organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(7aS)-(–)-Dimeth­yl(1-oxido-3-oxo-5,6,7,7a-tetra­hydro-3H-pyrrolizin-2-yl)sulfonium

aCentro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., Mexico, and bFacultad de Química, Universidad Nacional Autónoma de México, 04510 México, DF, Mexico
*Correspondence e-mail: angel.mendoza.m@gmail.com

(Received 18 January 2012; accepted 27 January 2012; online 17 February 2012)

In the zwitterionic title compound, C9H13NO2S, the pyrrolidine heterocycle adopts an envelope conformation (with the C atom in the 7-position as the flap). The negative charge is delocalized over the two carbonyl groups and the C atom connecting them. The positive charge is located on the S atom. Two inter­molecular C—H⋯O inter­actions are observed. The molecular geometry at the S atom is trigonal pyramidal.

Related literature

For background to the synthesis of chiral non-racemic zwitterionic compounds, see: Zang et al. (2008[Zang, S. L., Huang, Z. S., Li, Y. M., Chan, A. S. C. & Gu, L. Q. (2008). Tetrahedron, 64, 4403-4407.]); Kappe et al. (1983[Kappe, T., Korbuuly, G. & Pongratz, E. (1983). Monatsh. Chem. 114, 303-315.]); Palillero et al. (2009[Palillero, A., Teran, J. L., Gnecco, D., Juárez, J. R., Orea, M. L. & Castro, A. (2009). Tetrahedron Lett. 50, 4208-4211.]). For the biological activity of related structures, see: Basco et al. (1994[Basco, L. K., Mitaku, S., Skaltsounis, A. L., Ravelomanantsoa, N., Tillequin, F., Koch, M. & Le Bras, J. (1994). Antimicrob. Agents Chemother. 38, 1169-1171.]); Koruznjak et al. (2003[Koruznjak, J. D., Grdisa, M., Slade, N., Zamola, B., Pavelic, K. & Karminski-Zamola, G. (2003). J. Med. Chem. 46, 4516-4524.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C9H13NO2S

  • Mr = 199.26

  • Orthorhombic, P 21 21 21

  • a = 5.8761 (3) Å

  • b = 9.0858 (5) Å

  • c = 17.7107 (9) Å

  • V = 945.56 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 130 K

  • 0.46 × 0.33 × 0.07 mm

Data collection
  • Oxford Xcalibur Atlas Gemini diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.895, Tmax = 0.976

  • 6356 measured reflections

  • 1873 independent reflections

  • 1736 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.065

  • S = 1.04

  • 1873 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 758 Friedel pairs

  • Flack parameter: −0.07 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 1.00 2.55 3.4145 (19) 145
C7—H7B⋯O1ii 0.99 2.59 3.570 (2) 173
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2002[Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The synthesis of chiral non racemic zwitterionic compounds is an original area of interest in organic chemistry (Zang et al., 2008; Kappe et al., 1983) because they are useful intermediates for the synthesis of diverse interesting nitrogen heterocyclic compounds (Palillero et al., 2009) with interesting biological properties (Basco et al., 1994; Koruznjak et al., 2003).

In the title zwitterionic compound, C19H13NO2S, the chiral centre shows an S configuration, and the five membered pyrrolidine heterocycle shows an envelope conformations on C5 with puckering parameters (Cremer & Pople, 1975) ϕ2 = 258.4 (3)° and q2 = 0.4038 (19) Å. The five membered ring N1/C1/C2/C3/C4 shows a twist conformation on N1—C1 with puckering parameters ϕ2 = 0.0903 (18)° and q2 = 22.4 (12) Å. The bond distances of C1—O2 [1.235 (2) Å] and C3—O1 [1.238 (2) Å] are similar as in related systems which were previously reported. The C2—C3 bond distance [1.406 (2) Å] has the same length as an aromatic bond and C2—C1 [1.435 (2) Å] is shorter than a typical sp3sp3 bond distance. This suggests, that the negative charge is delocalized on the O1/C3/C2/C2/O2 system. Two intermolecular weak interactions C4—H4···O2 (3.412 (2) Å) and C7—H7B···O1 (3.570 (2) Å) are observed.

Related literature top

For background to the synthesis of chiral non-racemic zwitterionic compounds, see: Zang et al. (2008); Kappe et al. (1983); Palillero et al. (2009). For the biological activity of related structures, see: Basco et al. (1994); Koruznjak et al. (2003). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound, was obtained by an intramolecular cyclization reaction of (S)-(-)-[2-(2-Methoxycarbonyl-pyrrolidin-1-yl)-2-oxo-ethyl]-dimethyl-sulfonium; bromide (1 mmol), which was dissolved in CH3CN (10 ml), treated with KOH (1.2 mmol) and stirred for 2 h at room temperature. The resulting mixture was concentrated in vacuum and dissolved in ethyl acetate, filtered and concentrated giving the desired compound in 98%. Crystals were obtained from an ethyl acetate/diethyl ether solution; m.p. 110–112 °C, [α]D= -13.4 (c 1.0, CH2Cl2). IR (KBr) 3447, 1655, 1591, 1372 cm-1. 1H NMR (400 MHz, CDCl3) d(p.p.m., JHz): 1.51 (m, 1H), 2.05 (m, 3H), 2.99 (s, 3H), 3.01 (s, 3H), 3.12 (m, 1H), 3.57 (td, J = 7.8, 11.0 Hz, 1H), 3.85 (dd, J = 7.24, 9.28 Hz, 1H). HRMS (FAB+): Calcd for C9H13NO2S: 199.0667. Found: 199.0665.

Refinement top

H atoms were placed in geometrically idealized positions and refined as riding on their parent atoms, with C—H distances fixed to 0.960 (methyl CH3) and 0.980 Å (methine CH) and with Uiso(H) = 1.5Ueq(methyl C) or 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2002); cell refinement: CrysAlis PRO (Oxford Diffraction, 2002); data reduction: CrysAlis RED (Oxford Diffraction, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
(7aS)-(–)-Dimethyl(1-oxido-3-oxo-5,6,7,7a-tetrahydro-3H- pyrrolizin-2-yl)sulfonium top
Crystal data top
C9H13NO2SDx = 1.406 Mg m3
Mr = 199.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 4129 reflections
a = 5.8761 (3) Åθ = 3.5–26.0°
b = 9.0858 (5) ŵ = 0.31 mm1
c = 17.7107 (9) ÅT = 130 K
V = 945.56 (9) Å3Plate, colourless
Z = 40.46 × 0.33 × 0.07 mm
F(000) = 424
Data collection top
Oxford Xcalibur Atlas Gemini
diffractometer
1873 independent reflections
Graphite monochromator1736 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.037
ω scansθmax = 26.1°, θmin = 3.7°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2002)
h = 77
Tmin = 0.895, Tmax = 0.976k = 1011
6356 measured reflectionsl = 1821
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0385P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1873 reflectionsΔρmax = 0.20 e Å3
120 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), with 758 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (7)
Crystal data top
C9H13NO2SV = 945.56 (9) Å3
Mr = 199.26Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.8761 (3) ŵ = 0.31 mm1
b = 9.0858 (5) ÅT = 130 K
c = 17.7107 (9) Å0.46 × 0.33 × 0.07 mm
Data collection top
Oxford Xcalibur Atlas Gemini
diffractometer
1873 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2002)
1736 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.976Rint = 0.037
6356 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.065Δρmax = 0.20 e Å3
S = 1.04Δρmin = 0.26 e Å3
1873 reflectionsAbsolute structure: Flack (1983), with 758 Friedel pairs
120 parametersAbsolute structure parameter: 0.07 (7)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.72287 (7)0.59085 (4)0.01093 (2)0.01852 (12)
O10.6977 (3)0.26576 (13)0.09183 (7)0.0293 (3)
O20.4048 (2)0.74463 (12)0.13031 (6)0.0229 (3)
N10.4198 (2)0.53624 (15)0.20467 (8)0.0172 (3)
C10.4721 (3)0.61719 (18)0.14100 (9)0.0172 (4)
C20.6056 (3)0.52340 (19)0.09255 (9)0.0188 (4)
C30.6092 (3)0.37738 (18)0.11921 (10)0.0193 (4)
C40.4806 (3)0.38002 (17)0.19391 (9)0.0173 (4)
H40.58230.34640.23580.021*
C50.2519 (3)0.30179 (17)0.19885 (10)0.0216 (4)
H5A0.27020.19750.21380.026*
H5B0.16820.30690.15040.026*
C60.1329 (3)0.3908 (2)0.26032 (10)0.0228 (4)
H6A0.18710.36140.31110.027*
H6B0.03410.37720.25790.027*
C70.1984 (3)0.55113 (19)0.24287 (10)0.0222 (4)
H7A0.08470.59820.20940.027*
H7B0.21250.60960.28980.027*
C81.0123 (3)0.5311 (2)0.01195 (12)0.0296 (4)
H8A1.08320.55350.03680.044*
H8B1.01790.42480.02090.044*
H8C1.09460.58230.05230.044*
C90.6187 (4)0.4744 (3)0.06291 (11)0.0370 (5)
H9A0.69290.50070.11060.056*
H9B0.45380.48730.06790.056*
H9C0.65230.37150.05070.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0209 (2)0.0186 (2)0.0160 (2)0.00209 (17)0.00126 (16)0.00138 (16)
O10.0388 (8)0.0202 (6)0.0290 (7)0.0101 (6)0.0091 (6)0.0018 (5)
O20.0311 (7)0.0156 (6)0.0220 (6)0.0036 (5)0.0008 (6)0.0003 (5)
N10.0200 (8)0.0147 (7)0.0170 (7)0.0002 (6)0.0002 (6)0.0023 (6)
C10.0173 (9)0.0194 (9)0.0150 (8)0.0035 (7)0.0038 (7)0.0014 (7)
C20.0205 (9)0.0190 (8)0.0169 (9)0.0022 (8)0.0023 (8)0.0016 (7)
C30.0178 (9)0.0193 (9)0.0209 (9)0.0004 (7)0.0012 (7)0.0003 (7)
C40.0176 (8)0.0165 (8)0.0179 (9)0.0031 (7)0.0021 (7)0.0013 (7)
C50.0213 (10)0.0186 (8)0.0250 (9)0.0018 (8)0.0005 (8)0.0005 (7)
C60.0166 (9)0.0247 (10)0.0272 (9)0.0060 (8)0.0030 (7)0.0001 (8)
C70.0236 (10)0.0210 (8)0.0221 (9)0.0006 (8)0.0067 (8)0.0029 (7)
C80.0191 (9)0.0384 (10)0.0314 (10)0.0013 (8)0.0018 (8)0.0086 (9)
C90.0366 (13)0.0563 (13)0.0181 (10)0.0149 (11)0.0006 (9)0.0074 (10)
Geometric parameters (Å, º) top
S1—C21.7146 (17)C5—H5A0.99
S1—C81.7851 (18)C5—H5B0.99
S1—C91.7900 (19)C6—C71.538 (3)
O1—C31.238 (2)C6—H6A0.99
O2—C11.238 (2)C6—H6B0.99
N1—C11.381 (2)C7—H7A0.99
N1—C71.473 (2)C7—H7B0.99
N1—C41.476 (2)C8—H8A0.98
C1—C21.442 (2)C8—H8B0.98
C2—C31.408 (2)C8—H8C0.98
C3—C41.524 (2)C9—H9A0.98
C4—C51.523 (2)C9—H9B0.98
C4—H41C9—H9C0.98
C5—C61.526 (2)
C2—S1—C8105.40 (9)H5A—C5—H5B109.3
C2—S1—C9105.50 (9)C5—C6—C7104.11 (14)
C8—S1—C998.84 (11)C5—C6—H6A110.9
C1—N1—C7121.50 (14)C7—C6—H6A110.9
C1—N1—C4110.68 (13)C5—C6—H6B110.9
C7—N1—C4111.17 (13)C7—C6—H6B110.9
O2—C1—N1123.51 (15)H6A—C6—H6B109
O2—C1—C2129.47 (15)N1—C7—C6103.08 (13)
N1—C1—C2106.99 (14)N1—C7—H7A111.1
C3—C2—C1111.43 (15)C6—C7—H7A111.1
C3—C2—S1127.84 (13)N1—C7—H7B111.1
C1—C2—S1120.61 (13)C6—C7—H7B111.1
O1—C3—C2130.27 (16)H7A—C7—H7B109.1
O1—C3—C4124.12 (15)S1—C8—H8A109.5
C2—C3—C4105.60 (14)S1—C8—H8B109.5
N1—C4—C5103.19 (13)H8A—C8—H8B109.5
N1—C4—C3104.31 (13)S1—C8—H8C109.5
C5—C4—C3118.71 (14)H8A—C8—H8C109.5
N1—C4—H4110H8B—C8—H8C109.5
C5—C4—H4110S1—C9—H9A109.5
C3—C4—H4110S1—C9—H9B109.5
C4—C5—C6101.43 (13)H9A—C9—H9B109.5
C4—C5—H5A111.5S1—C9—H9C109.5
C6—C5—H5A111.5H9A—C9—H9C109.5
C4—C5—H5B111.5H9B—C9—H9C109.5
C6—C5—H5B111.5
C7—N1—C1—O234.5 (2)S1—C2—C3—C4179.92 (13)
C4—N1—C1—O2167.62 (15)C1—N1—C4—C5116.83 (15)
C7—N1—C1—C2143.55 (15)C7—N1—C4—C521.34 (17)
C4—N1—C1—C210.39 (18)C1—N1—C4—C37.84 (18)
O2—C1—C2—C3168.74 (17)C7—N1—C4—C3146.01 (13)
N1—C1—C2—C39.1 (2)O1—C3—C4—N1176.79 (16)
O2—C1—C2—S17.6 (3)C2—C3—C4—N12.07 (18)
N1—C1—C2—S1174.58 (12)O1—C3—C4—C569.1 (2)
C8—S1—C2—C352.18 (19)C2—C3—C4—C5112.01 (16)
C9—S1—C2—C351.81 (19)N1—C4—C5—C637.44 (16)
C8—S1—C2—C1132.16 (15)C3—C4—C5—C6152.13 (15)
C9—S1—C2—C1123.85 (16)C4—C5—C6—C740.51 (17)
C1—C2—C3—O1177.13 (18)C1—N1—C7—C6136.85 (15)
S1—C2—C3—O11.1 (3)C4—N1—C7—C63.89 (18)
C1—C2—C3—C44.1 (2)C5—C6—C7—N127.69 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i1.002.553.4145 (19)145
C7—H7B···O1ii0.992.593.570 (2)173
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H13NO2S
Mr199.26
Crystal system, space groupOrthorhombic, P212121
Temperature (K)130
a, b, c (Å)5.8761 (3), 9.0858 (5), 17.7107 (9)
V3)945.56 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.46 × 0.33 × 0.07
Data collection
DiffractometerOxford Xcalibur Atlas Gemini
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2002)
Tmin, Tmax0.895, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
6356, 1873, 1736
Rint0.037
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.065, 1.04
No. of reflections1873
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.26
Absolute structureFlack (1983), with 758 Friedel pairs
Absolute structure parameter0.07 (7)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2002), CrysAlis RED (Oxford Diffraction, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i1.002.553.4145 (19)145
C7—H7B···O1ii0.992.593.570 (2)173
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to BUAP (Project VIEP 2011) for financial support. LGL thanks VIEP for a scholarship.

References

First citationBasco, L. K., Mitaku, S., Skaltsounis, A. L., Ravelomanantsoa, N., Tillequin, F., Koch, M. & Le Bras, J. (1994). Antimicrob. Agents Chemother. 38, 1169–1171.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKappe, T., Korbuuly, G. & Pongratz, E. (1983). Monatsh. Chem. 114, 303–315.  CrossRef CAS Web of Science Google Scholar
First citationKoruznjak, J. D., Grdisa, M., Slade, N., Zamola, B., Pavelic, K. & Karminski-Zamola, G. (2003). J. Med. Chem. 46, 4516–4524.  PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPalillero, A., Teran, J. L., Gnecco, D., Juárez, J. R., Orea, M. L. & Castro, A. (2009). Tetrahedron Lett. 50, 4208–4211.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZang, S. L., Huang, Z. S., Li, Y. M., Chan, A. S. C. & Gu, L. Q. (2008). Tetrahedron, 64, 4403–4407.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds