organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Formyl-c-3,t-3-di­methyl-r-2,c-6-di­phenyl­piperidin-4-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 9 January 2012; accepted 16 February 2012; online 29 February 2012)

In the title compound, C20H21NO2, the piperidine ring adopts a distorted boat conformation. The phenyl rings substituted at the 2- and 6-positions of the piperidine ring subtend angles of 86.0 (1) and 67.3 (1)° with the mean plane of the piperidine ring (all six non-H atoms). The crystal packing features C—H⋯O inter­actions.

Related literature

For the biological activity of piperidine derivatives, see: Aridoss et al. (2009[Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577-592.]); Nalanishi et al. (1974[Nalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Japanese Patent No. 74-3987.]); Michael (2001[Michael, J. P. (2001). The Alkaloids. Chemistry and Biology, edited by G. A. Cordell, Vol. 55, pp. 91-258. New York: Academic Press.]); Pinder (1992[Pinder, A. R. (1992). Nat. Prod. Rep. 9, 491-504.]); Rubiralta et al. (1991[Rubiralta, M., Giralt, E. & Diez, A. (1991). Piperidine: Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and its Derivatives, pp. 225-312. Amsterdam: Elsevier.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For hydrogen-bond motifs, see: Bernstein et al.(1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21NO2

  • Mr = 307.38

  • Monoclinic, P 21 /n

  • a = 10.6604 (6) Å

  • b = 15.7278 (7) Å

  • c = 10.8066 (5) Å

  • β = 110.120 (2)°

  • V = 1701.31 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.985, Tmax = 0.985

  • 16240 measured reflections

  • 4162 independent reflections

  • 2769 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.125

  • S = 1.04

  • 4162 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.98 2.59 3.2951 (17) 129
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidine derivatives are the valued heterocyclic compounds in the field of medicinal chemistry. The compounds possessing an amide bond linkage have a wide range of biological activities such as antimicrobial, anti-inflammatory, antiviral, antimalarial and general anesthetics (Aridoss et al., 2009). Functionalized piperidines are familiar substructures found in biologically active natural products and synthetic pharmaceuticals (Michael, 2001; Pinder, 1992; Rubiralta et al., 1991). Piperidines have been found to exhibit blood cholesterol-lowering activities (Nalanishi et al., 1974). Against this background and to ascertain the molecular structure and conformation, the X-ray crystal structure determination of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The formyl substituted piperidine derivative crystallizes in monoclinic space groups P21/n. The piperidine ring adopts distorted boat conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2=0.648 (2) Å, q3 = -0.047 (1) Å, ϕ2 = -98.9 (1)° and Δs(N1 & C4)= 16.8 (1)°. The sum of the bond angles around N1 [359.2°] is in accordance with sp2 hybridization.

The carbonyl group is oriented syn to C2 [C2—N1—C7—O1=] -6.5 (2)° and anti to C6 [C6—N1—C7—O1=] -176.7 (1)°. The best plane of the piperidine ring and the attached phenyl rings [C8—C13 & C16—C21] are twisted away by 86.0 (1)° & 67.3 (1)°. The two phenyl rings are approximately perpendicular to each other with a dihedral angle of 86.5 (1)°.

The crystal packing reveals that the symmetry related molecules are linked through a network of C—H···O type of intermolecular interactions. The atom C6 at (x, y, z) donates a proton to O1 at (-1/2 + x, 1/2 - y, -1/2 + z) forming a C(5) one dimensional chain running along the ac diagonal axis (Bernstein et al., 1995).

Related literature top

For the biological activity of piperidine derivatives, see: Aridoss et al. (2009); Nalanishi et al. (1974); Michael (2001); Pinder (1992); Rubiralta et al. (1991). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al.(1995).

Experimental top

To ice-cold acetic anhydride (10 ml), 85% formic acid (5 ml) was added slowly and the resulting acetic acid–formic anhydride was cooled to 5° C and added slowly to a cold solution of piperidine-4-one (5 mmol) in anhydrous benzene (30 ml). The reaction mixture was stirred at room temperature for 5 h and the solution was poured into water (250 ml). The benzene layer was separated out, concentrated and recrystallized from benzene: pet-ether (60–80° C) in the ratio 1:1.

Refinement top

H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the molecules. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
1-Formyl-c-3,t-3-dimethyl-r- 2,c-6-diphenylpiperidin-4-one top
Crystal data top
C20H21NO2F(000) = 656
Mr = 307.38Dx = 1.200 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2769 reflections
a = 10.6604 (6) Åθ = 2.3–28.3°
b = 15.7278 (7) ŵ = 0.08 mm1
c = 10.8066 (5) ÅT = 293 K
β = 110.120 (2)°Block, yellow
V = 1701.31 (15) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD detector
diffractometer
4162 independent reflections
Radiation source: fine-focus sealed tube2769 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 139
Tmin = 0.985, Tmax = 0.985k = 1720
16240 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.2736P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4162 reflectionsΔρmax = 0.19 e Å3
209 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0063 (15)
Crystal data top
C20H21NO2V = 1701.31 (15) Å3
Mr = 307.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.6604 (6) ŵ = 0.08 mm1
b = 15.7278 (7) ÅT = 293 K
c = 10.8066 (5) Å0.20 × 0.20 × 0.20 mm
β = 110.120 (2)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
4162 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2769 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.985Rint = 0.021
16240 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
4162 reflectionsΔρmin = 0.13 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33930 (11)0.19983 (7)0.96574 (9)0.0689 (3)
O20.12616 (13)0.21093 (8)0.35746 (10)0.0845 (4)
N10.20536 (10)0.17426 (7)0.75311 (10)0.0487 (3)
C20.31776 (13)0.17185 (9)0.70280 (12)0.0483 (3)
H20.39140.20170.76880.058*
C30.28375 (14)0.22558 (9)0.57618 (13)0.0554 (4)
C40.15392 (15)0.19561 (10)0.47344 (13)0.0597 (4)
C50.05906 (14)0.14749 (10)0.52365 (12)0.0598 (4)
H5A0.07810.08720.52260.072*
H5B0.03120.15670.46330.072*
C60.06466 (13)0.17169 (9)0.66235 (13)0.0530 (3)
H60.02750.22900.65820.064*
C70.22970 (15)0.19192 (9)0.88088 (13)0.0563 (4)
H70.15580.19880.90710.068*
C80.36733 (12)0.08118 (9)0.69907 (12)0.0477 (3)
C90.45199 (14)0.04765 (10)0.81673 (13)0.0583 (4)
H90.47580.08080.89260.070*
C100.50188 (17)0.03415 (12)0.82365 (16)0.0715 (5)
H100.55800.05550.90380.086*
C110.46891 (17)0.08374 (11)0.71304 (19)0.0732 (5)
H110.50180.13890.71770.088*
C120.38724 (18)0.05151 (12)0.59586 (18)0.0781 (5)
H120.36550.08470.52010.094*
C130.33629 (16)0.03008 (11)0.58839 (15)0.0683 (4)
H130.28030.05080.50770.082*
C140.40046 (17)0.22591 (12)0.52432 (16)0.0751 (5)
H14A0.47970.24550.59230.113*
H14B0.38010.26310.44950.113*
H14C0.41480.16930.49860.113*
C150.25767 (18)0.31820 (10)0.60864 (17)0.0709 (4)
H15A0.18430.31940.64090.106*
H15B0.23630.35230.53040.106*
H15C0.33620.34040.67470.106*
C160.01874 (13)0.11249 (10)0.71207 (13)0.0553 (4)
C170.14145 (15)0.13908 (12)0.71422 (15)0.0681 (4)
H170.17200.19350.68540.082*
C180.21912 (18)0.08524 (16)0.75901 (18)0.0855 (6)
H180.30180.10350.75990.103*
C190.1747 (2)0.00528 (16)0.8021 (2)0.0905 (6)
H190.22690.03070.83260.109*
C200.0538 (2)0.02166 (14)0.8001 (2)0.0942 (6)
H200.02380.07610.82910.113*
C210.02406 (18)0.03149 (12)0.75529 (19)0.0774 (5)
H210.10630.01260.75420.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0658 (7)0.0879 (8)0.0450 (5)0.0068 (6)0.0089 (5)0.0128 (5)
O20.0962 (9)0.1036 (10)0.0445 (6)0.0147 (7)0.0125 (5)0.0114 (5)
N10.0453 (6)0.0573 (7)0.0408 (5)0.0030 (5)0.0113 (4)0.0060 (5)
C20.0450 (7)0.0562 (8)0.0407 (6)0.0011 (6)0.0112 (5)0.0026 (5)
C30.0598 (8)0.0586 (9)0.0485 (7)0.0094 (7)0.0194 (6)0.0058 (6)
C40.0674 (9)0.0618 (9)0.0452 (7)0.0186 (7)0.0135 (6)0.0028 (6)
C50.0524 (8)0.0704 (10)0.0453 (7)0.0085 (7)0.0024 (6)0.0057 (6)
C60.0457 (7)0.0581 (9)0.0497 (7)0.0070 (6)0.0095 (5)0.0057 (6)
C70.0590 (8)0.0627 (9)0.0473 (7)0.0003 (7)0.0182 (6)0.0084 (6)
C80.0401 (6)0.0572 (8)0.0456 (6)0.0030 (6)0.0144 (5)0.0026 (5)
C90.0570 (8)0.0741 (10)0.0458 (7)0.0094 (7)0.0201 (6)0.0095 (6)
C100.0744 (10)0.0827 (12)0.0666 (9)0.0262 (9)0.0358 (8)0.0315 (8)
C110.0781 (11)0.0592 (10)0.0960 (12)0.0132 (8)0.0477 (10)0.0143 (9)
C120.0754 (11)0.0703 (12)0.0831 (11)0.0124 (9)0.0204 (9)0.0172 (9)
C130.0650 (9)0.0731 (11)0.0552 (8)0.0185 (8)0.0057 (7)0.0085 (7)
C140.0763 (11)0.0899 (13)0.0677 (9)0.0150 (9)0.0357 (8)0.0199 (8)
C150.0842 (11)0.0568 (10)0.0740 (10)0.0053 (8)0.0302 (9)0.0061 (7)
C160.0469 (7)0.0628 (9)0.0522 (7)0.0006 (7)0.0117 (6)0.0136 (6)
C170.0517 (8)0.0876 (12)0.0619 (9)0.0046 (8)0.0157 (7)0.0091 (8)
C180.0546 (10)0.1252 (18)0.0783 (11)0.0028 (11)0.0249 (8)0.0087 (11)
C190.0761 (13)0.1046 (17)0.0937 (13)0.0247 (12)0.0330 (10)0.0060 (12)
C200.0880 (14)0.0718 (13)0.1283 (17)0.0076 (10)0.0441 (13)0.0039 (11)
C210.0652 (10)0.0650 (11)0.1073 (13)0.0013 (8)0.0365 (10)0.0046 (9)
Geometric parameters (Å, º) top
O1—C71.2183 (17)C10—H100.9300
O2—C41.2088 (16)C11—C121.364 (2)
N1—C71.3433 (16)C11—H110.9300
N1—C21.4768 (16)C12—C131.385 (2)
N1—C61.4837 (16)C12—H120.9300
C2—C81.5261 (19)C13—H130.9300
C2—C31.5416 (18)C14—H14A0.9600
C2—H20.9800C14—H14B0.9600
C3—C41.521 (2)C14—H14C0.9600
C3—C141.530 (2)C15—H15A0.9600
C3—C151.546 (2)C15—H15B0.9600
C4—C51.506 (2)C15—H15C0.9600
C5—C61.5276 (18)C16—C211.379 (2)
C5—H5A0.9700C16—C171.381 (2)
C5—H5B0.9700C17—C181.383 (3)
C6—C161.508 (2)C17—H170.9300
C6—H60.9800C18—C191.368 (3)
C7—H70.9300C18—H180.9300
C8—C131.3834 (19)C19—C201.364 (3)
C8—C91.3856 (18)C19—H190.9300
C9—C101.384 (2)C20—C211.378 (3)
C9—H90.9300C20—H200.9300
C10—C111.368 (2)C21—H210.9300
C7—N1—C2119.30 (11)C9—C10—H10119.9
C7—N1—C6118.63 (11)C12—C11—C10119.29 (16)
C2—N1—C6121.31 (10)C12—C11—H11120.4
N1—C2—C8111.46 (11)C10—C11—H11120.4
N1—C2—C3109.86 (10)C11—C12—C13120.72 (16)
C8—C2—C3117.81 (11)C11—C12—H12119.6
N1—C2—H2105.6C13—C12—H12119.6
C8—C2—H2105.6C8—C13—C12121.03 (14)
C3—C2—H2105.6C8—C13—H13119.5
C4—C3—C14112.59 (12)C12—C13—H13119.5
C4—C3—C2110.81 (12)C3—C14—H14A109.5
C14—C3—C2110.75 (11)C3—C14—H14B109.5
C4—C3—C15105.55 (12)H14A—C14—H14B109.5
C14—C3—C15108.19 (13)C3—C14—H14C109.5
C2—C3—C15108.72 (11)H14A—C14—H14C109.5
O2—C4—C5121.24 (14)H14B—C14—H14C109.5
O2—C4—C3122.13 (15)C3—C15—H15A109.5
C5—C4—C3116.61 (11)C3—C15—H15B109.5
C4—C5—C6115.08 (12)H15A—C15—H15B109.5
C4—C5—H5A108.5C3—C15—H15C109.5
C6—C5—H5A108.5H15A—C15—H15C109.5
C4—C5—H5B108.5H15B—C15—H15C109.5
C6—C5—H5B108.5C21—C16—C17118.60 (16)
H5A—C5—H5B107.5C21—C16—C6121.60 (13)
N1—C6—C16111.54 (11)C17—C16—C6119.79 (14)
N1—C6—C5110.17 (11)C16—C17—C18120.33 (18)
C16—C6—C5111.52 (12)C16—C17—H17119.8
N1—C6—H6107.8C18—C17—H17119.8
C16—C6—H6107.8C19—C18—C17120.22 (18)
C5—C6—H6107.8C19—C18—H18119.9
O1—C7—N1126.23 (14)C17—C18—H18119.9
O1—C7—H7116.9C20—C19—C18119.9 (2)
N1—C7—H7116.9C20—C19—H19120.0
C13—C8—C9117.32 (13)C18—C19—H19120.0
C13—C8—C2125.71 (12)C19—C20—C21120.2 (2)
C9—C8—C2116.97 (12)C19—C20—H20119.9
C10—C9—C8121.34 (14)C21—C20—H20119.9
C10—C9—H9119.3C20—C21—C16120.67 (17)
C8—C9—H9119.3C20—C21—H21119.7
C11—C10—C9120.28 (14)C16—C21—H21119.7
C11—C10—H10119.9
C7—N1—C2—C896.72 (14)C6—N1—C7—O1176.66 (14)
C6—N1—C2—C893.42 (13)N1—C2—C8—C13100.41 (16)
C7—N1—C2—C3130.81 (13)C3—C2—C8—C1327.9 (2)
C6—N1—C2—C339.05 (16)N1—C2—C8—C980.34 (14)
N1—C2—C3—C455.83 (14)C3—C2—C8—C9151.32 (13)
C8—C2—C3—C473.26 (15)C13—C8—C9—C101.0 (2)
N1—C2—C3—C14178.49 (12)C2—C8—C9—C10179.73 (13)
C8—C2—C3—C1452.43 (17)C8—C9—C10—C110.5 (2)
N1—C2—C3—C1559.74 (15)C9—C10—C11—C120.5 (3)
C8—C2—C3—C15171.17 (12)C10—C11—C12—C130.9 (3)
C14—C3—C4—O234.5 (2)C9—C8—C13—C120.5 (2)
C2—C3—C4—O2159.11 (14)C2—C8—C13—C12179.78 (15)
C15—C3—C4—O283.37 (17)C11—C12—C13—C80.4 (3)
C14—C3—C4—C5147.10 (14)N1—C6—C16—C2147.78 (18)
C2—C3—C4—C522.44 (17)C5—C6—C16—C2175.87 (17)
C15—C3—C4—C595.08 (15)N1—C6—C16—C17132.58 (13)
O2—C4—C5—C6148.57 (14)C5—C6—C16—C17103.77 (15)
C3—C4—C5—C629.89 (18)C21—C16—C17—C180.0 (2)
C7—N1—C6—C1653.53 (16)C6—C16—C17—C18179.70 (14)
C2—N1—C6—C16136.54 (12)C16—C17—C18—C190.3 (3)
C7—N1—C6—C5177.94 (13)C17—C18—C19—C200.4 (3)
C2—N1—C6—C512.13 (18)C18—C19—C20—C210.2 (3)
C4—C5—C6—N147.61 (17)C19—C20—C21—C160.1 (3)
C4—C5—C6—C16172.03 (12)C17—C16—C21—C200.2 (3)
C2—N1—C7—O16.5 (2)C6—C16—C21—C20179.87 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.982.593.2951 (17)129
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H21NO2
Mr307.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.6604 (6), 15.7278 (7), 10.8066 (5)
β (°) 110.120 (2)
V3)1701.31 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.985, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
16240, 4162, 2769
Rint0.021
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.125, 1.04
No. of reflections4162
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.13

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.982.593.2951 (17)128.5
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

KR thanks the TBI Consultancy, University of Madras, India, for the data collection and the management of Kandaswami Kandar's College, Velur, Namakkal, Tamilnadu, India, for encouragement.

References

First citationAridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577–592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMichael, J. P. (2001). The Alkaloids. Chemistry and Biology, edited by G. A. Cordell, Vol. 55, pp. 91–258. New York: Academic Press.  Google Scholar
First citationNalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Japanese Patent No. 74-3987.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPinder, A. R. (1992). Nat. Prod. Rep. 9, 491–504.  CrossRef CAS Web of Science Google Scholar
First citationRubiralta, M., Giralt, E. & Diez, A. (1991). Piperidine: Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and its Derivatives, pp. 225–312. Amsterdam: Elsevier.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds