3 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 293 K

  • 0.60 × 0.40 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur/Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.608, Tmax = 0.838

  • 17786 measured reflections

  • 1807 independent reflections

  • 1393 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.155

  • S = 1.04

  • 1807 reflections

  • 90 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.83 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 699 Friedel pairs

  • Flack parameter: 0.57 (3)

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Developing the direct synthesis approach (Makhankova, 2011) we have investigated the following system:

Co – (NH4)3[Fe(Ox)3].3H2O – bipy – 2 en.2HCl – CH3CN (in open air), where bipy = 2,2'-bipyridine, Ox = oxalate anion, en = ethylenediamine, aiming to prepare heterometallic (Co/Fe) mixed-ligand (bipy/en) complex. A pale pink precepitate that formed as a result of the reaction turned out to be a mixture with traces of undissolved cobalt powder. Recrystallization of the mixture from hot water allowed to isolate little amount of crystals of a new complex, [Co(bipy)3][Fe(Ox)3].H2O. Structure of the complex was determined by X-ray diffraction analysis.

The crystal structure of the title compound is highly symmetrical with two sets of complex ions. The asymmetric unit contains one sixth of a [Co(bipy)3]3+ cation and one sixth of a [Fe(Ox)3]3- anion (Fig. 1) with metal centers occupying positions with site symmetry 3.2. There are two sets of complex ions in the unit cell. All metal atoms are six coordinated (CoN6 and FeO6 chromophores). The Fe–O bond lengths are equal of 2.000 (4) Å and are typical for [Fe(Ox)3]3- (Chygorin et al., 2010, Coronado et al., 2000, Zhang et al., 2009) while the Co–N bond length value of 1.980 (2) Å is much larger than observed previously in [Co(bipy)3]3+ fragments (1.89 – 1.96 Å) (Devi et al., 2003, Jun & Zhang, 2010, Yanagi et al., 1981). Due to the rigidity of the bidentate bipyridine and oxalate ligand molecules both the cations and anions show a trigonal structure distortion Oh(D3d) D3h which should be recognized by the cis angles ranging from 81.92 (14)° to 92.87 (14)° for N–Co–N and from 80.7 (2)° to 94.6 (3)° for O–Fe–O. Trans N–Co–N and O–Fe–O angles are of 172.44 (15)° and 170.3 (3)°, respectively. More comprehensive measure of trigonal distortion is dihedral angle criterion according to which dihedral angles should be all of 70.5° for a perfect octahedron or 3×0°, 3×120° and 6×90° for a trigonal prism (Muetterties & Guggenberger, 1974). In our case, corresponding angles sets are 3×64.5°, 3×78.9° and 6×69.6° for CoN6 and 3×62.1°, 3×80.7° and 6×70.0° for FeO6 defining polyhedra as being closer to D3d octahedra.

In the crystal cobalt and iron complex ions are arranged alternately along their C3-axes parallel to [001] direction forming chains (Fig. 2) with the closest Co···Fe separation of ca 6.2 Å. The chains are packed in a hexagonal manner (Fig. 3) and the water molecules occupy voids inside the hexagonal channels. Hydrogen atoms of water molecules are disordered to three positions accordingly to the symmetry of the channels.

The bond valence sum analysis applied to the appropriate bond lengths leads to the +3 oxidation states for both metals: 3.22 (Co) and 3.00 (Fe) using the bond valence parameters from http://www.iucr.org/resources/data/datasets/bond-valence-parameters.

It is worth noting that the described complex is the first known crystal structure with ratio [M(bipy)3]3+:[M(Ox)3]3- equal to 1:1.

Related literature top

For general background to direct synthesis, see: Makhankova (2011). For bond-valance sum calculation, see: Brown & Altermatt (1985); http://www.iucr.org/resources/data/datasets/bond-valence-parameters. For related structures, see: Chygorin et al. (2010); Coronado et al. (2000); Devi et al. (2003); Jun & Zhang (2010); Yanagi et al. (1981); Zhang et al. (2009). For measuring of trigonal distortion angles, see: Muetterties & Guggenberger (1974).

Experimental top

Cobalt powder (0.049 g, 0.83 mmol), (NH4)3[Fe(Ox)3].3H2O (0.355 g, 0.83 mmol), ethylenediamine dihydrochloride (0.221 g, 1.66 mmol), 2,2' – bipyridine (0.13 g, 0.83 mmol) and acetonitrile (15 ml) were heated to 323–333 K and stirred magnetically for 6 h resulting into a pale pink precepitate. After filtration the precepitate was recrystallized from hot water. Violet block crystals were obtained after two days. The compound is stable in air, it is sparingly soluble in water, methanol and dimethylsulfoxide.

Refinement top

All hydrogen atoms were located from difference Fourier map and refined within the riding model approximation with Uiso(H)= 1.5Ueq(C) for hydrogen atoms of the water molecule, and C—H = 0.93 (1)Å and Uiso(H)= 1.2Ueq(C) for aromatic hydrogen atoms. Flack parameter value (Flack, 1983) of 0.57 (3) was obtained in the final structure factor calculation for enanthiopure chiral structure, that indicates presence of the both enanthiomers in the particular crystal examined. Futher full-matrix refinement of the Flack parameter slightly improved the agreement index R (from 0.0676 to 0.0625). Content of the the major enanthiomer in the refined racemic twin structure is 57 (3)%. Several isolated electron density peaks were located during the refinement, which were believed to be a solvent molecule. Large displacement parameters were observed modeling the disordered oxygen atom. SQUEEZE procedure of PLATON (Spek, 2009) indicated a solvent cavity of volume 161 Å3 centered at (0,0,0), containing approximately 21 electron. In the final refinement, this contribution was removed from the intensity data that produced better refinement results.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The stucture of [Co(bipy)3][Fe(Ox)3].H2O with atom labels and 30% probability displacement ellipsoids. The H atoms were omitted.
[Figure 2] Fig. 2. The packing of the title compound showing the linear arrangment of the complex cations and anions along the c-axis.
[Figure 3] Fig. 3. The packing of the title compound demonstrating hexagonal arrangment of the cation-anion chains and water molecules occupying voids in the interchain channels. The hydrogem atoms of water molecules are disordered into three positions.
Tris(2,2'-bipyridine-κ2N,N')cobalt(III) tris(oxalato-κ2O1,O2)ferrate((III) monohydrate top
Crystal data top
[Co(C10H8N2)3][Fe(C2O4)3]·H2ODx = 1.560 Mg m3
Mr = 865.42Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P622Cell parameters from 1555 reflections
Hall symbol: P 6 2θ = 3.1–32.0°
a = 13.056 (2) ŵ = 0.92 mm1
c = 12.480 (3) ÅT = 293 K
V = 1842.3 (7) Å3Block, violet
Z = 20.60 × 0.40 × 0.20 mm
F(000) = 882
Data collection top
Oxford Diffraction Xcalibur/Sapphire3
diffractometer
1807 independent reflections
Radiation source: Enhance (Mo) X-ray Source1393 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 16.1827 pixels mm-1θmax = 30.0°, θmin = 3.1°
ω scansh = 1818
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1817
Tmin = 0.608, Tmax = 0.838l = 1717
17786 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0909P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1807 reflectionsΔρmax = 0.36 e Å3
90 parametersΔρmin = 0.83 e Å3
0 restraintsAbsolute structure: Flack (1983), 699 Friedel pairs
40 constraintsAbsolute structure parameter: 0.57 (3)
Primary atom site location: structure-invariant direct methods
Crystal data top
[Co(C10H8N2)3][Fe(C2O4)3]·H2OZ = 2
Mr = 865.42Mo Kα radiation
Hexagonal, P622µ = 0.92 mm1
a = 13.056 (2) ÅT = 293 K
c = 12.480 (3) Å0.60 × 0.40 × 0.20 mm
V = 1842.3 (7) Å3
Data collection top
Oxford Diffraction Xcalibur/Sapphire3
diffractometer
1807 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1393 reflections with I > 2σ(I)
Tmin = 0.608, Tmax = 0.838Rint = 0.070
17786 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.155Δρmax = 0.36 e Å3
S = 1.04Δρmin = 0.83 e Å3
1807 reflectionsAbsolute structure: Flack (1983), 699 Friedel pairs
90 parametersAbsolute structure parameter: 0.57 (3)
0 restraints
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., 2009. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.33330.66670.50000.0271 (3)
Fe10.66670.33330.00000.0908 (6)
N10.4659 (2)0.6789 (2)0.41309 (19)0.0281 (5)
C10.5760 (2)0.7591 (2)0.4502 (2)0.0276 (6)
O10.6801 (4)0.4676 (4)0.0877 (3)0.1027 (14)
O20.7734 (6)0.6631 (5)0.0909 (4)0.1201 (18)
C20.6771 (3)0.7820 (3)0.3950 (3)0.0408 (8)
H20.75120.83520.42260.049*
C30.6678 (3)0.7257 (3)0.2986 (3)0.0459 (8)
H30.73520.74180.26000.055*
C40.5576 (3)0.6457 (3)0.2611 (3)0.0412 (8)
H40.54900.60670.19650.049*
C50.4604 (3)0.6239 (3)0.3201 (3)0.0376 (7)
H50.38630.56800.29460.045*
C60.7526 (6)0.5702 (7)0.0527 (4)0.0870 (17)
O1W1.00001.00000.4677 (4)0.0314 (14)
H1W0.94381.00000.50000.047*0.667
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0289 (3)0.0289 (3)0.0235 (5)0.01447 (16)0.0000.000
Fe10.1181 (10)0.1181 (10)0.0361 (8)0.0591 (5)0.0000.000
N10.0325 (13)0.0270 (12)0.0280 (12)0.0171 (11)0.0004 (10)0.0020 (10)
C10.0258 (12)0.0267 (13)0.0329 (16)0.0149 (10)0.0018 (12)0.0013 (11)
O10.115 (3)0.129 (4)0.0414 (19)0.045 (3)0.028 (2)0.003 (2)
O20.189 (5)0.152 (4)0.076 (3)0.127 (4)0.030 (3)0.002 (3)
C20.0328 (16)0.0451 (18)0.0421 (19)0.0176 (15)0.0077 (15)0.0008 (15)
C30.0467 (18)0.060 (2)0.043 (2)0.0359 (18)0.0151 (17)0.0067 (16)
C40.0469 (18)0.045 (2)0.0368 (18)0.0272 (16)0.0051 (14)0.0044 (15)
C50.0422 (17)0.0409 (17)0.0317 (17)0.0223 (14)0.0002 (13)0.0082 (13)
C60.121 (5)0.125 (5)0.038 (3)0.079 (4)0.016 (3)0.001 (3)
O1W0.0168 (10)0.0168 (10)0.060 (4)0.0084 (5)0.0000.000
Geometric parameters (Å, º) top
Co1—N1i1.981 (2)C1—C21.383 (4)
Co1—N1ii1.981 (2)C1—C1iii1.454 (6)
Co1—N1iii1.981 (2)O1—C61.270 (7)
Co1—N1iv1.981 (2)O2—C61.201 (7)
Co1—N11.981 (2)C2—C31.384 (5)
Co1—N1v1.981 (2)C2—H20.9300
Fe1—O1vi1.998 (4)C3—C41.370 (5)
Fe1—O1vii1.998 (4)C3—H30.9300
Fe1—O1viii1.998 (4)C4—C51.368 (4)
Fe1—O1ix1.998 (4)C4—H40.9300
Fe1—O1x1.998 (4)C5—H50.9300
Fe1—O11.998 (4)C6—C6viii1.566 (9)
N1—C51.348 (4)O1W—O1Wxi0.807 (9)
N1—C11.368 (4)O1W—H1W0.8376
N1i—Co1—N1ii81.59 (13)O1viii—Fe1—O181.1 (2)
N1i—Co1—N1iii93.20 (13)O1ix—Fe1—O192.87 (17)
N1ii—Co1—N1iii92.88 (9)O1x—Fe1—O193.8 (3)
N1i—Co1—N1iv92.88 (9)C5—N1—C1117.1 (3)
N1ii—Co1—N1iv93.20 (13)C5—N1—Co1128.1 (2)
N1iii—Co1—N1iv171.98 (13)C1—N1—Co1114.69 (19)
N1i—Co1—N192.88 (9)N1—C1—C2121.4 (3)
N1ii—Co1—N1171.98 (13)N1—C1—C1iii114.47 (16)
N1iii—Co1—N181.59 (13)C2—C1—C1iii124.1 (2)
N1iv—Co1—N192.88 (9)C6—O1—Fe1115.4 (3)
N1i—Co1—N1v171.98 (13)C1—C2—C3119.8 (3)
N1ii—Co1—N1v92.88 (9)C1—C2—H2120.1
N1iii—Co1—N1v92.88 (9)C3—C2—H2120.1
N1iv—Co1—N1v81.59 (13)C4—C3—C2118.8 (3)
N1—Co1—N1v93.20 (13)C4—C3—H3120.6
O1vi—Fe1—O1vii81.1 (2)C2—C3—H3120.6
O1vi—Fe1—O1viii93.8 (3)C5—C4—C3119.1 (3)
O1vii—Fe1—O1viii92.87 (17)C5—C4—H4120.5
O1vi—Fe1—O1ix92.87 (17)C3—C4—H4120.5
O1vii—Fe1—O1ix93.8 (3)N1—C5—C4123.7 (3)
O1viii—Fe1—O1ix171.3 (2)N1—C5—H5118.1
O1vi—Fe1—O1x171.3 (2)C4—C5—H5118.1
O1vii—Fe1—O1x92.87 (17)O2—C6—O1127.0 (5)
O1viii—Fe1—O1x92.87 (17)O2—C6—C6viii119.0 (4)
O1ix—Fe1—O1x81.1 (2)O1—C6—C6viii114.0 (3)
O1vi—Fe1—O192.87 (17)O1Wxi—O1W—H1W61.2
O1vii—Fe1—O1171.3 (2)
N1i—Co1—N1—C583.9 (2)O1viii—Fe1—O1—C60.1 (3)
N1iii—Co1—N1—C5176.7 (3)O1ix—Fe1—O1—C6173.5 (4)
N1iv—Co1—N1—C59.1 (3)O1x—Fe1—O1—C692.2 (4)
N1v—Co1—N1—C590.9 (3)N1—C1—C2—C31.8 (5)
N1i—Co1—N1—C191.8 (2)C1iii—C1—C2—C3177.6 (3)
N1iii—Co1—N1—C11.05 (14)C1—C2—C3—C41.5 (5)
N1iv—Co1—N1—C1175.22 (19)C2—C3—C4—C50.1 (5)
N1v—Co1—N1—C193.5 (2)C1—N1—C5—C41.3 (5)
C5—N1—C1—C20.4 (4)Co1—N1—C5—C4174.3 (2)
Co1—N1—C1—C2176.6 (2)C3—C4—C5—N11.6 (5)
C5—N1—C1—C1iii179.0 (3)Fe1—O1—C6—O2178.4 (5)
Co1—N1—C1—C1iii2.9 (4)Fe1—O1—C6—C6viii0.2 (8)
O1vi—Fe1—O1—C693.5 (5)
Symmetry codes: (i) y+1, xy+1, z; (ii) x+y, y, z+1; (iii) x, xy+1, z+1; (iv) x+y, x+1, z; (v) y+1, x+1, z+1; (vi) x+y+1, x+1, z; (vii) x, xy, z; (viii) x+y+1, y, z; (ix) y+1, xy, z; (x) y+1, x+1, z; (xi) y+2, x+2, z+1.

Experimental details

Crystal data
Chemical formula[Co(C10H8N2)3][Fe(C2O4)3]·H2O
Mr865.42
Crystal system, space groupHexagonal, P622
Temperature (K)293
a, c (Å)13.056 (2), 12.480 (3)
V3)1842.3 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.60 × 0.40 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur/Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.608, 0.838
No. of measured, independent and
observed [I > 2σ(I)] reflections
17786, 1807, 1393
Rint0.070
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.155, 1.04
No. of reflections1807
No. of parameters90
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.83
Absolute structureFlack (1983), 699 Friedel pairs
Absolute structure parameter0.57 (3)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), publCIF (Westrip, 2010).

 

Acknowledgements

This work has been partially supported by the State Fund for Fundamental Research of Ukraine (Project 28.3/017). We also thank Viktoriya V. Dyakonenko for the single-crystal data collection.

References

First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChygorin, E. N., Makhankova, V. G., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V. & Jezierska, J. (2010). Inorg. Chem. Commun. 13, 1509–1511.  Web of Science CSD CrossRef CAS Google Scholar
First citationCoronado, E., Galan-Mascaros, J. R. & Gomez-Garcia, C. J. (2000). J. Chem. Soc. Dalton Trans. pp. 205–210.  Web of Science CSD CrossRef Google Scholar
First citationDevi, R. N., Burkholder, E. & Zubieta, J. (2003). Inorg. Chim. Acta, 348, 150–156.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJun, Q. & Zhang, C. (2010). Acta Cryst. E66, m12.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMakhankova, V. G. (2011). Global J. Inorg. Chem. 2, 265–285.  CAS Google Scholar
First citationMuetterties, E. L. & Guggenberger, L. J. (1974). J. Am. Chem. Soc. 96, 1748–1756.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYanagi, K., Ohashi, Y., Sasada, Y., Kaizu, Y. & Kobayashi, H. (1981). Bull. Chem. Soc. Jpn, 54, 118–126.  CrossRef CAS Web of Science Google Scholar
First citationZhang, B., Zhang, Y., Liu, F. & Guo, Y. (2009). CrystEngComm, 11, 2523–2528.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m233-m234
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds