organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Benzyl-3-phenyl-1-(pyridin-2-yl)propan-1-one

aSchool of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 26 January 2012; accepted 27 January 2012; online 4 February 2012)

Mol­ecules of the title compound, C21H19NO, assume an approximate propellar shape, with the three aromatic rings being nearly perpendicularly aligned with respect to the plane formed by the C atoms that are connected to the methine C atom [dihedral angles: pyridyl 79.82 (4)°, phenyl 80.12 (3)° and phenyl 86.93 (3)°].

Related literature

For background to fast aldol reactions, see: Nugent et al. (2010[Nugent, T. C., Umar, M. N. & Bibi, A. (2010). Org. Biomol. Chem. 8, 4085-4089.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19NO

  • Mr = 301.37

  • Monoclinic, P 21 /n

  • a = 15.1569 (3) Å

  • b = 5.6333 (1) Å

  • c = 19.5468 (4) Å

  • β = 109.295 (2)°

  • V = 1575.22 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.60 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.840, Tmax = 0.942

  • 25210 measured reflections

  • 3299 independent reflections

  • 3133 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.04

  • 3299 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2-Benzyl-3-phenyl-1-(pyridin-2-yl)propan-1-one (Scheme I), in the optically active form, was synthesized for use in fast aldol condensations (Nugent et al., 2010). The molecule assumes an approximate propellar shape (Fig. 1), with the three aromatic rings being nearly perpendicularly aligned at with respect to the plane formed by the C atoms that are connected to the methine C atom [dihedral angles: pyridyl 79.82 (4), phenyl 80.12 (3), phenyl 86.93 (3)°].

Related literature top

For background to fast aldol reactions, see: Nugent et al. (2010).

Experimental top

In a 250 ml flask was added sodium borohydride (4 equiv, 1.2 mg, 48 mmol) in anhydrous toluene (40 ml) followed by the addition of 18-crown-6 (0.1 equiv, 0.32 mg, 1.2 mmol), and acetyl pyridine (1 equiv, 1.35 ml, 12 mmol). Benzyl bromide (2.5 equiv, 3.6 ml, 30 mmol) was added. The reaction mixture was stirred at 323 K for 5 h under an inert atmosphere. The reaction was monitored by TLC and GC. The reaction was quenched by adding saturated ammonium chloride. The organic compound was extracted with ethyl acetate. The organic layer was dried over sodium sulfate and the solvent removed to give a yellow oil. This was submitted to flash chromatography and eluted with 5% ethyl acetate/hexane to give the desired ketone product (70% yield).

Refinement top

H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C21H19NO at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-Benzyl-3-phenyl-1-(pyridin-2-yl)propan-1-one top
Crystal data top
C21H19NOF(000) = 640
Mr = 301.37Dx = 1.271 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 14175 reflections
a = 15.1569 (3) Åθ = 3.1–76.1°
b = 5.6333 (1) ŵ = 0.60 mm1
c = 19.5468 (4) ÅT = 100 K
β = 109.295 (2)°Block, colourless
V = 1575.22 (5) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
3299 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3133 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 10.4041 pixels mm-1θmax = 76.3°, θmin = 3.2°
ω scansh = 1919
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 75
Tmin = 0.840, Tmax = 0.942l = 2424
25210 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.5533P]
where P = (Fo2 + 2Fc2)/3
3299 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C21H19NOV = 1575.22 (5) Å3
Mr = 301.37Z = 4
Monoclinic, P21/nCu Kα radiation
a = 15.1569 (3) ŵ = 0.60 mm1
b = 5.6333 (1) ÅT = 100 K
c = 19.5468 (4) Å0.30 × 0.20 × 0.10 mm
β = 109.295 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
3299 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3133 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.942Rint = 0.034
25210 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
3299 reflectionsΔρmin = 0.21 e Å3
208 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.52050 (5)0.37525 (13)0.78840 (4)0.01980 (17)
N10.46273 (6)0.74653 (15)0.63746 (5)0.0198 (2)
C10.42604 (8)0.7372 (2)0.56524 (6)0.0238 (2)
H10.43650.86770.53810.029*
C20.37344 (8)0.5477 (2)0.52749 (6)0.0238 (2)
H20.34820.54970.47610.029*
C30.35863 (8)0.3560 (2)0.56657 (6)0.0234 (2)
H30.32180.22520.54250.028*
C40.39850 (7)0.35810 (19)0.64159 (6)0.0199 (2)
H40.39080.22740.66980.024*
C50.45003 (7)0.55637 (17)0.67445 (5)0.0156 (2)
C60.49749 (6)0.56118 (17)0.75561 (5)0.0149 (2)
C70.51069 (7)0.80051 (17)0.79253 (5)0.0146 (2)
H70.52820.91730.76070.018*
C80.58912 (7)0.79632 (18)0.86598 (5)0.0162 (2)
H8A0.58920.94890.89110.019*
H8B0.57630.66840.89610.019*
C90.68460 (7)0.75692 (17)0.85936 (5)0.0152 (2)
C100.72381 (7)0.92961 (18)0.82695 (5)0.0173 (2)
H100.69021.07160.80930.021*
C110.81153 (7)0.89629 (19)0.82020 (5)0.0198 (2)
H110.83721.01500.79780.024*
C120.86173 (7)0.68974 (19)0.84614 (5)0.0204 (2)
H120.92180.66720.84180.024*
C130.82336 (7)0.51680 (18)0.87838 (5)0.0197 (2)
H130.85730.37550.89630.024*
C140.73529 (7)0.54951 (18)0.88463 (5)0.0173 (2)
H140.70940.42930.90630.021*
C150.41552 (7)0.87940 (17)0.79944 (5)0.0163 (2)
H15A0.42141.04500.81730.020*
H15B0.36740.87730.75070.020*
C160.38254 (7)0.72582 (17)0.84959 (5)0.0159 (2)
C170.32976 (7)0.52092 (18)0.82459 (5)0.0180 (2)
H170.31120.48130.77460.022*
C180.30400 (7)0.37407 (18)0.87213 (6)0.0197 (2)
H180.26800.23560.85440.024*
C190.33078 (7)0.42930 (19)0.94531 (6)0.0211 (2)
H190.31400.32780.97780.025*
C200.38230 (8)0.6343 (2)0.97072 (6)0.0220 (2)
H200.40050.67371.02070.026*
C210.40717 (7)0.78150 (18)0.92306 (6)0.0192 (2)
H210.44150.92240.94080.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0225 (4)0.0148 (4)0.0208 (4)0.0004 (3)0.0055 (3)0.0034 (3)
N10.0237 (4)0.0177 (4)0.0170 (4)0.0013 (3)0.0055 (3)0.0008 (3)
C10.0300 (6)0.0227 (5)0.0173 (5)0.0001 (4)0.0060 (4)0.0025 (4)
C20.0255 (5)0.0263 (6)0.0161 (5)0.0040 (4)0.0021 (4)0.0016 (4)
C30.0218 (5)0.0211 (5)0.0235 (5)0.0015 (4)0.0024 (4)0.0054 (4)
C40.0196 (5)0.0169 (5)0.0225 (5)0.0012 (4)0.0061 (4)0.0005 (4)
C50.0146 (4)0.0152 (5)0.0172 (5)0.0017 (3)0.0054 (4)0.0002 (4)
C60.0127 (4)0.0153 (5)0.0177 (5)0.0008 (3)0.0062 (4)0.0008 (4)
C70.0156 (4)0.0140 (4)0.0138 (4)0.0001 (3)0.0043 (4)0.0013 (3)
C80.0165 (5)0.0179 (5)0.0138 (4)0.0009 (4)0.0043 (4)0.0007 (3)
C90.0163 (5)0.0173 (5)0.0110 (4)0.0024 (4)0.0029 (3)0.0026 (3)
C100.0196 (5)0.0168 (5)0.0141 (4)0.0011 (4)0.0037 (4)0.0001 (4)
C110.0217 (5)0.0223 (5)0.0166 (5)0.0053 (4)0.0077 (4)0.0015 (4)
C120.0172 (5)0.0250 (5)0.0196 (5)0.0020 (4)0.0071 (4)0.0057 (4)
C130.0200 (5)0.0181 (5)0.0191 (5)0.0013 (4)0.0040 (4)0.0027 (4)
C140.0197 (5)0.0169 (5)0.0147 (4)0.0024 (4)0.0048 (4)0.0007 (4)
C150.0166 (5)0.0151 (5)0.0171 (5)0.0019 (3)0.0052 (4)0.0018 (3)
C160.0138 (4)0.0157 (5)0.0185 (5)0.0030 (3)0.0056 (4)0.0016 (4)
C170.0164 (4)0.0196 (5)0.0169 (4)0.0003 (4)0.0040 (4)0.0003 (4)
C180.0169 (5)0.0183 (5)0.0230 (5)0.0018 (4)0.0054 (4)0.0007 (4)
C190.0203 (5)0.0226 (5)0.0219 (5)0.0003 (4)0.0092 (4)0.0048 (4)
C200.0237 (5)0.0262 (5)0.0174 (5)0.0005 (4)0.0084 (4)0.0007 (4)
C210.0197 (5)0.0177 (5)0.0204 (5)0.0012 (4)0.0071 (4)0.0023 (4)
Geometric parameters (Å, º) top
O1—C61.2172 (12)C10—H100.9500
N1—C11.3365 (14)C11—C121.3910 (15)
N1—C51.3414 (13)C11—H110.9500
C1—C21.3897 (16)C12—C131.3881 (15)
C1—H10.9500C12—H120.9500
C2—C31.3829 (16)C13—C141.3922 (14)
C2—H20.9500C13—H130.9500
C3—C41.3893 (15)C14—H140.9500
C3—H30.9500C15—C161.5111 (13)
C4—C51.3922 (14)C15—H15A0.9900
C4—H40.9500C15—H15B0.9900
C5—C61.5103 (13)C16—C211.3950 (14)
C6—C71.5110 (13)C16—C171.3974 (14)
C7—C81.5320 (13)C17—C181.3928 (14)
C7—C151.5573 (13)C17—H170.9500
C7—H71.0000C18—C191.3869 (15)
C8—C91.5113 (13)C18—H180.9500
C8—H8A0.9900C19—C201.3905 (15)
C8—H8B0.9900C19—H190.9500
C9—C101.3963 (14)C20—C211.3892 (15)
C9—C141.3960 (14)C20—H200.9500
C10—C111.3916 (14)C21—H210.9500
C1—N1—C5117.01 (9)C12—C11—C10120.20 (9)
N1—C1—C2123.81 (10)C12—C11—H11119.9
N1—C1—H1118.1C10—C11—H11119.9
C2—C1—H1118.1C13—C12—C11119.46 (9)
C3—C2—C1118.42 (10)C13—C12—H12120.3
C3—C2—H2120.8C11—C12—H12120.3
C1—C2—H2120.8C12—C13—C14120.31 (10)
C2—C3—C4118.89 (10)C12—C13—H13119.8
C2—C3—H3120.6C14—C13—H13119.8
C4—C3—H3120.6C13—C14—C9120.75 (9)
C3—C4—C5118.41 (10)C13—C14—H14119.6
C3—C4—H4120.8C9—C14—H14119.6
C5—C4—H4120.8C16—C15—C7114.03 (8)
N1—C5—C4123.40 (9)C16—C15—H15A108.7
N1—C5—C6116.65 (8)C7—C15—H15A108.7
C4—C5—C6119.92 (9)C16—C15—H15B108.7
O1—C6—C5119.46 (9)C7—C15—H15B108.7
O1—C6—C7123.14 (8)H15A—C15—H15B107.6
C5—C6—C7117.36 (8)C21—C16—C17118.25 (9)
C6—C7—C8111.91 (8)C21—C16—C15120.38 (9)
C6—C7—C15108.41 (8)C17—C16—C15121.33 (9)
C8—C7—C15112.17 (8)C18—C17—C16120.77 (9)
C6—C7—H7108.1C18—C17—H17119.6
C8—C7—H7108.1C16—C17—H17119.6
C15—C7—H7108.1C19—C18—C17120.25 (10)
C9—C8—C7112.99 (8)C19—C18—H18119.9
C9—C8—H8A109.0C17—C18—H18119.9
C7—C8—H8A109.0C18—C19—C20119.55 (10)
C9—C8—H8B109.0C18—C19—H19120.2
C7—C8—H8B109.0C20—C19—H19120.2
H8A—C8—H8B107.8C21—C20—C19120.06 (10)
C10—C9—C14118.47 (9)C21—C20—H20120.0
C10—C9—C8119.98 (9)C19—C20—H20120.0
C14—C9—C8121.55 (9)C20—C21—C16121.10 (10)
C11—C10—C9120.82 (9)C20—C21—H21119.5
C11—C10—H10119.6C16—C21—H21119.5
C9—C10—H10119.6
C5—N1—C1—C22.48 (16)C14—C9—C10—C110.23 (14)
N1—C1—C2—C30.61 (17)C8—C9—C10—C11179.84 (9)
C1—C2—C3—C41.43 (16)C9—C10—C11—C120.31 (15)
C2—C3—C4—C51.50 (16)C10—C11—C12—C130.38 (15)
C1—N1—C5—C42.38 (15)C11—C12—C13—C140.09 (15)
C1—N1—C5—C6175.79 (9)C12—C13—C14—C90.64 (15)
C3—C4—C5—N10.44 (15)C10—C9—C14—C130.70 (14)
C3—C4—C5—C6177.67 (9)C8—C9—C14—C13179.69 (9)
N1—C5—C6—O1151.38 (9)C6—C7—C15—C1666.21 (10)
C4—C5—C6—O126.85 (13)C8—C7—C15—C1657.86 (11)
N1—C5—C6—C730.88 (12)C7—C15—C16—C2190.50 (11)
C4—C5—C6—C7150.88 (9)C7—C15—C16—C1787.20 (11)
O1—C6—C7—C824.09 (13)C21—C16—C17—C181.18 (15)
C5—C6—C7—C8158.27 (8)C15—C16—C17—C18176.56 (9)
O1—C6—C7—C15100.14 (10)C16—C17—C18—C190.18 (15)
C5—C6—C7—C1577.51 (10)C17—C18—C19—C200.99 (16)
C6—C7—C8—C966.67 (10)C18—C19—C20—C210.42 (16)
C15—C7—C8—C9171.23 (8)C19—C20—C21—C160.98 (16)
C7—C8—C9—C1066.63 (11)C17—C16—C21—C201.76 (15)
C7—C8—C9—C14112.97 (10)C15—C16—C21—C20176.00 (9)

Experimental details

Crystal data
Chemical formulaC21H19NO
Mr301.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)15.1569 (3), 5.6333 (1), 19.5468 (4)
β (°) 109.295 (2)
V3)1575.22 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.60
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.840, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
25210, 3299, 3133
Rint0.034
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.04
No. of reflections3299
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.21

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Higher Education Commission of Pakistan and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationNugent, T. C., Umar, M. N. & Bibi, A. (2010). Org. Biomol. Chem. 8, 4085–4089.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds