organic compounds
(E)-2-({2-[(E)-(Hydroxyimino)methyl]phenoxy}methyl)-3-p-tolylacrylonitrile
aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Chennai 600 025, India
*Correspondence e-mail: aravindhanpresidency@gmail.com
In the title compound, C18H16N2O2, the hydroxyethanimine group is essentially coplanar with the ring to which it is attached (C—C—N—O torsion angle = −176.9°). Molecules are linked into cyclic centrosymmetric R22(6) dimers via O—H⋯N hydrogen bonds.
Related literature
For the structures of other acrylate derivatives, see: Zhang et al. (2009); Wang et al. (2011); SakthiMurugesan et al. (2011); Govindan et al. (2011). For the use of oxime ligands in coordination chemistry, see: Chaudhuri (2003). For the biological activity of caffeic acids, see: Hwang et al. (2001); Altug et al. (2008); Ates et al. (2006); Atik et al. (2006); Padinchare et al. (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S160053681200270X/bt5756sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681200270X/bt5756Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681200270X/bt5756Isup3.cml
To a stirred solution of (E)-2-((2-formylphenoxy)methyl)-3-p-tolylacrylonitrile (4 mmol) in 10 ml of EtOH/H2O mixture (1:1) was added NH2OH.HCl (6 mmol) in the presence of 50% NaOH at room temperature. Then the reaction mixture was allowed to stir at room temperature for 1.5 h. After completion of the reaction, solvent was removed and the crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3 τimes 15 ml). The combined organic layer was washed with brine (2 τimes 10 ml) and dried over anhydrous Na2SO4 and then evaporated under reduced pressure to obtain (E)-2-((2-((E)-(Hydroxyimino)methyl)phenoxy)methyl)-3-p-tolylacrylonitrile as a colourless solid.
H atoms were found in a difference map but treated as riding with O-H = 0.82Å, and C-H = 0.93-0.97Å. U(H) was set to 1.5 Ueq(O, Cmethyl) or 1.2 Ueq(C)
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).C18H16N2O2 | Z = 2 |
Mr = 292.33 | F(000) = 308 |
Triclinic, P1 | Dx = 1.276 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.4851 (2) Å | Cell parameters from 8725 reflections |
b = 9.3900 (3) Å | θ = 2.8–29.1° |
c = 10.0779 (3) Å | µ = 0.08 mm−1 |
α = 100.208 (2)° | T = 293 K |
β = 90.725 (1)° | Triclinic, colourless |
γ = 105.206 (1)° | 0.2 × 0.2 × 0.2 mm |
V = 761.10 (4) Å3 |
Oxford Diffraction Xcalibur-S diffractometer | 4229 independent reflections |
Radiation source: fine-focus sealed tube | 3031 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 15.9948 pixels mm-1 | θmax = 29.6°, θmin = 2.1° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −12→12 |
Tmin = 0.980, Tmax = 0.990 | l = −13→13 |
18160 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.151 | w = 1/[σ2(Fo2) + (0.0732P)2 + 0.135P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
4229 reflections | Δρmax = 0.24 e Å−3 |
201 parameters | Δρmin = −0.18 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008) |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0173 (18) |
C18H16N2O2 | γ = 105.206 (1)° |
Mr = 292.33 | V = 761.10 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.4851 (2) Å | Mo Kα radiation |
b = 9.3900 (3) Å | µ = 0.08 mm−1 |
c = 10.0779 (3) Å | T = 293 K |
α = 100.208 (2)° | 0.2 × 0.2 × 0.2 mm |
β = 90.725 (1)° |
Oxford Diffraction Xcalibur-S diffractometer | 4229 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 3031 reflections with I > 2σ(I) |
Tmin = 0.980, Tmax = 0.990 | Rint = 0.022 |
18160 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.151 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.24 e Å−3 |
4229 reflections | Δρmin = −0.18 e Å−3 |
201 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2633 (2) | 0.81093 (18) | 1.11597 (16) | 0.0584 (4) | |
H1 | 0.2024 | 0.8544 | 1.1791 | 0.070* | |
C2 | 0.22978 (17) | 0.64825 (16) | 1.09291 (13) | 0.0453 (3) | |
C3 | 0.13864 (19) | 0.57501 (19) | 1.18740 (15) | 0.0561 (4) | |
H3 | 0.1003 | 0.6318 | 1.2585 | 0.067* | |
C4 | 0.10362 (19) | 0.42252 (19) | 1.17926 (16) | 0.0589 (4) | |
H4 | 0.0403 | 0.3767 | 1.2425 | 0.071* | |
C5 | 0.1631 (2) | 0.33864 (18) | 1.07685 (16) | 0.0586 (4) | |
H5 | 0.1429 | 0.2356 | 1.0721 | 0.070* | |
C6 | 0.25320 (19) | 0.40619 (16) | 0.98021 (14) | 0.0532 (3) | |
H6 | 0.2938 | 0.3482 | 0.9115 | 0.064* | |
C7 | 0.28343 (16) | 0.55934 (15) | 0.98496 (12) | 0.0421 (3) | |
C8 | 0.3950 (2) | 0.53835 (16) | 0.76860 (13) | 0.0522 (3) | |
H8A | 0.3004 | 0.4535 | 0.7396 | 0.063* | |
H8B | 0.4874 | 0.5003 | 0.7866 | 0.063* | |
C9 | 0.43216 (17) | 0.63100 (15) | 0.66042 (12) | 0.0450 (3) | |
C10 | 0.29368 (19) | 0.66178 (18) | 0.60167 (15) | 0.0559 (4) | |
C11 | 0.58348 (17) | 0.67335 (15) | 0.61876 (13) | 0.0460 (3) | |
H11 | 0.6609 | 0.6433 | 0.6650 | 0.055* | |
C12 | 0.64990 (16) | 0.75770 (15) | 0.51448 (12) | 0.0435 (3) | |
C13 | 0.81374 (17) | 0.77192 (17) | 0.48925 (14) | 0.0495 (3) | |
H13 | 0.8746 | 0.7272 | 0.5380 | 0.059* | |
C14 | 0.88750 (18) | 0.85082 (17) | 0.39364 (15) | 0.0549 (4) | |
H14 | 0.9974 | 0.8589 | 0.3795 | 0.066* | |
C15 | 0.80160 (19) | 0.91823 (16) | 0.31820 (14) | 0.0536 (4) | |
C16 | 0.6389 (2) | 0.9040 (2) | 0.34270 (17) | 0.0634 (4) | |
H16 | 0.5787 | 0.9487 | 0.2933 | 0.076* | |
C17 | 0.56333 (19) | 0.8258 (2) | 0.43805 (17) | 0.0599 (4) | |
H17 | 0.4535 | 0.8182 | 0.4517 | 0.072* | |
C18 | 0.8817 (3) | 1.0064 (2) | 0.21478 (18) | 0.0740 (5) | |
H18A | 0.8424 | 0.9511 | 0.1258 | 0.111* | |
H18B | 0.9982 | 1.0232 | 0.2247 | 0.111* | |
H18C | 0.8558 | 1.1013 | 0.2278 | 0.111* | |
N1 | 0.36637 (16) | 0.89828 (13) | 1.05886 (12) | 0.0535 (3) | |
N2 | 0.1784 (2) | 0.6810 (2) | 0.55663 (18) | 0.0851 (5) | |
O1 | 0.37363 (18) | 1.04895 (13) | 1.10956 (14) | 0.0795 (4) | |
H1A | 0.4451 | 1.1035 | 1.0733 | 0.119* | |
O2 | 0.36281 (13) | 0.63175 (10) | 0.88863 (9) | 0.0495 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0724 (10) | 0.0543 (9) | 0.0521 (8) | 0.0226 (7) | 0.0238 (7) | 0.0100 (7) |
C2 | 0.0489 (7) | 0.0495 (7) | 0.0402 (6) | 0.0151 (6) | 0.0072 (5) | 0.0123 (5) |
C3 | 0.0607 (8) | 0.0672 (10) | 0.0479 (7) | 0.0241 (7) | 0.0193 (6) | 0.0195 (7) |
C4 | 0.0598 (9) | 0.0687 (10) | 0.0552 (8) | 0.0151 (7) | 0.0152 (7) | 0.0322 (8) |
C5 | 0.0720 (10) | 0.0498 (8) | 0.0534 (8) | 0.0072 (7) | 0.0059 (7) | 0.0218 (7) |
C6 | 0.0708 (9) | 0.0444 (8) | 0.0419 (7) | 0.0102 (7) | 0.0085 (6) | 0.0091 (6) |
C7 | 0.0475 (6) | 0.0442 (7) | 0.0330 (6) | 0.0075 (5) | 0.0036 (5) | 0.0102 (5) |
C8 | 0.0743 (9) | 0.0423 (7) | 0.0355 (6) | 0.0098 (6) | 0.0139 (6) | 0.0035 (5) |
C9 | 0.0583 (8) | 0.0414 (7) | 0.0322 (6) | 0.0099 (6) | 0.0098 (5) | 0.0037 (5) |
C10 | 0.0535 (8) | 0.0653 (10) | 0.0487 (8) | 0.0125 (7) | 0.0183 (6) | 0.0147 (7) |
C11 | 0.0536 (7) | 0.0481 (7) | 0.0361 (6) | 0.0132 (6) | 0.0034 (5) | 0.0078 (5) |
C12 | 0.0467 (7) | 0.0444 (7) | 0.0368 (6) | 0.0085 (5) | 0.0052 (5) | 0.0059 (5) |
C13 | 0.0479 (7) | 0.0519 (8) | 0.0467 (7) | 0.0115 (6) | 0.0030 (5) | 0.0064 (6) |
C14 | 0.0498 (7) | 0.0533 (8) | 0.0547 (8) | 0.0060 (6) | 0.0144 (6) | 0.0031 (7) |
C15 | 0.0655 (9) | 0.0440 (7) | 0.0430 (7) | 0.0021 (6) | 0.0115 (6) | 0.0042 (6) |
C16 | 0.0644 (9) | 0.0693 (11) | 0.0619 (9) | 0.0150 (8) | 0.0042 (7) | 0.0307 (8) |
C17 | 0.0475 (7) | 0.0738 (11) | 0.0657 (9) | 0.0170 (7) | 0.0114 (7) | 0.0310 (8) |
C18 | 0.0942 (13) | 0.0603 (10) | 0.0604 (10) | 0.0033 (9) | 0.0250 (9) | 0.0171 (8) |
N1 | 0.0721 (8) | 0.0417 (6) | 0.0470 (6) | 0.0179 (6) | 0.0113 (6) | 0.0043 (5) |
N2 | 0.0583 (9) | 0.1209 (15) | 0.0875 (11) | 0.0292 (9) | 0.0200 (8) | 0.0404 (11) |
O1 | 0.1108 (11) | 0.0418 (6) | 0.0846 (9) | 0.0226 (6) | 0.0388 (8) | 0.0032 (6) |
O2 | 0.0706 (6) | 0.0383 (5) | 0.0342 (4) | 0.0058 (4) | 0.0158 (4) | 0.0051 (4) |
C1—N1 | 1.2541 (19) | C10—N2 | 1.143 (2) |
C1—C2 | 1.454 (2) | C11—C12 | 1.4578 (18) |
C1—H1 | 0.9300 | C11—H11 | 0.9300 |
C2—C3 | 1.3963 (19) | C12—C13 | 1.3923 (19) |
C2—C7 | 1.4063 (17) | C12—C17 | 1.396 (2) |
C3—C4 | 1.371 (2) | C13—C14 | 1.376 (2) |
C3—H3 | 0.9300 | C13—H13 | 0.9300 |
C4—C5 | 1.369 (2) | C14—C15 | 1.382 (2) |
C4—H4 | 0.9300 | C14—H14 | 0.9300 |
C5—C6 | 1.385 (2) | C15—C16 | 1.382 (2) |
C5—H5 | 0.9300 | C15—C18 | 1.504 (2) |
C6—C7 | 1.3850 (19) | C16—C17 | 1.376 (2) |
C6—H6 | 0.9300 | C16—H16 | 0.9300 |
C7—O2 | 1.3670 (15) | C17—H17 | 0.9300 |
C8—O2 | 1.4371 (15) | C18—H18A | 0.9600 |
C8—C9 | 1.4985 (19) | C18—H18B | 0.9600 |
C8—H8A | 0.9700 | C18—H18C | 0.9600 |
C8—H8B | 0.9700 | N1—O1 | 1.4013 (15) |
C9—C11 | 1.3371 (19) | O1—H1A | 0.8200 |
C9—C10 | 1.427 (2) | ||
N1—C1—C2 | 126.24 (13) | C9—C11—C12 | 132.12 (13) |
N1—C1—H1 | 116.9 | C9—C11—H11 | 113.9 |
C2—C1—H1 | 116.9 | C12—C11—H11 | 113.9 |
C3—C2—C7 | 117.57 (13) | C13—C12—C17 | 117.22 (13) |
C3—C2—C1 | 116.91 (12) | C13—C12—C11 | 117.23 (12) |
C7—C2—C1 | 125.51 (12) | C17—C12—C11 | 125.54 (12) |
C4—C3—C2 | 122.44 (14) | C14—C13—C12 | 121.36 (13) |
C4—C3—H3 | 118.8 | C14—C13—H13 | 119.3 |
C2—C3—H3 | 118.8 | C12—C13—H13 | 119.3 |
C5—C4—C3 | 119.14 (13) | C13—C14—C15 | 121.31 (13) |
C5—C4—H4 | 120.4 | C13—C14—H14 | 119.3 |
C3—C4—H4 | 120.4 | C15—C14—H14 | 119.3 |
C4—C5—C6 | 120.48 (14) | C16—C15—C14 | 117.50 (14) |
C4—C5—H5 | 119.8 | C16—C15—C18 | 120.80 (16) |
C6—C5—H5 | 119.8 | C14—C15—C18 | 121.69 (15) |
C7—C6—C5 | 120.58 (13) | C17—C16—C15 | 121.93 (15) |
C7—C6—H6 | 119.7 | C17—C16—H16 | 119.0 |
C5—C6—H6 | 119.7 | C15—C16—H16 | 119.0 |
O2—C7—C6 | 123.63 (12) | C16—C17—C12 | 120.67 (14) |
O2—C7—C2 | 116.70 (11) | C16—C17—H17 | 119.7 |
C6—C7—C2 | 119.66 (12) | C12—C17—H17 | 119.7 |
O2—C8—C9 | 108.34 (11) | C15—C18—H18A | 109.5 |
O2—C8—H8A | 110.0 | C15—C18—H18B | 109.5 |
C9—C8—H8A | 110.0 | H18A—C18—H18B | 109.5 |
O2—C8—H8B | 110.0 | C15—C18—H18C | 109.5 |
C9—C8—H8B | 110.0 | H18A—C18—H18C | 109.5 |
H8A—C8—H8B | 108.4 | H18B—C18—H18C | 109.5 |
C11—C9—C10 | 123.51 (12) | C1—N1—O1 | 111.61 (12) |
C11—C9—C8 | 121.38 (13) | N1—O1—H1A | 109.5 |
C10—C9—C8 | 115.02 (12) | C7—O2—C8 | 116.51 (10) |
N2—C10—C9 | 176.93 (17) | ||
N1—C1—C2—C3 | 165.75 (16) | C8—C9—C11—C12 | 177.74 (13) |
N1—C1—C2—C7 | −13.2 (3) | C9—C11—C12—C13 | −174.78 (14) |
C7—C2—C3—C4 | 1.3 (2) | C9—C11—C12—C17 | 5.4 (2) |
C1—C2—C3—C4 | −177.81 (15) | C17—C12—C13—C14 | 0.5 (2) |
C2—C3—C4—C5 | 1.6 (2) | C11—C12—C13—C14 | −179.33 (12) |
C3—C4—C5—C6 | −2.0 (2) | C12—C13—C14—C15 | −0.4 (2) |
C4—C5—C6—C7 | −0.5 (2) | C13—C14—C15—C16 | 0.3 (2) |
C5—C6—C7—O2 | −175.94 (13) | C13—C14—C15—C18 | 179.17 (14) |
C5—C6—C7—C2 | 3.5 (2) | C14—C15—C16—C17 | −0.2 (2) |
C3—C2—C7—O2 | 175.69 (12) | C18—C15—C16—C17 | −179.07 (16) |
C1—C2—C7—O2 | −5.3 (2) | C15—C16—C17—C12 | 0.2 (3) |
C3—C2—C7—C6 | −3.8 (2) | C13—C12—C17—C16 | −0.4 (2) |
C1—C2—C7—C6 | 175.23 (14) | C11—C12—C17—C16 | 179.43 (15) |
O2—C8—C9—C11 | 108.86 (14) | C2—C1—N1—O1 | −176.87 (15) |
O2—C8—C9—C10 | −74.60 (16) | C6—C7—O2—C8 | 8.7 (2) |
C11—C9—C10—N2 | 156 (3) | C2—C7—O2—C8 | −170.73 (12) |
C8—C9—C10—N2 | −21 (3) | C9—C8—O2—C7 | 162.41 (12) |
C10—C9—C11—C12 | 1.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N1i | 0.82 | 2.10 | 2.795 (2) | 143 |
Symmetry code: (i) −x+1, −y+2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C18H16N2O2 |
Mr | 292.33 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.4851 (2), 9.3900 (3), 10.0779 (3) |
α, β, γ (°) | 100.208 (2), 90.725 (1), 105.206 (1) |
V (Å3) | 761.10 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.2 × 0.2 × 0.2 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur-S diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.980, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18160, 4229, 3031 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.695 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.151, 1.03 |
No. of reflections | 4229 |
No. of parameters | 201 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.18 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N1i | 0.82 | 2.10 | 2.795 (2) | 143 |
Symmetry code: (i) −x+1, −y+2, −z+2. |
Acknowledgements
SA thanks the UGC, India, for financial support.
References
Altug, M. E., Serarslan, Y. & Bal, R. (2008). Brain Res. 1201, 135–142. Web of Science PubMed CAS Google Scholar
Ates, B., Dogru, M. I. & Gul, M. (2006). Fundam. Clin. Pharmacol. 20, 283–289. Web of Science CrossRef PubMed CAS Google Scholar
Atik, E., Goeruer, S. & Kiper, A. N. (2006). Pharmacol. Res. 54, 293–297. Web of Science CrossRef PubMed CAS Google Scholar
Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–168. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Govindan, E., SakthiMurugesan, K., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2753. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hwang, D. J., Kim, S. N. & Choi, J. H. (2001). Bioorg. Med. Chem. 9, 1429–1437. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Padinchare, R., Irina, V., Paul, C., Dirk, V. B., Koen, A. & Achiel, H. (2001). Bioorg. Med. Chem. Lett. 11, 215–217. Web of Science PubMed Google Scholar
SakthiMurugesan, K., Govindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2754. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, D., Zhang, X. & Guo, L. (2009). Acta Cryst. E65, o90. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, 2-cyanoacrylates have been extensively used as agrochemicals because of their unique mechanism of action and good environmental profiles (Zhang et al., 2009). Oximes are a classical type of chelating ligands which are widely used in coordination and analytical chemistry (Chaudhuri, 2003).Some naturally occurring caffeic acids and their esters attract much attention in biology and medicine (Hwang et al., 2001; Altug et al., 2008).These compounds show antiviral, antibacterial, vasoactive, antiatherogenic, antiproliferative, antioxidant and antiinflammatory properties (Atik et al.,2006; Padinchare et al., 2001; Ates et al., 2006). Against this background,and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out and the results are presented here. X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The oxime group having the C=N forming an E configuration.the hydroxy ethanimine group is essentially coplanar with the ring to which it is attached.
The hydroxy ethanimine group in the molecules are linked into cyclic centrosymmetric dimers via O—H···N hydrogen bonds with the motif R 2 2(6) (Wang et al., 2011; Govindan et al., 2011; SakthiMurugesan et al., 2011). The crystal packing is stabilized by intermolecular O—H···N hydrogen bonds (Fig. 2).