organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl (E)-2-({2-[(E)-(hy­dr­oxy­imino)­meth­yl]phen­­oxy}meth­yl)-3-phenyl­acrylate

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Chennai 600 025, India
*Correspondence e-mail: arvindhanpresidency@gmail.com

(Received 6 December 2011; accepted 21 January 2012; online 4 February 2012)

In the title compound, C18H17NO4, the hy­droxy­ethanimine group is essentially coplanar with the ring to which it is attached [C—C—N—O torsion angle = 179.94 (14)°]. The mol­ecules are linked into cyclic centrosymmetric R22(6) dimers via O—H⋯N hydrogen bonds and the crystal packing is further stabilized by C—H⋯O inter­actions.

Related literature

For structures of other acrylate derivatives, see: Zhang et al. (2009[Zhang, D., Zhang, X. & Guo, L. (2009). Acta Cryst. E65, o90.]); Wang et al. (2011[Wang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354.]); SakthiMurugesan et al. (2011[SakthiMurugesan, K., Govindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2754.]); Govindan et al. (2011[Govindan, E., SakthiMurugesan, K., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2753.]). For the use of oxime ligands in coordination chemistry, see: Chaudhuri (2003[Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143-168.]). For the biological activity of caffeic acids, see: Hwang et al. (2001[Hwang, D. J., Kim, S. N. & Choi, J. H. (2001). Bioorg. Med. Chem. 9, 1429-1437.]); Altug et al. (2008[Altug, M. E., Serarslan, Y. & Bal, R. (2008). Brain Res. 1201, 135-142.]); Ates et al. (2006[Ates, B., Dogru, M. I. & Gul, M. (2006). Fundam. Clin. Pharmacol. 20, 283-289.]); Atik et al. (2006[Atik, E., Goeruer, S. & Kiper, A. N. (2006). Pharmacol. Res. 54, 293-297.]); Padinchare et al. (2001[Padinchare, R., Irina, V., Paul, C., Dirk, V. B., Koen, A. & Achiel, H. (2001). Bioorg. Med. Chem. Lett. 11, 215-217.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17NO4

  • Mr = 311.33

  • Monoclinic, P 21 /n

  • a = 9.6463 (4) Å

  • b = 7.7062 (3) Å

  • c = 22.4675 (9) Å

  • β = 100.337 (2)°

  • V = 1643.04 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur-S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.980, Tmax = 0.990

  • 17182 measured reflections

  • 3692 independent reflections

  • 2537 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.127

  • S = 1.02

  • 3692 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1i 0.82 2.06 2.7836 (19) 146
C15—H15⋯O3ii 0.93 2.53 3.300 (2) 140
Symmetry codes: (i) -x, -y+2, -z; (ii) x-1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Recently, 2-cyanoacrylates have been extensively used as agrochemicals because of their unique mechanism of action and good environmental profiles (Zhang et al., 2009). Oximes are a classical type of chelating ligands which are widely used in coordination and analytical chemistry (Chaudhuri, 2003). Some naturally occurring caffeic acids and their esters attract much attention in biology and medicine (Hwang et al., 2001; Altug et al., 2008).These compounds show antiviral, antibacterial, vasoactive, antiatherogenic, antiproliferative, antioxidant and antiinflammatory properties (Atik et al.,2006; Padinchare et al., 2001; Ates et al., 2006). Against this background,and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out and the results are presented here. X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The oxime group having the C=N forming an E configuration. The hydroxy ethanimine group is essentially coplanar with the ring to which it is attached [C2—C1—N1—O1 torsion angle = 179.9°]

The enoate group assumes an extended conformation as can be seen from torsion angles C12—C9—C10—O4 [-178.7°] and C9—C10—O4—C11 [178.4°]. The hydroxy ethanimine group in the molecules are linked into cyclic centrosymmetric dimers via O—H···N hydrogen bonds with the motif R 2 2(6)(Wang et al. (2011), Govindan et al. (2011), SakthiMurugesan et al. (2011)). Crystal packing is stabilized by C15—H15···O3 and O1—H1A···N1 type intermolecular hydrogen bonds and values are tabulated. The crystal packing (Fig.2) shows the presence of inter-molecular hydrogen bonding.

Related literature top

For structures of other acrylate derivatives, see: Zhang et al. (2009); Wang et al. (2011); SakthiMurugesan et al. (2011); Govindan et al. (2011). For the use of oxime ligands in coordination chemistry, see: Chaudhuri (2003). For the biological activity of caffeic acids, see: Hwang et al. (2001); Altug et al. (2008); Ates et al. (2006); Atik et al. (2006); Padinchare et al. (2001).

Experimental top

To a stirred solution of (E)-methyl 2-((2-formylphenoxy)methyl)-3-phenylacrylate (4 mmol) in 10 ml of EtOH/H2O mixture (1:1) was added NH2OH.HCl (6 mmol) in the presence of 50% NaOH at room temperature. Then the reaction mixture was allowed to stir at room temperature for 1.5 h. After completion of the reaction, solvent was removed and crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3 × 15 ml). The combined organic layer was washed with brine (2 × 10 ml) and dried over anhydrous Na2SO4 and then evaporated under reduced pressure to obtain (E)-Methyl 2-((2-((E)-(hydroxyimino)methyl)phenoxy)methyl)-3-phenylacrylate as a colourless solid.

Refinement top

Hydrogen atoms were set to calculated positions and refined as riding on their parent atoms with O-H = 0.82Å and C-H ranging from 0.93Å to 0.97Å and U(H) set to 1.2 Ueq(C) or 1.5 Ueq(Cmethyl, O).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for H atoms. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the crystal packing. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
Methyl (E)-2-({2-[(E)-(hydroxyimino)methyl]phenoxy}methyl)- 3-phenylacrylate top
Crystal data top
C18H17NO4F(000) = 656
Mr = 311.33Dx = 1.259 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.6463 (4) ÅCell parameters from 8725 reflections
b = 7.7062 (3) Åθ = 2.8–29.1°
c = 22.4675 (9) ŵ = 0.09 mm1
β = 100.337 (2)°T = 293 K
V = 1643.04 (11) Å3Monoclinic, colourless
Z = 40.2 × 0.2 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur-S
diffractometer
3692 independent reflections
Radiation source: fine-focus sealed tube2537 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 15.9948 pixels mm-1θmax = 27.3°, θmin = 2.2°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 99
Tmin = 0.980, Tmax = 0.990l = 1829
17182 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.3308P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3692 reflectionsΔρmax = 0.21 e Å3
211 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0173 (18)
Crystal data top
C18H17NO4V = 1643.04 (11) Å3
Mr = 311.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.6463 (4) ŵ = 0.09 mm1
b = 7.7062 (3) ÅT = 293 K
c = 22.4675 (9) Å0.2 × 0.2 × 0.2 mm
β = 100.337 (2)°
Data collection top
Oxford Diffraction Xcalibur-S
diffractometer
3692 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2537 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.990Rint = 0.029
17182 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
3692 reflectionsΔρmin = 0.18 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.00948 (17)0.7108 (2)0.07286 (7)0.0513 (4)
H10.08180.70200.10620.062*
C20.09006 (15)0.56814 (19)0.05966 (6)0.0444 (3)
C30.20363 (17)0.5708 (2)0.01196 (7)0.0583 (4)
H30.21810.66770.01300.070*
C40.29464 (18)0.4335 (3)0.00100 (8)0.0667 (5)
H40.37110.43840.03070.080*
C50.27291 (18)0.2889 (3)0.03682 (8)0.0626 (5)
H50.33440.19530.02900.075*
C60.16062 (18)0.2804 (2)0.08442 (8)0.0566 (4)
H60.14590.18150.10840.068*
C70.07031 (15)0.4206 (2)0.09599 (6)0.0449 (4)
C80.08136 (16)0.2771 (2)0.17851 (7)0.0489 (4)
H8A0.11780.18900.15460.059*
H8B0.00140.22940.19370.059*
C90.19303 (15)0.33459 (19)0.22971 (7)0.0447 (4)
C100.34042 (17)0.3505 (2)0.21965 (8)0.0532 (4)
C110.4897 (2)0.3269 (3)0.14769 (11)0.0870 (7)
H11A0.52010.44550.15220.130*
H11B0.48650.29090.10660.130*
H11C0.55460.25460.17410.130*
C120.16887 (15)0.37404 (19)0.28457 (7)0.0460 (4)
H120.24780.40400.31290.055*
C130.03513 (16)0.3767 (2)0.30627 (7)0.0503 (4)
C140.09178 (17)0.4264 (3)0.27074 (9)0.0672 (5)
H140.09350.46380.23130.081*
C150.2148 (2)0.4205 (3)0.29358 (13)0.0915 (8)
H150.29950.45310.26950.110*
C160.2125 (3)0.3667 (3)0.35192 (16)0.1059 (9)
H160.29630.35820.36680.127*
C170.0873 (3)0.3256 (3)0.38844 (14)0.1111 (9)
H170.08560.29310.42840.133*
C180.0351 (2)0.3325 (3)0.36579 (10)0.0784 (6)
H180.12010.30700.39100.094*
N10.00127 (14)0.84521 (17)0.04087 (6)0.0510 (3)
O10.10817 (14)0.96479 (16)0.06224 (6)0.0694 (4)
H1A0.10181.04830.03930.104*
O20.04067 (12)0.42920 (14)0.14275 (5)0.0603 (3)
O30.43880 (12)0.3942 (2)0.25704 (7)0.0802 (4)
O40.35180 (13)0.31127 (18)0.16290 (6)0.0711 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0566 (9)0.0505 (9)0.0424 (8)0.0007 (7)0.0024 (7)0.0057 (7)
C20.0450 (8)0.0486 (8)0.0387 (7)0.0017 (6)0.0054 (6)0.0016 (6)
C30.0599 (10)0.0615 (10)0.0477 (9)0.0048 (8)0.0056 (7)0.0005 (8)
C40.0548 (10)0.0810 (13)0.0565 (10)0.0004 (9)0.0112 (8)0.0104 (9)
C50.0542 (10)0.0704 (11)0.0611 (11)0.0158 (8)0.0046 (8)0.0129 (9)
C60.0598 (10)0.0564 (10)0.0524 (9)0.0108 (8)0.0066 (8)0.0012 (8)
C70.0429 (7)0.0521 (9)0.0388 (7)0.0026 (6)0.0044 (6)0.0012 (6)
C80.0527 (9)0.0446 (8)0.0472 (8)0.0008 (7)0.0028 (7)0.0060 (7)
C90.0425 (8)0.0404 (8)0.0496 (9)0.0035 (6)0.0038 (6)0.0074 (6)
C100.0487 (9)0.0499 (9)0.0610 (10)0.0058 (7)0.0096 (8)0.0053 (8)
C110.0764 (13)0.0988 (16)0.0972 (16)0.0140 (12)0.0463 (12)0.0203 (13)
C120.0402 (7)0.0468 (8)0.0478 (8)0.0013 (6)0.0009 (6)0.0050 (7)
C130.0474 (8)0.0473 (9)0.0556 (9)0.0004 (7)0.0074 (7)0.0001 (7)
C140.0465 (9)0.0818 (13)0.0711 (12)0.0038 (9)0.0042 (8)0.0141 (10)
C150.0447 (10)0.0960 (17)0.134 (2)0.0010 (10)0.0160 (12)0.0333 (16)
C160.0896 (18)0.0783 (16)0.172 (3)0.0038 (13)0.0828 (19)0.0029 (17)
C170.123 (2)0.1042 (19)0.128 (2)0.0311 (17)0.0813 (19)0.0423 (17)
C180.0792 (13)0.0869 (14)0.0748 (13)0.0201 (11)0.0293 (11)0.0233 (11)
N10.0582 (8)0.0473 (8)0.0453 (7)0.0023 (6)0.0031 (6)0.0017 (6)
O10.0836 (9)0.0544 (7)0.0620 (8)0.0171 (6)0.0088 (6)0.0092 (6)
O20.0628 (7)0.0523 (7)0.0563 (7)0.0121 (5)0.0151 (5)0.0150 (5)
O30.0425 (7)0.1103 (11)0.0870 (9)0.0043 (7)0.0093 (6)0.0138 (8)
O40.0638 (8)0.0893 (9)0.0651 (8)0.0080 (7)0.0243 (6)0.0060 (7)
Geometric parameters (Å, º) top
C1—N11.2553 (19)C10—O41.334 (2)
C1—C21.455 (2)C11—O41.437 (2)
C1—H10.9300C11—H11A0.9600
C2—C31.388 (2)C11—H11B0.9600
C2—C71.393 (2)C11—H11C0.9600
C3—C41.369 (2)C12—C131.459 (2)
C3—H30.9300C12—H120.9300
C4—C51.369 (3)C13—C181.380 (2)
C4—H40.9300C13—C141.390 (2)
C5—C61.380 (2)C14—C151.376 (3)
C5—H50.9300C14—H140.9300
C6—C71.383 (2)C15—C161.371 (4)
C6—H60.9300C15—H150.9300
C7—O21.3604 (17)C16—C171.370 (4)
C8—O21.4356 (17)C16—H160.9300
C8—C91.495 (2)C17—C181.368 (3)
C8—H8A0.9700C17—H170.9300
C8—H8B0.9700C18—H180.9300
C9—C121.330 (2)N1—O11.4019 (17)
C9—C101.484 (2)O1—H1A0.8200
C10—O31.1976 (19)
N1—C1—C2122.37 (14)O4—C10—C9111.86 (14)
N1—C1—H1118.8O4—C11—H11A109.5
C2—C1—H1118.8O4—C11—H11B109.5
C3—C2—C7118.05 (14)H11A—C11—H11B109.5
C3—C2—C1123.16 (14)O4—C11—H11C109.5
C7—C2—C1118.78 (12)H11A—C11—H11C109.5
C4—C3—C2121.30 (16)H11B—C11—H11C109.5
C4—C3—H3119.4C9—C12—C13128.71 (14)
C2—C3—H3119.4C9—C12—H12115.6
C5—C4—C3119.87 (15)C13—C12—H12115.6
C5—C4—H4120.1C18—C13—C14118.13 (17)
C3—C4—H4120.1C18—C13—C12118.30 (15)
C4—C5—C6120.67 (16)C14—C13—C12123.54 (15)
C4—C5—H5119.7C15—C14—C13120.4 (2)
C6—C5—H5119.7C15—C14—H14119.8
C5—C6—C7119.28 (16)C13—C14—H14119.8
C5—C6—H6120.4C16—C15—C14119.9 (2)
C7—C6—H6120.4C16—C15—H15120.0
O2—C7—C6124.41 (14)C14—C15—H15120.0
O2—C7—C2114.76 (13)C17—C16—C15120.3 (2)
C6—C7—C2120.82 (13)C17—C16—H16119.9
O2—C8—C9105.98 (12)C15—C16—H16119.9
O2—C8—H8A110.5C18—C17—C16119.7 (2)
C9—C8—H8A110.5C18—C17—H17120.2
O2—C8—H8B110.5C16—C17—H17120.2
C9—C8—H8B110.5C17—C18—C13121.3 (2)
H8A—C8—H8B108.7C17—C18—H18119.3
C12—C9—C10117.02 (14)C13—C18—H18119.3
C12—C9—C8123.97 (14)C1—N1—O1112.30 (12)
C10—C9—C8119.01 (14)N1—O1—H1A109.5
O3—C10—O4122.93 (16)C7—O2—C8119.38 (12)
O3—C10—C9125.20 (16)C10—O4—C11116.56 (16)
N1—C1—C2—C31.8 (3)C10—C9—C12—C13177.38 (14)
N1—C1—C2—C7177.49 (15)C8—C9—C12—C132.3 (2)
C7—C2—C3—C40.5 (2)C9—C12—C13—C18146.92 (19)
C1—C2—C3—C4179.80 (17)C9—C12—C13—C1435.1 (3)
C2—C3—C4—C51.1 (3)C18—C13—C14—C154.1 (3)
C3—C4—C5—C60.6 (3)C12—C13—C14—C15177.96 (17)
C4—C5—C6—C70.5 (3)C13—C14—C15—C160.5 (3)
C5—C6—C7—O2177.67 (16)C14—C15—C16—C172.7 (4)
C5—C6—C7—C21.1 (3)C15—C16—C17—C182.3 (4)
C3—C2—C7—O2178.30 (14)C16—C17—C18—C131.4 (4)
C1—C2—C7—O22.4 (2)C14—C13—C18—C174.6 (3)
C3—C2—C7—C60.6 (2)C12—C13—C18—C17177.4 (2)
C1—C2—C7—C6178.70 (15)C2—C1—N1—O1179.94 (14)
O2—C8—C9—C1297.38 (17)C6—C7—O2—C88.8 (2)
O2—C8—C9—C1082.28 (16)C2—C7—O2—C8172.33 (14)
C12—C9—C10—O30.7 (2)C9—C8—O2—C7173.35 (13)
C8—C9—C10—O3179.59 (16)O3—C10—O4—C111.1 (3)
C12—C9—C10—O4178.71 (14)C9—C10—O4—C11178.38 (15)
C8—C9—C10—O41.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.822.062.7836 (19)146
C15—H15···O3ii0.932.533.300 (2)140
Symmetry codes: (i) x, y+2, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC18H17NO4
Mr311.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.6463 (4), 7.7062 (3), 22.4675 (9)
β (°) 100.337 (2)
V3)1643.04 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur-S
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.980, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
17182, 3692, 2537
Rint0.029
(sin θ/λ)max1)0.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 1.02
No. of reflections3692
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.822.062.7836 (19)146
C15—H15···O3ii0.932.533.300 (2)140
Symmetry codes: (i) x, y+2, z; (ii) x1, y, z.
 

Acknowledgements

SA thanks the UGC, India, for financial support.

References

First citationAltug, M. E., Serarslan, Y. & Bal, R. (2008). Brain Res. 1201, 135–142.  Web of Science PubMed CAS Google Scholar
First citationAtes, B., Dogru, M. I. & Gul, M. (2006). Fundam. Clin. Pharmacol. 20, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAtik, E., Goeruer, S. & Kiper, A. N. (2006). Pharmacol. Res. 54, 293–297.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–168.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGovindan, E., SakthiMurugesan, K., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2753.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHwang, D. J., Kim, S. N. & Choi, J. H. (2001). Bioorg. Med. Chem. 9, 1429–1437.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPadinchare, R., Irina, V., Paul, C., Dirk, V. B., Koen, A. & Achiel, H. (2001). Bioorg. Med. Chem. Lett. 11, 215–217.  Web of Science PubMed Google Scholar
First citationSakthiMurugesan, K., Govindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2754.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, D., Zhang, X. & Guo, L. (2009). Acta Cryst. E65, o90.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds