organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-({2-[(E)-(Hy­dr­oxy­imino)­meth­yl]phen­­oxy}meth­yl)-3-p-tolyl­acrylo­nitrile

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Chennai 600 025, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 19 December 2011; accepted 21 January 2012; online 4 February 2012)

In the title compound, C18H16N2O2, the hy­droxy­ethanimine group is essentially coplanar with the ring to which it is attached (C—C—N—O torsion angle = −176.9°). Mol­ecules are linked into cyclic centrosymmetric R22(6) dimers via O—H⋯N hydrogen bonds.

Related literature

For the structures of other acrylate derivatives, see: Zhang et al. (2009[Zhang, D., Zhang, X. & Guo, L. (2009). Acta Cryst. E65, o90.]); Wang et al. (2011[Wang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354.]); SakthiMurugesan et al. (2011[SakthiMurugesan, K., Govindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2754.]); Govindan et al. (2011[Govindan, E., SakthiMurugesan, K., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2753.]). For the use of oxime ligands in coordination chemistry, see: Chaudhuri (2003[Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143-168.]). For the biological activity of caffeic acids, see: Hwang et al. (2001[Hwang, D. J., Kim, S. N. & Choi, J. H. (2001). Bioorg. Med. Chem. 9, 1429-1437.]); Altug et al. (2008[Altug, M. E., Serarslan, Y. & Bal, R. (2008). Brain Res. 1201, 135-142.]); Ates et al. (2006[Ates, B., Dogru, M. I. & Gul, M. (2006). Fundam. Clin. Pharmacol. 20, 283-289.]); Atik et al. (2006[Atik, E., Goeruer, S. & Kiper, A. N. (2006). Pharmacol. Res. 54, 293-297.]); Padinchare et al. (2001[Padinchare, R., Irina, V., Paul, C., Dirk, V. B., Koen, A. & Achiel, H. (2001). Bioorg. Med. Chem. Lett. 11, 215-217.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2O2

  • Mr = 292.33

  • Triclinic, [P \overline 1]

  • a = 8.4851 (2) Å

  • b = 9.3900 (3) Å

  • c = 10.0779 (3) Å

  • α = 100.208 (2)°

  • β = 90.725 (1)°

  • γ = 105.206 (1)°

  • V = 761.10 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur-S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.980, Tmax = 0.990

  • 18160 measured reflections

  • 4229 independent reflections

  • 3031 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.151

  • S = 1.03

  • 4229 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1i 0.82 2.10 2.795 (2) 143
Symmetry code: (i) -x+1, -y+2, -z+2.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Recently, 2-cyanoacrylates have been extensively used as agrochemicals because of their unique mechanism of action and good environmental profiles (Zhang et al., 2009). Oximes are a classical type of chelating ligands which are widely used in coordination and analytical chemistry (Chaudhuri, 2003).Some naturally occurring caffeic acids and their esters attract much attention in biology and medicine (Hwang et al., 2001; Altug et al., 2008).These compounds show antiviral, antibacterial, vasoactive, antiatherogenic, antiproliferative, antioxidant and antiinflammatory properties (Atik et al.,2006; Padinchare et al., 2001; Ates et al., 2006). Against this background,and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out and the results are presented here. X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The oxime group having the C=N forming an E configuration.the hydroxy ethanimine group is essentially coplanar with the ring to which it is attached.

The hydroxy ethanimine group in the molecules are linked into cyclic centrosymmetric dimers via O—H···N hydrogen bonds with the motif R 2 2(6) (Wang et al., 2011; Govindan et al., 2011; SakthiMurugesan et al., 2011). The crystal packing is stabilized by intermolecular O—H···N hydrogen bonds (Fig. 2).

Related literature top

For the structures of other acrylate derivatives, see: Zhang et al. (2009); Wang et al. (2011); SakthiMurugesan et al. (2011); Govindan et al. (2011). For the use of oxime ligands in coordination chemistry, see: Chaudhuri (2003). For the biological activity of caffeic acids, see: Hwang et al. (2001); Altug et al. (2008); Ates et al. (2006); Atik et al. (2006); Padinchare et al. (2001).

Experimental top

To a stirred solution of (E)-2-((2-formylphenoxy)methyl)-3-p-tolylacrylonitrile (4 mmol) in 10 ml of EtOH/H2O mixture (1:1) was added NH2OH.HCl (6 mmol) in the presence of 50% NaOH at room temperature. Then the reaction mixture was allowed to stir at room temperature for 1.5 h. After completion of the reaction, solvent was removed and the crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3 τimes 15 ml). The combined organic layer was washed with brine (2 τimes 10 ml) and dried over anhydrous Na2SO4 and then evaporated under reduced pressure to obtain (E)-2-((2-((E)-(Hydroxyimino)methyl)phenoxy)methyl)-3-p-tolylacrylonitrile as a colourless solid.

Refinement top

H atoms were found in a difference map but treated as riding with O-H = 0.82Å, and C-H = 0.93-0.97Å. U(H) was set to 1.5 Ueq(O, Cmethyl) or 1.2 Ueq(C)

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A view of the crystal packing. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
(E)-2-({2-[(E)-(Hydroxyimino)methyl]phenoxy}methyl)- 3-p-tolylacrylonitrile top
Crystal data top
C18H16N2O2Z = 2
Mr = 292.33F(000) = 308
Triclinic, P1Dx = 1.276 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4851 (2) ÅCell parameters from 8725 reflections
b = 9.3900 (3) Åθ = 2.8–29.1°
c = 10.0779 (3) ŵ = 0.08 mm1
α = 100.208 (2)°T = 293 K
β = 90.725 (1)°Triclinic, colourless
γ = 105.206 (1)°0.2 × 0.2 × 0.2 mm
V = 761.10 (4) Å3
Data collection top
Oxford Diffraction Xcalibur-S
diffractometer
4229 independent reflections
Radiation source: fine-focus sealed tube3031 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 15.9948 pixels mm-1θmax = 29.6°, θmin = 2.1°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1212
Tmin = 0.980, Tmax = 0.990l = 1313
18160 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0732P)2 + 0.135P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4229 reflectionsΔρmax = 0.24 e Å3
201 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0173 (18)
Crystal data top
C18H16N2O2γ = 105.206 (1)°
Mr = 292.33V = 761.10 (4) Å3
Triclinic, P1Z = 2
a = 8.4851 (2) ÅMo Kα radiation
b = 9.3900 (3) ŵ = 0.08 mm1
c = 10.0779 (3) ÅT = 293 K
α = 100.208 (2)°0.2 × 0.2 × 0.2 mm
β = 90.725 (1)°
Data collection top
Oxford Diffraction Xcalibur-S
diffractometer
4229 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3031 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.990Rint = 0.022
18160 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
4229 reflectionsΔρmin = 0.18 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2633 (2)0.81093 (18)1.11597 (16)0.0584 (4)
H10.20240.85441.17910.070*
C20.22978 (17)0.64825 (16)1.09291 (13)0.0453 (3)
C30.13864 (19)0.57501 (19)1.18740 (15)0.0561 (4)
H30.10030.63181.25850.067*
C40.10362 (19)0.42252 (19)1.17926 (16)0.0589 (4)
H40.04030.37671.24250.071*
C50.1631 (2)0.33864 (18)1.07685 (16)0.0586 (4)
H50.14290.23561.07210.070*
C60.25320 (19)0.40619 (16)0.98021 (14)0.0532 (3)
H60.29380.34820.91150.064*
C70.28343 (16)0.55934 (15)0.98496 (12)0.0421 (3)
C80.3950 (2)0.53835 (16)0.76860 (13)0.0522 (3)
H8A0.30040.45350.73960.063*
H8B0.48740.50030.78660.063*
C90.43216 (17)0.63100 (15)0.66042 (12)0.0450 (3)
C100.29368 (19)0.66178 (18)0.60167 (15)0.0559 (4)
C110.58348 (17)0.67335 (15)0.61876 (13)0.0460 (3)
H110.66090.64330.66500.055*
C120.64990 (16)0.75770 (15)0.51448 (12)0.0435 (3)
C130.81374 (17)0.77192 (17)0.48925 (14)0.0495 (3)
H130.87460.72720.53800.059*
C140.88750 (18)0.85082 (17)0.39364 (15)0.0549 (4)
H140.99740.85890.37950.066*
C150.80160 (19)0.91823 (16)0.31820 (14)0.0536 (4)
C160.6389 (2)0.9040 (2)0.34270 (17)0.0634 (4)
H160.57870.94870.29330.076*
C170.56333 (19)0.8258 (2)0.43805 (17)0.0599 (4)
H170.45350.81820.45170.072*
C180.8817 (3)1.0064 (2)0.21478 (18)0.0740 (5)
H18A0.84240.95110.12580.111*
H18B0.99821.02320.22470.111*
H18C0.85581.10130.22780.111*
N10.36637 (16)0.89828 (13)1.05886 (12)0.0535 (3)
N20.1784 (2)0.6810 (2)0.55663 (18)0.0851 (5)
O10.37363 (18)1.04895 (13)1.10956 (14)0.0795 (4)
H1A0.44511.10351.07330.119*
O20.36281 (13)0.63175 (10)0.88863 (9)0.0495 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0724 (10)0.0543 (9)0.0521 (8)0.0226 (7)0.0238 (7)0.0100 (7)
C20.0489 (7)0.0495 (7)0.0402 (6)0.0151 (6)0.0072 (5)0.0123 (5)
C30.0607 (8)0.0672 (10)0.0479 (7)0.0241 (7)0.0193 (6)0.0195 (7)
C40.0598 (9)0.0687 (10)0.0552 (8)0.0151 (7)0.0152 (7)0.0322 (8)
C50.0720 (10)0.0498 (8)0.0534 (8)0.0072 (7)0.0059 (7)0.0218 (7)
C60.0708 (9)0.0444 (8)0.0419 (7)0.0102 (7)0.0085 (6)0.0091 (6)
C70.0475 (6)0.0442 (7)0.0330 (6)0.0075 (5)0.0036 (5)0.0102 (5)
C80.0743 (9)0.0423 (7)0.0355 (6)0.0098 (6)0.0139 (6)0.0035 (5)
C90.0583 (8)0.0414 (7)0.0322 (6)0.0099 (6)0.0098 (5)0.0037 (5)
C100.0535 (8)0.0653 (10)0.0487 (8)0.0125 (7)0.0183 (6)0.0147 (7)
C110.0536 (7)0.0481 (7)0.0361 (6)0.0132 (6)0.0034 (5)0.0078 (5)
C120.0467 (7)0.0444 (7)0.0368 (6)0.0085 (5)0.0052 (5)0.0059 (5)
C130.0479 (7)0.0519 (8)0.0467 (7)0.0115 (6)0.0030 (5)0.0064 (6)
C140.0498 (7)0.0533 (8)0.0547 (8)0.0060 (6)0.0144 (6)0.0031 (7)
C150.0655 (9)0.0440 (7)0.0430 (7)0.0021 (6)0.0115 (6)0.0042 (6)
C160.0644 (9)0.0693 (11)0.0619 (9)0.0150 (8)0.0042 (7)0.0307 (8)
C170.0475 (7)0.0738 (11)0.0657 (9)0.0170 (7)0.0114 (7)0.0310 (8)
C180.0942 (13)0.0603 (10)0.0604 (10)0.0033 (9)0.0250 (9)0.0171 (8)
N10.0721 (8)0.0417 (6)0.0470 (6)0.0179 (6)0.0113 (6)0.0043 (5)
N20.0583 (9)0.1209 (15)0.0875 (11)0.0292 (9)0.0200 (8)0.0404 (11)
O10.1108 (11)0.0418 (6)0.0846 (9)0.0226 (6)0.0388 (8)0.0032 (6)
O20.0706 (6)0.0383 (5)0.0342 (4)0.0058 (4)0.0158 (4)0.0051 (4)
Geometric parameters (Å, º) top
C1—N11.2541 (19)C10—N21.143 (2)
C1—C21.454 (2)C11—C121.4578 (18)
C1—H10.9300C11—H110.9300
C2—C31.3963 (19)C12—C131.3923 (19)
C2—C71.4063 (17)C12—C171.396 (2)
C3—C41.371 (2)C13—C141.376 (2)
C3—H30.9300C13—H130.9300
C4—C51.369 (2)C14—C151.382 (2)
C4—H40.9300C14—H140.9300
C5—C61.385 (2)C15—C161.382 (2)
C5—H50.9300C15—C181.504 (2)
C6—C71.3850 (19)C16—C171.376 (2)
C6—H60.9300C16—H160.9300
C7—O21.3670 (15)C17—H170.9300
C8—O21.4371 (15)C18—H18A0.9600
C8—C91.4985 (19)C18—H18B0.9600
C8—H8A0.9700C18—H18C0.9600
C8—H8B0.9700N1—O11.4013 (15)
C9—C111.3371 (19)O1—H1A0.8200
C9—C101.427 (2)
N1—C1—C2126.24 (13)C9—C11—C12132.12 (13)
N1—C1—H1116.9C9—C11—H11113.9
C2—C1—H1116.9C12—C11—H11113.9
C3—C2—C7117.57 (13)C13—C12—C17117.22 (13)
C3—C2—C1116.91 (12)C13—C12—C11117.23 (12)
C7—C2—C1125.51 (12)C17—C12—C11125.54 (12)
C4—C3—C2122.44 (14)C14—C13—C12121.36 (13)
C4—C3—H3118.8C14—C13—H13119.3
C2—C3—H3118.8C12—C13—H13119.3
C5—C4—C3119.14 (13)C13—C14—C15121.31 (13)
C5—C4—H4120.4C13—C14—H14119.3
C3—C4—H4120.4C15—C14—H14119.3
C4—C5—C6120.48 (14)C16—C15—C14117.50 (14)
C4—C5—H5119.8C16—C15—C18120.80 (16)
C6—C5—H5119.8C14—C15—C18121.69 (15)
C7—C6—C5120.58 (13)C17—C16—C15121.93 (15)
C7—C6—H6119.7C17—C16—H16119.0
C5—C6—H6119.7C15—C16—H16119.0
O2—C7—C6123.63 (12)C16—C17—C12120.67 (14)
O2—C7—C2116.70 (11)C16—C17—H17119.7
C6—C7—C2119.66 (12)C12—C17—H17119.7
O2—C8—C9108.34 (11)C15—C18—H18A109.5
O2—C8—H8A110.0C15—C18—H18B109.5
C9—C8—H8A110.0H18A—C18—H18B109.5
O2—C8—H8B110.0C15—C18—H18C109.5
C9—C8—H8B110.0H18A—C18—H18C109.5
H8A—C8—H8B108.4H18B—C18—H18C109.5
C11—C9—C10123.51 (12)C1—N1—O1111.61 (12)
C11—C9—C8121.38 (13)N1—O1—H1A109.5
C10—C9—C8115.02 (12)C7—O2—C8116.51 (10)
N2—C10—C9176.93 (17)
N1—C1—C2—C3165.75 (16)C8—C9—C11—C12177.74 (13)
N1—C1—C2—C713.2 (3)C9—C11—C12—C13174.78 (14)
C7—C2—C3—C41.3 (2)C9—C11—C12—C175.4 (2)
C1—C2—C3—C4177.81 (15)C17—C12—C13—C140.5 (2)
C2—C3—C4—C51.6 (2)C11—C12—C13—C14179.33 (12)
C3—C4—C5—C62.0 (2)C12—C13—C14—C150.4 (2)
C4—C5—C6—C70.5 (2)C13—C14—C15—C160.3 (2)
C5—C6—C7—O2175.94 (13)C13—C14—C15—C18179.17 (14)
C5—C6—C7—C23.5 (2)C14—C15—C16—C170.2 (2)
C3—C2—C7—O2175.69 (12)C18—C15—C16—C17179.07 (16)
C1—C2—C7—O25.3 (2)C15—C16—C17—C120.2 (3)
C3—C2—C7—C63.8 (2)C13—C12—C17—C160.4 (2)
C1—C2—C7—C6175.23 (14)C11—C12—C17—C16179.43 (15)
O2—C8—C9—C11108.86 (14)C2—C1—N1—O1176.87 (15)
O2—C8—C9—C1074.60 (16)C6—C7—O2—C88.7 (2)
C11—C9—C10—N2156 (3)C2—C7—O2—C8170.73 (12)
C8—C9—C10—N221 (3)C9—C8—O2—C7162.41 (12)
C10—C9—C11—C121.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.822.102.795 (2)143
Symmetry code: (i) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC18H16N2O2
Mr292.33
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.4851 (2), 9.3900 (3), 10.0779 (3)
α, β, γ (°)100.208 (2), 90.725 (1), 105.206 (1)
V3)761.10 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur-S
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.980, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
18160, 4229, 3031
Rint0.022
(sin θ/λ)max1)0.695
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.151, 1.03
No. of reflections4229
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.822.102.795 (2)143
Symmetry code: (i) x+1, y+2, z+2.
 

Acknowledgements

SA thanks the UGC, India, for financial support.

References

First citationAltug, M. E., Serarslan, Y. & Bal, R. (2008). Brain Res. 1201, 135–142.  Web of Science PubMed CAS Google Scholar
First citationAtes, B., Dogru, M. I. & Gul, M. (2006). Fundam. Clin. Pharmacol. 20, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAtik, E., Goeruer, S. & Kiper, A. N. (2006). Pharmacol. Res. 54, 293–297.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–168.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGovindan, E., SakthiMurugesan, K., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2753.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHwang, D. J., Kim, S. N. & Choi, J. H. (2001). Bioorg. Med. Chem. 9, 1429–1437.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPadinchare, R., Irina, V., Paul, C., Dirk, V. B., Koen, A. & Achiel, H. (2001). Bioorg. Med. Chem. Lett. 11, 215–217.  Web of Science PubMed Google Scholar
First citationSakthiMurugesan, K., Govindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2754.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, D., Zhang, X. & Guo, L. (2009). Acta Cryst. E65, o90.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds