organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(2-Nitro-1-phenyl­but­yl)-4-phenyl-1,2,3-selena­diazole

aDepartment of Chemistry, Sri Sarada College for Women (Autonomus), Fairlands, Salem 600 016, India, bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, cDepartment of Industrial Chemistry, Alagappa University, Karaikudi 630 003, India, and dSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 9 January 2012; accepted 16 February 2012; online 29 February 2012)

In the title compound, C18H17N3O2Se, the selenadiazole ring is planar [maximum deviation = 0.012 (2) Å for the ring C atom bearing the phenyl substituent]. The dihedral angle between the selenadiazole ring and the attached benzene ring is 46.5 (1)°. There is one short intra­molecular C—H⋯Se contact.

Related literature

For general background to selenadiazole derivatives, see: El-Bahaie et al. (1990[El-Bahaie, S., Assy, M. G. & Hassanien, M. M. (1990). Pharmazie, 45, 791-793.]); El-Kashef et al. (1986[El-Kashef, H. S., E-Bayoumy, B. & Aly, T. I. (1986). Egypt. J. Pharm. Sci. 27, 27-30.]); Kuroda et al. (2001[Kuroda, K., Uchikurohane, T., Tajima, S. & Tsubata, K. (2001). US Patent No. 6 166 054.]); Khanna (2005[Khanna, P. K. (2005). Phosphorus Sulfur Silicon Relat. Elem. 180, 951-955.]); Padmavathi et al. (2002[Padmavathi, V., Sumathi, R. P. & Padmaja, A. (2002). J. Ecobiol. 14, 9-12.]); Plano et al. (2010[Plano, D., Moreno, E., Font, M., Encio, I., Palop, J. A. & Sanmartin, C. (2010). Arch. Pharm. Chem. Life Sci. 10, 680-691.]); Stadtman (1991[Stadtman, T. C. (1991). J. Biol. Chem. 266, 16257-16260.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17N3O2Se

  • Mr = 386.31

  • Triclinic, [P \overline 1]

  • a = 7.879 (5) Å

  • b = 8.450 (5) Å

  • c = 13.438 (5) Å

  • α = 80.629 (5)°

  • β = 85.273 (5)°

  • γ = 75.352 (5)°

  • V = 853.2 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.22 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.636, Tmax = 0.702

  • 15132 measured reflections

  • 4265 independent reflections

  • 3478 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.079

  • S = 1.05

  • 4265 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯Se1 0.98 2.85 3.313 (3) 110

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Selenadiazoles, having one selenium and two nitrogen atoms in a five membered ring, are the important class of organoselenium compounds utilized in the synthesis of semiconductor nanoparticles (Khanna, 2005). These 1,2, 3-selenadiazoles are used as the synthetic intermediates in the preparation of many alkynes and other selenium compounds. In addition, 1,2,3-Selenadiazoles are of interest owing to their chemical properties and biological applications such as anti-fungal (Kuroda et al., 2001), anti-bacterial (El-Kashef et al., 1986), anti-microbial (El-Bahaie et al., 1990), anti-cancer (Plano et al., 2010) and insecticidal (Padmavathi et al., 2002) properties. Glutathione peroxidases(GPx) are the antioxidant selenoenzymes protecting various organisms from oxidative stress by catalyzing the reduction of hydroperoxides at the expense of glutathione(GSH) (Stadtman, 1991). Owing to the above mentioned important properties of selenium containing compounds, the crystal structure of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig.1. The bond lengths [Se1—N1] 1.877 (2)Å and [Se1—C8] 1.839 (2)Å are normal. The selenadiazol ring is planar and oriented at an angle of 46.5 (1)° with the attached phenyl ring. The phenylbutyl group is in extended conformation, which can be seen from the torsion angle values of [C9—C16—C17—C18]-178.5 (2)° & [C10—C9—C16—C17]-168.8 (2)°. The planar nitro group is oriented at an angle of 78.9 (2)° with phenylbutyl group. The molecular packing is controlled by C—H···π type of intermolecular interactions in addition to van der Waals forces.

Related literature top

For general background to selenadiazole derivatives, see: El-Bahaie et al. (1990); El-Kashef et al. (1986); Kuroda et al. (2001); Khanna (2005); Padmavathi et al. (2002); Plano et al. (2010); Stadtman (1991).

Experimental top

A mixture of 4-nitro-1,3-diiphenylhexan-1-one (1 mmol), semicarbazide hydrochloride(2 mmol) and anhydrous sodium acetate (3 mmol) in ethanol (10 ml) was refluxed for 4 h. After completion of the reaction as monitored by TLC, the mixture was poured into ice cold water and the resulting semicarbazone was filtered off. Then, a mixture of semicarbazone (1 mmol) and SeO2 (2 mmol) in tetrahydrofuran (10 ml) were refluxed on a water bath for 1 h. The selenium deposited on cooling was removed by filtration, and the filtrate was poured into crushed ice, extracted with dichloromethane, and purified by column chromatography using silica gel (60–120 mesh) with 97:3 petroleum ether: ethyl acetate as eluent to give 5-(2-nitro-1-phenylbutyl)-4-phenyl-1,2, 3-selenadiazole.

Refinement top

H atoms were positioned geometrically with C—H = 0.93–0.98 Å and allowed to ride on their parent atoms,with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down a axis.
5-(2-Nitro-1-phenylbutyl)-4-phenyl-1,2,3-selenadiazole top
Crystal data top
C18H17N3O2SeZ = 2
Mr = 386.31F(000) = 392
Triclinic, P1Dx = 1.504 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.879 (5) ÅCell parameters from 3478 reflections
b = 8.450 (5) Åθ = 1.5–28.4°
c = 13.438 (5) ŵ = 2.22 mm1
α = 80.629 (5)°T = 293 K
β = 85.273 (5)°Block, white crystalline
γ = 75.352 (5)°0.20 × 0.18 × 0.16 mm
V = 853.2 (8) Å3
Data collection top
Bruker SMART APEX CCD detector
diffractometer
4265 independent reflections
Radiation source: fine-focus sealed tube3478 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 28.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.636, Tmax = 0.702k = 1111
15132 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.1656P]
where P = (Fo2 + 2Fc2)/3
4265 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H17N3O2Seγ = 75.352 (5)°
Mr = 386.31V = 853.2 (8) Å3
Triclinic, P1Z = 2
a = 7.879 (5) ÅMo Kα radiation
b = 8.450 (5) ŵ = 2.22 mm1
c = 13.438 (5) ÅT = 293 K
α = 80.629 (5)°0.20 × 0.18 × 0.16 mm
β = 85.273 (5)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
4265 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3478 reflections with I > 2σ(I)
Tmin = 0.636, Tmax = 0.702Rint = 0.027
15132 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.05Δρmax = 0.43 e Å3
4265 reflectionsΔρmin = 0.21 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7979 (3)0.3866 (2)0.50318 (16)0.0513 (5)
H10.85900.46850.48490.062*
C20.6659 (3)0.4053 (3)0.57649 (18)0.0634 (6)
H20.63910.49910.60820.076*
C30.5726 (3)0.2865 (3)0.60360 (17)0.0621 (6)
H30.48220.30050.65290.074*
C40.6131 (3)0.1475 (3)0.55777 (15)0.0535 (5)
H40.55000.06710.57600.064*
C50.7476 (3)0.1260 (2)0.48458 (14)0.0472 (4)
H50.77540.03050.45450.057*
C60.8415 (2)0.2461 (2)0.45570 (13)0.0405 (4)
C70.9868 (2)0.2266 (2)0.37864 (13)0.0402 (4)
C80.9887 (2)0.1804 (2)0.28553 (13)0.0386 (4)
C90.8345 (2)0.1554 (2)0.23419 (12)0.0375 (4)
H90.74440.13900.28690.045*
C100.7575 (2)0.3138 (2)0.16406 (13)0.0374 (4)
C110.6121 (2)0.4253 (3)0.19758 (15)0.0504 (5)
H110.55770.39860.26000.060*
C120.5464 (3)0.5762 (3)0.13925 (18)0.0604 (6)
H120.44950.65070.16320.073*
C130.6231 (3)0.6164 (3)0.04674 (18)0.0574 (5)
H130.57900.71810.00780.069*
C140.7656 (3)0.5060 (3)0.01180 (16)0.0542 (5)
H140.81700.53240.05150.065*
C150.8332 (2)0.3560 (2)0.06965 (14)0.0467 (4)
H150.93040.28240.04520.056*
C160.8902 (2)0.0021 (2)0.18459 (14)0.0413 (4)
H160.99430.00270.14010.050*
C170.9315 (3)0.1575 (2)0.26163 (16)0.0581 (5)
H17A0.82730.16240.30470.070*
H17B1.02240.15000.30390.070*
C180.9917 (4)0.3167 (3)0.2162 (2)0.0771 (7)
H18A0.89910.32990.17860.116*
H18B1.02100.40870.26930.116*
H18C1.09320.31230.17210.116*
N11.2673 (2)0.2439 (2)0.33702 (14)0.0551 (4)
N21.1401 (2)0.26173 (19)0.40163 (13)0.0496 (4)
N30.7421 (2)0.0094 (2)0.12234 (14)0.0520 (4)
O10.6009 (2)0.0054 (2)0.16418 (16)0.0848 (6)
O20.7744 (3)0.0209 (2)0.03327 (13)0.0806 (5)
Se11.20608 (2)0.17348 (3)0.222464 (15)0.05307 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0508 (11)0.0522 (11)0.0580 (12)0.0167 (9)0.0044 (9)0.0211 (9)
C20.0607 (13)0.0703 (14)0.0679 (14)0.0155 (11)0.0054 (11)0.0404 (12)
C30.0570 (12)0.0811 (15)0.0517 (12)0.0177 (11)0.0088 (10)0.0242 (11)
C40.0616 (12)0.0603 (12)0.0428 (10)0.0248 (10)0.0020 (9)0.0059 (9)
C50.0632 (12)0.0442 (10)0.0373 (9)0.0175 (9)0.0000 (8)0.0091 (8)
C60.0462 (9)0.0418 (9)0.0350 (9)0.0104 (7)0.0070 (7)0.0076 (7)
C70.0453 (9)0.0353 (9)0.0416 (9)0.0128 (7)0.0064 (7)0.0038 (7)
C80.0398 (9)0.0380 (9)0.0380 (9)0.0112 (7)0.0009 (7)0.0034 (7)
C90.0377 (8)0.0442 (9)0.0322 (8)0.0120 (7)0.0031 (7)0.0093 (7)
C100.0355 (8)0.0433 (9)0.0364 (9)0.0119 (7)0.0018 (7)0.0109 (7)
C110.0442 (10)0.0607 (12)0.0448 (10)0.0055 (9)0.0026 (8)0.0173 (9)
C120.0505 (11)0.0570 (12)0.0685 (14)0.0073 (9)0.0104 (10)0.0224 (11)
C130.0622 (13)0.0466 (11)0.0648 (14)0.0111 (10)0.0239 (11)0.0051 (10)
C140.0574 (12)0.0578 (12)0.0477 (11)0.0199 (10)0.0058 (9)0.0027 (9)
C150.0431 (10)0.0503 (10)0.0438 (10)0.0077 (8)0.0043 (8)0.0079 (8)
C160.0371 (9)0.0457 (9)0.0434 (10)0.0104 (7)0.0020 (7)0.0124 (8)
C170.0701 (14)0.0475 (11)0.0566 (12)0.0120 (10)0.0104 (11)0.0076 (9)
C180.0883 (18)0.0497 (12)0.0921 (19)0.0035 (12)0.0234 (15)0.0188 (12)
N10.0489 (9)0.0578 (10)0.0633 (11)0.0226 (8)0.0079 (8)0.0049 (8)
N20.0519 (9)0.0463 (9)0.0558 (10)0.0185 (7)0.0095 (8)0.0084 (7)
N30.0475 (9)0.0498 (9)0.0628 (11)0.0097 (7)0.0080 (8)0.0208 (8)
O10.0418 (8)0.1059 (14)0.1195 (16)0.0223 (9)0.0029 (9)0.0505 (12)
O20.0947 (13)0.1034 (13)0.0561 (10)0.0334 (11)0.0161 (9)0.0264 (9)
Se10.04099 (12)0.07035 (15)0.04790 (13)0.01791 (9)0.00333 (8)0.00448 (9)
Geometric parameters (Å, º) top
C1—C21.370 (3)C11—H110.9300
C1—C61.392 (3)C12—C131.367 (3)
C1—H10.9300C12—H120.9300
C2—C31.375 (3)C13—C141.370 (3)
C2—H20.9300C13—H130.9300
C3—C41.369 (3)C14—C151.379 (3)
C3—H30.9300C14—H140.9300
C4—C51.383 (3)C15—H150.9300
C4—H40.9300C16—N31.510 (2)
C5—C61.390 (3)C16—C171.516 (3)
C5—H50.9300C16—H160.9800
C6—C71.475 (3)C17—C181.518 (3)
C7—C81.368 (3)C17—H17A0.9700
C7—N21.384 (2)C17—H17B0.9700
C8—C91.520 (2)C18—H18A0.9600
C8—Se11.839 (2)C18—H18B0.9600
C9—C101.523 (2)C18—H18C0.9600
C9—C161.534 (3)N1—N21.267 (2)
C9—H90.9800N1—Se11.8770 (19)
C10—C111.382 (3)N3—O11.200 (2)
C10—C151.388 (3)N3—O21.217 (2)
C11—C121.384 (3)
C2—C1—C6120.63 (19)C13—C12—C11120.4 (2)
C2—C1—H1119.7C13—C12—H12119.8
C6—C1—H1119.7C11—C12—H12119.8
C1—C2—C3120.5 (2)C12—C13—C14119.5 (2)
C1—C2—H2119.7C12—C13—H13120.2
C3—C2—H2119.7C14—C13—H13120.2
C4—C3—C2119.8 (2)C13—C14—C15120.6 (2)
C4—C3—H3120.1C13—C14—H14119.7
C2—C3—H3120.1C15—C14—H14119.7
C3—C4—C5120.29 (19)C14—C15—C10120.59 (18)
C3—C4—H4119.9C14—C15—H15119.7
C5—C4—H4119.9C10—C15—H15119.7
C4—C5—C6120.47 (18)N3—C16—C17108.74 (15)
C4—C5—H5119.8N3—C16—C9108.55 (14)
C6—C5—H5119.8C17—C16—C9112.31 (16)
C5—C6—C1118.29 (18)N3—C16—H16109.1
C5—C6—C7121.95 (16)C17—C16—H16109.1
C1—C6—C7119.75 (16)C9—C16—H16109.1
C8—C7—N2115.23 (17)C16—C17—C18114.36 (19)
C8—C7—C6128.04 (16)C16—C17—H17A108.7
N2—C7—C6116.72 (16)C18—C17—H17A108.7
C7—C8—C9127.23 (16)C16—C17—H17B108.7
C7—C8—Se1109.19 (12)C18—C17—H17B108.7
C9—C8—Se1123.28 (13)H17A—C17—H17B107.6
C8—C9—C10108.57 (14)C17—C18—H18A109.5
C8—C9—C16110.27 (14)C17—C18—H18B109.5
C10—C9—C16115.55 (14)H18A—C18—H18B109.5
C8—C9—H9107.4C17—C18—H18C109.5
C10—C9—H9107.4H18A—C18—H18C109.5
C16—C9—H9107.4H18B—C18—H18C109.5
C11—C10—C15118.18 (17)N2—N1—Se1110.66 (13)
C11—C10—C9118.95 (16)N1—N2—C7117.79 (17)
C15—C10—C9122.76 (16)O1—N3—O2124.35 (19)
C10—C11—C12120.69 (19)O1—N3—C16117.82 (18)
C10—C11—H11119.7O2—N3—C16117.82 (18)
C12—C11—H11119.7C8—Se1—N187.09 (8)
C6—C1—C2—C30.8 (3)C15—C10—C11—C121.4 (3)
C1—C2—C3—C40.7 (4)C9—C10—C11—C12174.97 (17)
C2—C3—C4—C50.1 (3)C10—C11—C12—C130.9 (3)
C3—C4—C5—C60.9 (3)C11—C12—C13—C140.2 (3)
C4—C5—C6—C10.8 (3)C12—C13—C14—C150.9 (3)
C4—C5—C6—C7179.39 (17)C13—C14—C15—C100.4 (3)
C2—C1—C6—C50.1 (3)C11—C10—C15—C140.7 (3)
C2—C1—C6—C7178.58 (19)C9—C10—C15—C14175.49 (17)
C5—C6—C7—C848.1 (3)C8—C9—C16—N3172.07 (14)
C1—C6—C7—C8133.27 (19)C10—C9—C16—N348.5 (2)
C5—C6—C7—N2133.04 (18)C8—C9—C16—C1767.67 (19)
C1—C6—C7—N245.6 (2)C10—C9—C16—C17168.76 (16)
N2—C7—C8—C9171.71 (16)N3—C16—C17—C1861.3 (2)
C6—C7—C8—C97.1 (3)C9—C16—C17—C18178.51 (18)
N2—C7—C8—Se12.08 (19)Se1—N1—N2—C70.6 (2)
C6—C7—C8—Se1179.08 (14)C8—C7—N2—N11.9 (2)
C7—C8—C9—C1095.8 (2)C6—C7—N2—N1179.17 (16)
Se1—C8—C9—C1077.17 (17)C17—C16—N3—O165.7 (2)
C7—C8—C9—C16136.66 (18)C9—C16—N3—O156.7 (2)
Se1—C8—C9—C1650.36 (19)C17—C16—N3—O2113.5 (2)
C8—C9—C10—C1197.56 (19)C9—C16—N3—O2124.09 (18)
C16—C9—C10—C11137.99 (17)C7—C8—Se1—N11.40 (12)
C8—C9—C10—C1578.6 (2)C9—C8—Se1—N1172.68 (15)
C16—C9—C10—C1545.8 (2)N2—N1—Se1—C80.48 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···Se10.982.853.313 (3)110

Experimental details

Crystal data
Chemical formulaC18H17N3O2Se
Mr386.31
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.879 (5), 8.450 (5), 13.438 (5)
α, β, γ (°)80.629 (5), 85.273 (5), 75.352 (5)
V3)853.2 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.22
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.636, 0.702
No. of measured, independent and
observed [I > 2σ(I)] reflections
15132, 4265, 3478
Rint0.027
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.079, 1.05
No. of reflections4265
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.21

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···Se10.982.853.313 (3)110
 

Acknowledgements

The authors thank TBI consultancy, University of Madras, India, for the data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Bahaie, S., Assy, M. G. & Hassanien, M. M. (1990). Pharmazie, 45, 791–793.  CAS PubMed Web of Science Google Scholar
First citationEl-Kashef, H. S., E-Bayoumy, B. & Aly, T. I. (1986). Egypt. J. Pharm. Sci. 27, 27–30.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKhanna, P. K. (2005). Phosphorus Sulfur Silicon Relat. Elem. 180, 951–955.  Web of Science CrossRef CAS Google Scholar
First citationKuroda, K., Uchikurohane, T., Tajima, S. & Tsubata, K. (2001). US Patent No. 6 166 054.  Google Scholar
First citationPadmavathi, V., Sumathi, R. P. & Padmaja, A. (2002). J. Ecobiol. 14, 9–12.  CAS Google Scholar
First citationPlano, D., Moreno, E., Font, M., Encio, I., Palop, J. A. & Sanmartin, C. (2010). Arch. Pharm. Chem. Life Sci. 10, 680–691.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStadtman, T. C. (1991). J. Biol. Chem. 266, 16257–16260.  PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds