metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m270-m271

cis-Di­chloridobis[tris­­(2-methyl­phen­­oxy)phosphane-κP]palladium(II)

aFaculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
*Correspondence e-mail: andrzej@netesa.com

(Received 24 January 2012; accepted 26 January 2012; online 10 February 2012)

In the title compound, [PdCl2(C21H21O3P)2], the Pd atom adopts a slightly distorted square-planar coordination geometry, with pairs of the equivalent ligands in cis positions. Adjacent mol­ecules are linked by weak C—H⋯Cl hydrogen bonds. The crystal structure is additionally stabilized by ππ stacking inter­actions between the aromatic rings [shortest centroid–centroid distance = 3.758 (4) Å].

Related literature

The structure of the title compound was determined as part of a larger study on palladium(II) complexes with triphenyl­phosphito ligands. For related structures and further discussion, see: Błaszczyk et al. (2009[Błaszczyk, I., Trzeciak, A. M. & Ziółkowski, J. J. (2009). Catal. Lett. 133, 262-266.]); Sabounchei et al. (2000[Sabounchei, S. J., Naghipour, A. & Bickley, J. F. (2000). Acta Cryst. C56, e280.]); Trzeciak et al. (2001[Trzeciak, A. M., Bartosz-Bechowski, H., Ciunik, Z., Niesyty, K. & Ziółkowski, J. J. (2001). Can. J. Chem. 79, 752-759.]). For the Sonogashira reaction, see: Sonogashira et al. (1975[Sonogashira, K., Tohda, Y. & Nagihara, N. (1975). Tetrahedron Lett. 16, 4467-4470.]). For bond lengths in coordination complexes, see: Orpen et al. (1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.]). For hydrogen-bond inter­actions, see: Aullón et al. (1998[Aullón, G., Bellamy, D., Brammer, L., Bruton, E. & Orpen, A. G. (1998). Chem. Commun. pp. 653-654.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.]); and for ππ stacking contacts, see: McGaughey et al. (1998[McGaughey, G. B., Gagné, M. & Rappé, A. K. (1998). J. Biol. Chem. 273, 15458-15463.]). For details of the temperature control applied during data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]); and for specifications of analytical numeric absorption correction, see: Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C21H21O3P)2]

  • Mr = 882.00

  • Triclinic, [P \overline 1]

  • a = 9.575 (3) Å

  • b = 12.248 (4) Å

  • c = 17.814 (5) Å

  • α = 106.12 (3)°

  • β = 90.42 (3)°

  • γ = 98.74 (3)°

  • V = 1981.0 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 100 K

  • 0.40 × 0.32 × 0.16 mm

Data collection
  • Kuma KM-4 CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]) Tmin = 0.848, Tmax = 0.902

  • 26365 measured reflections

  • 9077 independent reflections

  • 7974 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.08

  • 9077 reflections

  • 484 parameters

  • H-atom parameters constrained

  • Δρmax = 1.61 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd—P1 2.2254 (9)
Pd—P2 2.2296 (9)
Pd—Cl1 2.3375 (9)
Pd—Cl2 2.3164 (9)
Cl1—Pd—Cl2 90.59 (2)
P1—Pd—P2 94.07 (2)
P1—Pd—Cl1 90.35 (2)
P2—Pd—Cl2 85.09 (2)
P2—Pd—Cl1 175.50 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯Cl2i 0.98 2.72 3.521 (3) 139
C45—H45⋯Cl1ii 0.95 2.91 3.680 (3) 139
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1.

Table 3
Inter­molecular ππ inter­actions (Å, °)

Cg1 denotes the centroid of ring C11–C16; Cg2 of ring C41–C46. CgCg is the distance between ring centroids. The inter­planar distance is the perpendicular distance of CgI from the ring J plane. The offset is the lateral displacement of ring I relative to ring J. The planes of the I and J rings are parallel.

CgI CgJ CgCg Inter­planar distance Offset
1 1iii 3.758 (4) 3.409 (4) 1.582 (4)
Symmetry codes: (iii) −x, −y + 1, −z + 1; (iv) −x + 1, −y, −z + 1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Palladium complexes with phosphito ligands are frequently used as catalyst precursors in carbon-carbon bond-forming reactions. The Sonogashira reaction has attracted a lot of attention as an efficient way to produce phenylated alkines (Sonogashira et al., 1975). In this paper we report crystallization of a palladium(II) complex with tritolylphosphito ligands, the title compound, which has recently proved its high catalytic activity in a copper-free Sonogashira reaction with iodobenzene and phenylacetylene as substrates and imidazolium ionic liquids as the reaction medium (Błaszczyk et al., 2009).

The Pd atom of the title compound is four-coordinated in a square-planar geometry (Fig. 1). The molecule adopts the cis configuration in the solid state. The angles between adjacent ligands deviate only slightly from the expected value of 90° (Table 1). The Pd—Cl1 and Pd—Cl2 bond distances are within a range typical for palladium complexes: 2.298–2.354Å (Orpen et al., 1989). The measured Pd—P bond lengths 2.22–2.24Å are also commonly observed in such a kind of complexes (Sabounchei et al., 2000; Trzeciak et al. 2001).

In the crystal structure, the molecules of the title complex are linked by a few weak hydrogen interactions of the C—H···Cl type (Desiraju & Steiner, 1999). The C17 and C45 atoms act as hydrogen-bond donors, via H17A and H45, to the Cli or Clii atom [symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z + 1], respectively, as an acceptor (Table 2). The observed C—H···Cl distances are similar to the values of the N—H···Cl hydrogen bonds identified for Cl bonded to a transition metal (Aullón et al., 1998).

Additionally, the C11—C16 and C41—C46 aromatic rings are engaged in π-π stacking contacts, which further assist in the stabilization of the crystal structure (Table 3). Even though the distance of the centroids and the offset of the interacting rings may first appear to be somewhat large, it is however well known that energetically favorable non-bonded aromatic interactions are generally observed at such phenyl ring centroid separation distances (McGaughey et al., 1998).

Related literature top

The structure of the title compound was determined as part of a larger study on palladium(II) complexes with triphenylphosphito ligands. For related structures and further discussion, see: Błaszczyk et al. (2009); Sabounchei et al. (2000); Trzeciak et al. (2001). For the Sonogashira reaction, see: Sonogashira et al. (1975). For bond lengths in coordination complexes, see: Orpen et al. (1989). For hydrogen-bond interactions, see: Aullón et al. (1998); Desiraju & Steiner (1999); and for ππ stacking contacts, see: McGaughey et al. (1998). For details of the temperature control applied during data collection, see: Cosier & Glazer (1986); and for specifications of analytical numeric absorption correction, see: Clark & Reid (1995).

Experimental top

The title compound was prepared according to the previously reported procedure (Błaszczyk et al., 2009): tris(2-methylphenyl)phosphite (0.96 ml, 3.0 mmol) was slowly added to the solution of PdCl2(cyclooctadiene) (0.144 g, 0.6 mmol) in benzene (5 ml). A change of color from yellow to pale yellow was observed. The solution was stirred at room temperature for 45 minutes. The solvent was evaporated in vacuo. The white product was recrystallized from a mixture of benzene and diethyl ether. Yield: 0.25 g, 48%. Analysis calculated: C 57.19, H 4.80; found: C 57.20, H 4.71%. IR (KBr, cm-1): ν(=C—H) 3066, 3033, 2961, 2928, ν(C=C) 1584, 1491, 1460, ν(P—O—C) 1226, 1162, 1110, 1044, ν(C—H) 952, 803, 762, 736, 609. 1H NMR (CDCl3): δ 1.00 (6H, t, 3J = 4.5 Hz), 6.14–7.03 (m, Ph), 2.07 (3H, s, CH3). 31P NMR (CDCl3): δ 81.27.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with aromatic C—H = 0.95Å and Uiso(H) = 1.2Ueq(C). The methyl groups were refined with C—H = 0.98Å and Uiso(H) = 1.5Ueq(C). The highest residual peak and the deepest hole in the final difference map are located 0.83 and 0.77Å from the C51 and Pd atom, respectively.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom numbering scheme of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
cis-Dichloridobis[tris(2-methylphenoxy)phosphane-κP]palladium(II) top
Crystal data top
[PdCl2(C21H21O3P)2]Z = 2
Mr = 882.00F(000) = 904
Triclinic, P1Dx = 1.479 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.575 (3) ÅCell parameters from 18240 reflections
b = 12.248 (4) Åθ = 5.0–27.5°
c = 17.814 (5) ŵ = 0.73 mm1
α = 106.12 (3)°T = 100 K
β = 90.42 (3)°Plate, colorless
γ = 98.74 (3)°0.40 × 0.32 × 0.16 mm
V = 1981.0 (11) Å3
Data collection top
Kuma KM-4 CCD
diffractometer
9077 independent reflections
Radiation source: fine-focus sealed tube7974 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 5.0°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2010)
h = 1212
Tmin = 0.848, Tmax = 0.902k = 1515
26365 measured reflectionsl = 1623
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0544P)2 + 1.3532P]
where P = (Fo2 + 2Fc2)/3
9077 reflections(Δ/σ)max = 0.001
484 parametersΔρmax = 1.61 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[PdCl2(C21H21O3P)2]γ = 98.74 (3)°
Mr = 882.00V = 1981.0 (11) Å3
Triclinic, P1Z = 2
a = 9.575 (3) ÅMo Kα radiation
b = 12.248 (4) ŵ = 0.73 mm1
c = 17.814 (5) ÅT = 100 K
α = 106.12 (3)°0.40 × 0.32 × 0.16 mm
β = 90.42 (3)°
Data collection top
Kuma KM-4 CCD
diffractometer
9077 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2010)
7974 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 0.902Rint = 0.025
26365 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.08Δρmax = 1.61 e Å3
9077 reflectionsΔρmin = 0.67 e Å3
484 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100 K. Analytical numeric absorption correction was carried out with CrysAlis RED (Oxford Diffraction, 2010) using a multifaceted crystal model (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.400484 (15)0.294943 (13)0.282022 (9)0.01762 (6)
Cl10.51620 (5)0.47374 (5)0.27470 (3)0.02515 (12)
Cl20.61585 (5)0.23734 (5)0.29736 (3)0.02538 (12)
P10.19314 (5)0.34091 (5)0.25564 (3)0.01771 (11)
P20.30605 (5)0.12238 (5)0.29288 (3)0.01802 (11)
O10.09044 (15)0.36632 (14)0.32508 (9)0.0234 (3)
O20.10765 (15)0.23789 (13)0.18878 (9)0.0204 (3)
O30.18784 (16)0.45217 (13)0.22691 (9)0.0233 (3)
O40.38304 (15)0.07301 (12)0.35210 (9)0.0202 (3)
O50.29919 (18)0.01967 (14)0.21472 (9)0.0272 (3)
O60.14500 (15)0.11591 (12)0.31591 (9)0.0190 (3)
C110.1329 (2)0.39945 (17)0.40527 (12)0.0175 (4)
C120.0448 (2)0.35074 (17)0.45303 (13)0.0184 (4)
C130.0815 (2)0.39022 (19)0.53348 (13)0.0217 (4)
H130.02280.36080.56840.026*
C140.2007 (2)0.4708 (2)0.56355 (13)0.0244 (4)
H140.22330.49510.61830.029*
C150.2869 (2)0.51586 (19)0.51349 (14)0.0243 (4)
H150.36950.57040.53380.029*
C160.2523 (2)0.48113 (18)0.43391 (13)0.0211 (4)
H160.30950.51280.39930.025*
C170.0846 (2)0.26301 (19)0.42069 (14)0.0243 (4)
H17A0.12840.28180.37690.037*
H17B0.15230.26370.46180.037*
H17C0.05750.18640.40230.037*
C210.0088 (2)0.24092 (18)0.14012 (13)0.0204 (4)
C220.0023 (2)0.18617 (18)0.06101 (13)0.0234 (4)
C230.1180 (3)0.1846 (2)0.01254 (14)0.0287 (5)
H230.11740.14830.04200.034*
C240.2342 (3)0.2349 (2)0.04228 (15)0.0303 (5)
H240.31150.23340.00810.036*
C250.2371 (2)0.2871 (2)0.12163 (15)0.0294 (5)
H250.31690.32080.14200.035*
C260.1233 (2)0.2904 (2)0.17182 (14)0.0244 (4)
H260.12440.32570.22650.029*
C270.1245 (3)0.1318 (2)0.03005 (14)0.0308 (5)
H27A0.20520.19230.03170.046*
H27B0.10270.08430.02410.046*
H27C0.14800.08360.06240.046*
C310.2144 (2)0.46312 (19)0.15151 (13)0.0233 (4)
C320.1324 (3)0.5317 (2)0.12557 (17)0.0319 (5)
C330.1604 (3)0.5475 (2)0.05248 (18)0.0418 (7)
H330.10720.59410.03300.050*
C340.2627 (3)0.4978 (3)0.00751 (17)0.0426 (7)
H340.27890.51010.04230.051*
C350.3421 (3)0.4299 (2)0.03485 (15)0.0336 (5)
H350.41280.39550.00390.040*
C360.3180 (2)0.41223 (19)0.10773 (13)0.0253 (4)
H360.37180.36590.12710.030*
C370.0227 (3)0.5874 (3)0.1752 (2)0.0452 (7)
H37A0.05140.52780.18340.068*
H37B0.01920.63600.14880.068*
H37C0.06690.63490.22590.068*
C410.4445 (2)0.13559 (17)0.42680 (12)0.0181 (4)
C420.5674 (2)0.10157 (18)0.44879 (13)0.0204 (4)
C430.6253 (2)0.1583 (2)0.52377 (14)0.0254 (5)
H430.70770.13630.54150.030*
C440.5661 (2)0.2460 (2)0.57344 (14)0.0254 (5)
H440.60900.28400.62410.030*
C450.4445 (2)0.27822 (18)0.54932 (13)0.0225 (4)
H450.40420.33850.58320.027*
C460.3821 (2)0.22198 (18)0.47544 (13)0.0195 (4)
H460.29790.24240.45850.023*
C470.6355 (2)0.0108 (2)0.39316 (16)0.0281 (5)
H47A0.67110.03930.34950.042*
H47B0.56550.05900.37300.042*
H47C0.71420.00690.42070.042*
C510.3775 (3)0.0766 (3)0.19830 (15)0.0367 (6)
C520.4797 (3)0.0809 (2)0.14459 (16)0.0364 (6)
C530.5453 (3)0.1784 (3)0.12622 (18)0.0479 (8)
H530.61630.18470.08900.058*
C540.5094 (3)0.2663 (3)0.16095 (18)0.0462 (7)
H540.55610.33170.14760.055*
C550.4059 (4)0.2590 (3)0.21493 (18)0.0504 (8)
H550.38380.31880.23930.061*
C560.3332 (4)0.1656 (2)0.23427 (16)0.0426 (7)
H560.25860.16150.26930.051*
C570.5158 (4)0.0136 (3)0.1097 (2)0.0504 (8)
H57A0.43120.02440.08300.076*
H57B0.58850.00450.07180.076*
H57C0.55190.08450.15070.076*
C610.0641 (2)0.01390 (17)0.32605 (12)0.0186 (4)
C620.0410 (2)0.04696 (19)0.26908 (13)0.0236 (4)
C630.1217 (2)0.1447 (2)0.28173 (14)0.0259 (5)
H630.19380.18890.24380.031*
C640.0992 (2)0.17885 (19)0.34812 (14)0.0253 (5)
H640.15440.24640.35500.030*
C650.0040 (2)0.1142 (2)0.40449 (14)0.0241 (4)
H650.01820.13650.45060.029*
C660.0869 (2)0.01668 (19)0.39380 (13)0.0210 (4)
H660.15790.02810.43220.025*
C670.0716 (3)0.0070 (3)0.19915 (16)0.0396 (7)
H67A0.10800.06610.21630.059*
H67B0.14230.06490.16370.059*
H67C0.01570.00400.17180.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.01242 (8)0.02194 (9)0.01643 (9)0.00119 (6)0.00002 (6)0.00415 (6)
Cl10.0209 (2)0.0251 (3)0.0260 (3)0.00535 (19)0.0009 (2)0.0066 (2)
Cl20.0125 (2)0.0378 (3)0.0266 (3)0.0014 (2)0.00082 (19)0.0118 (2)
P10.0145 (2)0.0209 (3)0.0166 (2)0.00023 (19)0.00008 (19)0.0050 (2)
P20.0143 (2)0.0201 (3)0.0169 (2)0.00000 (19)0.00052 (19)0.0020 (2)
O10.0148 (7)0.0357 (9)0.0186 (7)0.0030 (6)0.0003 (6)0.0065 (6)
O20.0190 (7)0.0221 (7)0.0189 (7)0.0002 (6)0.0041 (6)0.0060 (6)
O30.0227 (7)0.0220 (7)0.0245 (8)0.0017 (6)0.0023 (6)0.0063 (6)
O40.0164 (7)0.0181 (7)0.0234 (8)0.0030 (5)0.0008 (6)0.0012 (6)
O50.0297 (8)0.0252 (8)0.0209 (8)0.0006 (7)0.0008 (6)0.0010 (6)
O60.0139 (6)0.0211 (7)0.0217 (7)0.0004 (5)0.0000 (5)0.0072 (6)
C110.0154 (9)0.0197 (9)0.0176 (9)0.0059 (7)0.0000 (7)0.0039 (8)
C120.0132 (9)0.0182 (9)0.0254 (10)0.0056 (7)0.0029 (8)0.0072 (8)
C130.0212 (10)0.0254 (10)0.0223 (10)0.0096 (8)0.0051 (8)0.0096 (9)
C140.0254 (11)0.0269 (11)0.0198 (10)0.0100 (9)0.0011 (8)0.0016 (9)
C150.0186 (10)0.0218 (10)0.0281 (11)0.0022 (8)0.0023 (8)0.0005 (9)
C160.0168 (9)0.0198 (10)0.0257 (11)0.0031 (8)0.0026 (8)0.0048 (8)
C170.0154 (9)0.0253 (11)0.0312 (12)0.0008 (8)0.0035 (8)0.0074 (9)
C210.0185 (9)0.0210 (10)0.0213 (10)0.0038 (8)0.0049 (8)0.0092 (8)
C220.0278 (11)0.0189 (10)0.0224 (11)0.0020 (8)0.0037 (9)0.0072 (8)
C230.0363 (13)0.0244 (11)0.0229 (11)0.0036 (9)0.0093 (9)0.0075 (9)
C240.0278 (12)0.0304 (12)0.0351 (13)0.0037 (9)0.0114 (10)0.0180 (10)
C250.0189 (10)0.0329 (12)0.0388 (14)0.0009 (9)0.0020 (9)0.0169 (11)
C260.0208 (10)0.0285 (11)0.0241 (11)0.0017 (8)0.0003 (8)0.0106 (9)
C270.0356 (13)0.0276 (12)0.0238 (12)0.0036 (10)0.0008 (10)0.0007 (9)
C310.0240 (10)0.0191 (10)0.0246 (11)0.0047 (8)0.0036 (8)0.0071 (8)
C320.0263 (11)0.0250 (11)0.0458 (15)0.0028 (9)0.0054 (10)0.0163 (11)
C330.0431 (15)0.0371 (14)0.0512 (17)0.0047 (12)0.0136 (13)0.0285 (13)
C340.0532 (17)0.0430 (15)0.0327 (14)0.0103 (13)0.0079 (12)0.0223 (12)
C350.0398 (14)0.0318 (13)0.0254 (12)0.0061 (10)0.0022 (10)0.0079 (10)
C360.0282 (11)0.0220 (10)0.0240 (11)0.0017 (9)0.0001 (9)0.0071 (9)
C370.0345 (14)0.0390 (15)0.068 (2)0.0120 (12)0.0004 (14)0.0223 (15)
C410.0141 (9)0.0180 (9)0.0214 (10)0.0003 (7)0.0011 (7)0.0060 (8)
C420.0131 (9)0.0187 (9)0.0322 (11)0.0017 (7)0.0032 (8)0.0122 (9)
C430.0162 (9)0.0292 (11)0.0352 (12)0.0002 (8)0.0047 (9)0.0183 (10)
C440.0253 (11)0.0277 (11)0.0224 (11)0.0044 (9)0.0063 (8)0.0106 (9)
C450.0249 (10)0.0191 (10)0.0234 (11)0.0018 (8)0.0006 (8)0.0065 (8)
C460.0156 (9)0.0186 (9)0.0250 (11)0.0031 (7)0.0002 (8)0.0070 (8)
C470.0182 (10)0.0231 (11)0.0458 (14)0.0075 (8)0.0056 (9)0.0119 (10)
C510.0227 (11)0.0487 (16)0.0276 (13)0.0018 (11)0.0018 (10)0.0055 (11)
C520.0322 (13)0.0395 (14)0.0318 (13)0.0008 (11)0.0006 (10)0.0034 (11)
C530.0492 (17)0.0384 (15)0.0428 (16)0.0208 (13)0.0235 (13)0.0173 (13)
C540.0509 (17)0.0410 (16)0.0393 (16)0.0132 (13)0.0076 (13)0.0037 (13)
C550.078 (2)0.0315 (14)0.0369 (16)0.0026 (14)0.0021 (15)0.0048 (12)
C560.067 (2)0.0321 (14)0.0262 (13)0.0147 (13)0.0057 (13)0.0003 (11)
C570.065 (2)0.0374 (16)0.0441 (17)0.0048 (14)0.0032 (15)0.0111 (13)
C610.0137 (9)0.0188 (9)0.0228 (10)0.0021 (7)0.0041 (8)0.0055 (8)
C620.0202 (10)0.0255 (11)0.0238 (11)0.0016 (8)0.0006 (8)0.0076 (9)
C630.0217 (10)0.0247 (11)0.0285 (12)0.0024 (8)0.0019 (9)0.0060 (9)
C640.0210 (10)0.0229 (10)0.0337 (12)0.0038 (8)0.0052 (9)0.0105 (9)
C650.0211 (10)0.0275 (11)0.0283 (11)0.0070 (8)0.0032 (9)0.0136 (9)
C660.0155 (9)0.0255 (10)0.0219 (10)0.0038 (8)0.0018 (8)0.0060 (8)
C670.0363 (14)0.0483 (16)0.0307 (13)0.0197 (12)0.0154 (11)0.0199 (12)
Geometric parameters (Å, º) top
Pd—P12.2254 (9)C34—C351.385 (3)
Pd—P22.2296 (9)C34—H340.9500
Pd—Cl12.3375 (9)C35—C361.389 (3)
Pd—Cl22.3164 (9)C35—H350.9500
P1—O11.5784 (16)C36—H360.9500
P1—O21.5868 (16)C37—H37A0.9800
P1—O31.5905 (16)C37—H37B0.9800
P2—O41.5813 (16)C37—H37C0.9800
P2—O51.5894 (16)C41—C461.385 (3)
P2—O61.5946 (16)C41—C421.394 (3)
O1—C111.411 (3)C42—C431.390 (3)
O2—C211.418 (3)C42—C471.504 (3)
O3—C311.408 (3)C43—C441.386 (3)
O4—C411.410 (3)C43—H430.9500
O5—C511.456 (3)C44—C451.387 (3)
O6—C611.424 (3)C44—H440.9500
C11—C161.389 (3)C45—C461.387 (3)
C11—C121.390 (3)C45—H450.9500
C12—C131.403 (3)C46—H460.9500
C12—C171.504 (3)C47—H47A0.9800
C13—C141.385 (3)C47—H47B0.9800
C13—H130.9500C47—H47C0.9800
C14—C151.389 (3)C51—C521.370 (4)
C14—H140.9500C51—C561.425 (4)
C15—C161.384 (3)C52—C531.394 (4)
C15—H150.9500C52—C571.459 (4)
C16—H160.9500C53—C541.386 (4)
C17—H17A0.9800C53—H530.9500
C17—H17B0.9800C54—C551.382 (4)
C17—H17C0.9800C54—H540.9500
C21—C261.382 (3)C55—C561.392 (4)
C21—C221.389 (3)C55—H550.9500
C22—C231.393 (3)C56—H560.9500
C22—C271.508 (3)C57—H57A0.9800
C23—C241.391 (3)C57—H57B0.9800
C23—H230.9500C57—H57C0.9800
C24—C251.383 (3)C61—C661.384 (3)
C24—H240.9500C61—C621.391 (3)
C25—C261.393 (3)C62—C631.397 (3)
C25—H250.9500C62—C671.501 (3)
C26—H260.9500C63—C641.385 (3)
C27—H27A0.9800C63—H630.9500
C27—H27B0.9800C64—C651.385 (3)
C27—H27C0.9800C64—H640.9500
C31—C361.382 (3)C65—C661.390 (3)
C31—C321.395 (3)C65—H650.9500
C32—C331.391 (3)C66—H660.9500
C32—C371.500 (3)C67—H67A0.9800
C33—C341.376 (3)C67—H67B0.9800
C33—H330.9500C67—H67C0.9800
Cl1—Pd—Cl290.59 (2)C34—C35—H35120.1
P1—Pd—P294.07 (2)C36—C35—H35120.1
P1—Pd—Cl190.35 (2)C31—C36—C35118.9 (2)
P2—Pd—Cl285.09 (2)C31—C36—H36120.5
P2—Pd—Cl1175.50 (2)C35—C36—H36120.5
O1—P1—O2105.65 (9)C32—C37—H37A109.5
O1—P1—O398.71 (9)C32—C37—H37B109.5
O2—P1—O3104.71 (9)H37A—C37—H37B109.5
O1—P1—Pd116.84 (7)C32—C37—H37C109.5
O2—P1—Pd109.27 (7)H37A—C37—H37C109.5
O3—P1—Pd120.08 (7)H37B—C37—H37C109.5
O4—P2—O5100.99 (9)C46—C41—C42123.0 (2)
O4—P2—O6105.81 (9)C46—C41—O4121.3 (2)
O5—P2—O6102.97 (9)C42—C41—O4115.7 (2)
O4—P2—Pd117.48 (7)C43—C42—C41116.5 (2)
O5—P2—Pd114.98 (7)C43—C42—C47122.0 (2)
O6—P2—Pd112.92 (7)C41—C42—C47121.5 (2)
C11—O1—P1125.1 (2)C44—C43—C42121.8 (2)
C21—O2—P1127.9 (2)C44—C43—H43119.1
C31—O3—P1126.6 (2)C42—C43—H43119.1
C41—O4—P2126.6 (2)C43—C44—C45120.1 (2)
C51—O5—P2127.9 (2)C43—C44—H44119.9
C61—O6—P2122.4 (2)C45—C44—H44119.9
C16—C11—C12123.0 (2)C46—C45—C44119.7 (2)
C16—C11—O1120.7 (2)C46—C45—H45120.2
C12—C11—O1116.2 (2)C44—C45—H45120.2
C11—C12—C13116.1 (2)C41—C46—C45118.9 (2)
C11—C12—C17122.0 (2)C41—C46—H46120.6
C13—C12—C17121.9 (2)C45—C46—H46120.6
C14—C13—C12122.1 (2)C42—C47—H47A109.5
C14—C13—H13119.0C42—C47—H47B109.5
C12—C13—H13119.0H47A—C47—H47B109.5
C13—C14—C15119.8 (2)C42—C47—H47C109.5
C13—C14—H14120.1H47A—C47—H47C109.5
C15—C14—H14120.1H47B—C47—H47C109.5
C16—C15—C14119.8 (2)C52—C51—C56124.4 (3)
C16—C15—H15120.1C52—C51—O5118.3 (3)
C14—C15—H15120.1C56—C51—O5117.1 (3)
C15—C16—C11119.1 (2)C51—C52—C53116.6 (3)
C15—C16—H16120.4C51—C52—C57120.4 (3)
C11—C16—H16120.4C53—C52—C57123.0 (3)
C12—C17—H17A109.5C54—C53—C52121.6 (3)
C12—C17—H17B109.5C54—C53—H53119.2
H17A—C17—H17B109.5C52—C53—H53119.2
C12—C17—H17C109.5C55—C54—C53120.1 (3)
H17A—C17—H17C109.5C55—C54—H54120.0
H17B—C17—H17C109.5C53—C54—H54120.0
C26—C21—C22123.4 (2)C54—C55—C56121.3 (3)
C26—C21—O2120.7 (2)C54—C55—H55119.3
C22—C21—O2115.8 (2)C56—C55—H55119.3
C21—C22—C23116.7 (2)C55—C56—C51115.9 (3)
C21—C22—C27121.0 (2)C55—C56—H56122.0
C23—C22—C27122.3 (2)C51—C56—H56122.0
C24—C23—C22121.4 (2)C52—C57—H57A109.5
C24—C23—H23119.3C52—C57—H57B109.5
C22—C23—H23119.3H57A—C57—H57B109.5
C25—C24—C23120.0 (2)C52—C57—H57C109.5
C25—C24—H24120.0H57A—C57—H57C109.5
C23—C24—H24120.0H57B—C57—H57C109.5
C24—C25—C26120.2 (2)C66—C61—C62122.8 (2)
C24—C25—H25119.9C66—C61—O6119.1 (2)
C26—C25—H25119.9C62—C61—O6118.0 (2)
C21—C26—C25118.3 (2)C61—C62—C63116.8 (2)
C21—C26—H26120.8C61—C62—C67121.9 (2)
C25—C26—H26120.8C63—C62—C67121.2 (2)
C22—C27—H27A109.5C64—C63—C62121.7 (2)
C22—C27—H27B109.5C64—C63—H63119.2
H27A—C27—H27B109.5C62—C63—H63119.2
C22—C27—H27C109.5C63—C64—C65119.8 (2)
H27A—C27—H27C109.5C63—C64—H64120.1
H27B—C27—H27C109.5C65—C64—H64120.1
C36—C31—C32122.7 (2)C64—C65—C66120.2 (2)
C36—C31—O3121.9 (2)C64—C65—H65119.9
C32—C31—O3115.3 (2)C66—C65—H65119.9
C33—C32—C31116.4 (2)C61—C66—C65118.7 (2)
C33—C32—C37122.2 (2)C61—C66—H66120.6
C31—C32—C37121.3 (2)C65—C66—H66120.6
C34—C33—C32122.2 (2)C62—C67—H67A109.5
C34—C33—H33118.9C62—C67—H67B109.5
C32—C33—H33118.9H67A—C67—H67B109.5
C33—C34—C35120.0 (2)C62—C67—H67C109.5
C33—C34—H34120.0H67A—C67—H67C109.5
C35—C34—H34120.0H67B—C67—H67C109.5
C34—C35—C36119.7 (2)
P2—Pd—P1—O170.82 (8)O2—C21—C26—C25177.6 (3)
Cl1—Pd—P1—O1108.35 (8)C24—C25—C26—C210.3 (3)
P2—Pd—P1—O249.00 (8)P1—O3—C31—C3637.3 (2)
Cl1—Pd—P1—O2131.83 (8)P1—O3—C31—C32144.8 (2)
P2—Pd—P1—O3169.89 (8)C36—C31—C32—C330.3 (3)
Cl1—Pd—P1—O310.94 (8)O3—C31—C32—C33177.6 (3)
P1—Pd—P2—O4148.52 (8)C36—C31—C32—C37178.9 (3)
Cl2—Pd—P2—O436.76 (8)O3—C31—C32—C370.9 (3)
P1—Pd—P2—O592.84 (8)C31—C32—C33—C340.4 (3)
Cl2—Pd—P2—O581.88 (8)C37—C32—C33—C34178.9 (3)
P1—Pd—P2—O624.92 (8)C32—C33—C34—C350.3 (3)
Cl2—Pd—P2—O6160.36 (8)C33—C34—C35—C360.0 (3)
O2—P1—O1—C11143.8 (2)C32—C31—C36—C350.1 (3)
O3—P1—O1—C11108.2 (2)O3—C31—C36—C35177.7 (3)
Pd—P1—O1—C1122.1 (2)C34—C35—C36—C310.1 (3)
O1—P1—O2—C2171.8 (2)P2—O4—C41—C4638.1 (2)
O3—P1—O2—C2131.8 (2)P2—O4—C41—C42144.2 (2)
Pd—P1—O2—C21161.7 (2)C46—C41—C42—C430.8 (3)
O1—P1—O3—C31155.4 (2)O4—C41—C42—C43176.8 (3)
O2—P1—O3—C3146.6 (2)C46—C41—C42—C47177.4 (3)
Pd—P1—O3—C3176.6 (2)O4—C41—C42—C475.0 (3)
O5—P2—O4—C41165.8 (2)C41—C42—C43—C441.5 (3)
O6—P2—O4—C4187.1 (1)C47—C42—C43—C44176.6 (3)
Pd—P2—O4—C4139.9 (1)C42—C43—C44—C451.0 (3)
O4—P2—O5—C5115.2 (2)C43—C44—C45—C460.3 (3)
O6—P2—O5—C51124.4 (2)C42—C41—C46—C450.4 (3)
Pd—P2—O5—C51112.4 (2)O4—C41—C46—C45177.9 (3)
O4—P2—O6—C6150.1 (2)C44—C45—C46—C411.0 (3)
O5—P2—O6—C6155.5 (2)P2—O5—C51—C52110.9 (3)
Pd—P2—O6—C61179.9 (2)P2—O5—C51—C5674.7 (3)
P1—O1—C11—C1643.3 (2)C56—C51—C52—C531.5 (4)
P1—O1—C11—C12140.1 (2)O5—C51—C52—C53175.5 (4)
C16—C11—C12—C131.1 (3)C56—C51—C52—C57178.7 (4)
O1—C11—C12—C13175.5 (3)O5—C51—C52—C574.7 (4)
C16—C11—C12—C17179.6 (3)C51—C52—C53—C540.4 (4)
O1—C11—C12—C173.0 (3)C57—C52—C53—C54179.4 (4)
C11—C12—C13—C141.6 (3)C52—C53—C54—C550.3 (4)
C17—C12—C13—C14179.9 (3)C53—C54—C55—C561.6 (4)
C12—C13—C14—C150.7 (3)C54—C55—C56—C513.2 (4)
C13—C14—C15—C160.9 (3)C52—C51—C56—C553.3 (4)
C14—C15—C16—C111.4 (3)O5—C51—C56—C55177.3 (4)
C12—C11—C16—C150.4 (3)P2—O6—C61—C6676.2 (2)
O1—C11—C16—C15176.8 (3)P2—O6—C61—C62107.8 (2)
P1—O2—C21—C2649.2 (2)C66—C61—C62—C632.1 (3)
P1—O2—C21—C22134.2 (2)O6—C61—C62—C63178.1 (3)
C26—C21—C22—C231.3 (3)C66—C61—C62—C67175.0 (3)
O2—C21—C22—C23177.8 (3)O6—C61—C62—C670.9 (3)
C26—C21—C22—C27178.9 (3)C61—C62—C63—C640.7 (3)
O2—C21—C22—C272.3 (3)C67—C62—C63—C64176.5 (3)
C21—C22—C23—C240.3 (3)C62—C63—C64—C651.0 (3)
C27—C22—C23—C24179.8 (3)C63—C64—C65—C661.4 (3)
C22—C23—C24—C250.6 (3)C62—C61—C66—C651.8 (3)
C23—C24—C25—C260.6 (3)O6—C61—C66—C65177.7 (3)
C22—C21—C26—C251.3 (3)C64—C65—C66—C610.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···Cl2i0.982.723.521 (3)139
C45—H45···Cl1ii0.952.913.680 (3)139
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[PdCl2(C21H21O3P)2]
Mr882.00
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.575 (3), 12.248 (4), 17.814 (5)
α, β, γ (°)106.12 (3), 90.42 (3), 98.74 (3)
V3)1981.0 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.40 × 0.32 × 0.16
Data collection
DiffractometerKuma KM-4 CCD
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.848, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
26365, 9077, 7974
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.08
No. of reflections9077
No. of parameters484
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.61, 0.67

Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Pd—P12.2254 (9)Pd—Cl12.3375 (9)
Pd—P22.2296 (9)Pd—Cl22.3164 (9)
Cl1—Pd—Cl290.59 (2)P2—Pd—Cl285.09 (2)
P1—Pd—P294.07 (2)P2—Pd—Cl1175.50 (2)
P1—Pd—Cl190.35 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···Cl2i0.982.723.521 (3)139
C45—H45···Cl1ii0.952.913.680 (3)139
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1.
Intermolecular ππ interactions (Å, °). top
CgICgJCg···CgInterplanar distanceOffset
11iii3.758 (4)3.409 (4)1.582 (4)
22iv4.651 (4)4.164 (4)2.072 (4)
Cg1 denotes the centroid of ring C11-C16; Cg2 of ring C41-C46. Cg···Cg is the distance between ring centroids. The interplanar distance is the perpendicular distance of CgI from ring J plane. The offset is the lateral displacement of ring I relative to ring J. The planes of the I and J rings are parallel.

Symmetry codes: (iii) -x, -y+1, -z+1; (iv) -x+1, -y, -z+1.
 

Acknowledgements

This work was supported by European funds in the frame of the Human Capital Operational Programme through project No. POKL.04.01.01–00-054/10–00 `Development of the potential and educational offer of the University of Wrocław – the chance to enhance the competitiveness of the University'. The financial support is gratefully acknowledged.

References

First citationAullón, G., Bellamy, D., Brammer, L., Bruton, E. & Orpen, A. G. (1998). Chem. Commun. pp. 653–654.  Google Scholar
First citationBłaszczyk, I., Trzeciak, A. M. & Ziółkowski, J. J. (2009). Catal. Lett. 133, 262–266.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMcGaughey, G. B., Gagné, M. & Rappé, A. K. (1998). J. Biol. Chem. 273, 15458–15463.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83.  CrossRef Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationSabounchei, S. J., Naghipour, A. & Bickley, J. F. (2000). Acta Cryst. C56, e280.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonogashira, K., Tohda, Y. & Nagihara, N. (1975). Tetrahedron Lett. 16, 4467–4470.  CrossRef Google Scholar
First citationTrzeciak, A. M., Bartosz-Bechowski, H., Ciunik, Z., Niesyty, K. & Ziółkowski, J. J. (2001). Can. J. Chem. 79, 752–759.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m270-m271
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds