metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Dioxido[N′-(2-oxido­benzyl­­idene)pyridinium-4-carbohydrazidato-κ3O,N′,O′]vanadium(V)

aDepartment of Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, PO Box 1655, Tabriz, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, and dDepartment of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, PO Box 5166616471, Tabriz, Iran
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 26 January 2012; accepted 27 January 2012; online 4 February 2012)

The title Schiff base complex, [V(C13H10N3O2)O2], features a square-pyramidal coordination geometry defined by the O,N′,O′-donors of the tridentate Schiff base ligand and two oxide O atoms; one oxide O atom occupies the apical position. In the crystal, pyridinium–oxide N—H⋯O hydrogen bonds lead to zigzag supra­molecular chains with a flattened topology along [101]. The investigated crystal was twinned by nonmerohedry; the minor component refined to 18.5 (5)%.

Related literature

For a related Schiff base vanadyl complex containing a protonated pyridyl residue, see: Yu et al. (2007[Yu, Q., Li, C.-Y., Bian, H.-D., Liang, H., Song, H.-S. & Wang, H.-G. (2007). Chin. J. Struct. Chem. 26, 37-40.]). For the crystallization procedure, see: Harrowfield et al. (1996[Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165-1169.]). For a related structure, see: Shahverdizadeh et al. (2012[Shahverdizadeh, G. H., Ng, S. W., Tiekink, E. R. T. & Mirtamizdoust, B. (2012). Acta Cryst. E68, m221-m222.]). For additional structural analysis, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C13H10N3O2)O2]

  • Mr = 323.18

  • Monoclinic, P 21 /n

  • a = 7.1215 (3) Å

  • b = 14.5243 (6) Å

  • c = 11.9233 (5) Å

  • β = 94.081 (3)°

  • V = 1230.16 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 6.96 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.25 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.275, Tmax = 0.275

  • 2559 measured reflections

  • 2559 independent reflections

  • 2467 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.171

  • S = 1.26

  • 2559 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 1.36 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Selected bond lengths (Å)

V—O1 1.904 (3)
V—O2 2.006 (3)
V—O3 1.610 (4)
V—O4 1.654 (3)
V—N1 2.140 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯O4i 0.88 1.75 2.610 (5) 164
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of structural studies of vanadyl Schiff base complexes (Shahverdizadeh et al., 2012), the title complex, (I), was characterized.

The V atom in (I) is coordinated by the O,N,O-tridentate Schiff base ligand and two oxido-O atoms. The resulting NO4 donor set is based on a square pyramid with oxido-O3 atom in the axial position. The coordination geometry is quantified by the calculation of τ = 0.05 which compares with τ = 0.0 for an ideal square pyramidal geometry and τ = 1.0 for an ideal trigonal bipyramid (Addison et al., 1984). The VO3 bond length is significantly shorter than the VO4 bond length, Table 1, an observation ascribed to the influence exerted by the trans-N1 atom and the participation of the oxido O4 atom in hydrogen bonding, Table 2. The pyridinium-NH···O(oxido) hydrogen bonding leads to a zigzag chain along [101] with a flattened topology.

The Schiff base ligand in (I) is present as a pyridinium cation. A precedent exists in the literature in a closely related V complex (Yu et al., 2007).

Related literature top

For a related Schiff base vanadyl complex containing a protonated pyridyl residue, see: Yu et al. (2007). For the crystallization procedure, see: Harrowfield et al. (1996). For a related structure, see: Shahverdizadeh et al. (2012). For additional structural analysis, see: Spek (2009); Addison et al. (1984).

Experimental top

A solution of salicylaldehyde (10 mmol) in EtOH (25 ml) was added drop-wise to the solution of 4-pyridinecarboxylic acid hydrazide (10 mmol) in EtOH (15 ml). The mixture was refluxed for 8 h. The yellow precipitate was removed by filtration and recrystallized from MeOH solution. The product (0.5 mmol) was placed in one arm of a branched tube (Harrowfield et al., 1996) and vanadium(IV) oxide acetylacetonate (0.5 mmol) in the other. Methanol was then added to fill both arms, the tube sealed and the ligand-containing arm immersed in a bath at 333 K, while the other was left at ambient temperature. After 8 d, crystals had deposited in the arm held at ambient temperature. These filtered off, washed with acetone and ether, and air-dried. Yield: 72%. M.pt. 566 K.

Refinement top

The crystal was a non-merohedral twin. The twin components were separated by the TwinRotMat routine in PLATON (Spek, 2009); the minor component refined to 18.5 (5)%. Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The pyridinium H-atom was located in a difference Fourier map and was refined with a distance restraint of N—H 0.88±0.01 Å with Uiso(H) 1.2Ueq(N). The maximum and minimum residual electron density peaks of 1.36 and 0.84 e Å-3, respectively, were located 0.91 Å and 0.65 Å from the V atom, respectively. Owing to poor agreement, the reflection (4 8 11) was omitted from the final refinement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view of the zigzag supramolecular chain along [101] in (I). The N—H···O hydrogen bonds are shown as blue dashed lines.
cis-Dioxido[N'-(2-oxidobenzylidene)pyridinium-4-carbohydrazidato- κ3O,N',O']vanadium(V) top
Crystal data top
[V(C13H10N3O2)O2]F(000) = 656
Mr = 323.18Dx = 1.745 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 5747 reflections
a = 7.1215 (3) Åθ = 3.0–76.6°
b = 14.5243 (6) ŵ = 6.96 mm1
c = 11.9233 (5) ÅT = 100 K
β = 94.081 (3)°Polyhedron, brown
V = 1230.16 (9) Å30.25 × 0.25 × 0.25 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2559 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2467 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.000
Detector resolution: 10.4041 pixels mm-1θmax = 76.8°, θmin = 4.8°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1818
Tmin = 0.275, Tmax = 0.275l = 114
2559 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.0278P)2 + 7.6276P]
where P = (Fo2 + 2Fc2)/3
2559 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 1.36 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
[V(C13H10N3O2)O2]V = 1230.16 (9) Å3
Mr = 323.18Z = 4
Monoclinic, P21/nCu Kα radiation
a = 7.1215 (3) ŵ = 6.96 mm1
b = 14.5243 (6) ÅT = 100 K
c = 11.9233 (5) Å0.25 × 0.25 × 0.25 mm
β = 94.081 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2559 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2467 reflections with I > 2σ(I)
Tmin = 0.275, Tmax = 0.275Rint = 0.000
2559 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.26Δρmax = 1.36 e Å3
2559 reflectionsΔρmin = 0.84 e Å3
191 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V0.65274 (12)0.54174 (6)0.30415 (6)0.0148 (2)
O10.5622 (5)0.6639 (2)0.3213 (3)0.0182 (7)
O20.6790 (5)0.4125 (2)0.3624 (3)0.0153 (7)
O30.8525 (5)0.5579 (3)0.2519 (3)0.0236 (8)
O40.4995 (5)0.5080 (2)0.2016 (3)0.0203 (8)
N20.7647 (6)0.4717 (3)0.5387 (3)0.0153 (8)
N10.7142 (6)0.5531 (3)0.4819 (3)0.0131 (8)
N30.9037 (6)0.1409 (3)0.5891 (3)0.0160 (8)
H10.93660.08600.61490.019*
C10.6069 (7)0.7323 (3)0.3920 (4)0.0135 (9)
C20.5699 (7)0.8232 (3)0.3575 (4)0.0162 (9)
H20.52060.83470.28270.019*
C30.6035 (7)0.8964 (3)0.4303 (4)0.0186 (10)
H30.57440.95730.40550.022*
C40.6804 (7)0.8817 (3)0.5407 (4)0.0180 (10)
H40.70320.93190.59070.022*
C50.7221 (7)0.7929 (3)0.5749 (4)0.0146 (9)
H50.77560.78250.64910.018*
C60.6874 (6)0.7174 (3)0.5027 (4)0.0135 (9)
C70.7303 (7)0.6258 (3)0.5432 (4)0.0146 (9)
H70.77310.61870.62010.018*
C80.7437 (7)0.4041 (3)0.4673 (4)0.0140 (9)
C90.7986 (6)0.3110 (3)0.5094 (4)0.0135 (9)
C100.8734 (6)0.2998 (3)0.6209 (4)0.0144 (9)
H100.88780.35120.67000.017*
C110.9251 (7)0.2134 (3)0.6575 (4)0.0158 (9)
H110.97680.20510.73250.019*
C120.8337 (7)0.1491 (3)0.4826 (4)0.0165 (10)
H120.82040.09590.43630.020*
C130.7805 (7)0.2341 (3)0.4394 (4)0.0147 (9)
H130.73260.24020.36330.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V0.0189 (4)0.0164 (4)0.0089 (4)0.0021 (3)0.0006 (3)0.0011 (3)
O10.0264 (19)0.0157 (16)0.0122 (16)0.0027 (14)0.0009 (14)0.0033 (13)
O20.0190 (17)0.0179 (16)0.0084 (14)0.0027 (14)0.0028 (12)0.0011 (12)
O30.028 (2)0.0260 (19)0.0183 (17)0.0065 (16)0.0091 (15)0.0051 (14)
O40.028 (2)0.0172 (16)0.0151 (17)0.0034 (15)0.0057 (14)0.0013 (13)
N20.018 (2)0.0150 (19)0.0125 (18)0.0010 (16)0.0001 (15)0.0001 (15)
N10.0134 (19)0.0172 (19)0.0090 (17)0.0012 (15)0.0024 (14)0.0010 (14)
N30.016 (2)0.0169 (19)0.0153 (19)0.0043 (16)0.0030 (15)0.0024 (15)
C10.011 (2)0.018 (2)0.012 (2)0.0004 (17)0.0019 (17)0.0018 (17)
C20.015 (2)0.022 (2)0.012 (2)0.0002 (19)0.0031 (17)0.0031 (18)
C30.018 (2)0.014 (2)0.025 (3)0.0009 (19)0.007 (2)0.0022 (19)
C40.014 (2)0.018 (2)0.022 (2)0.0007 (19)0.0019 (19)0.0026 (19)
C50.015 (2)0.018 (2)0.011 (2)0.0007 (18)0.0040 (17)0.0035 (17)
C60.009 (2)0.019 (2)0.013 (2)0.0009 (17)0.0049 (17)0.0017 (17)
C70.015 (2)0.021 (2)0.008 (2)0.0014 (19)0.0021 (17)0.0007 (17)
C80.013 (2)0.018 (2)0.012 (2)0.0003 (18)0.0014 (17)0.0021 (17)
C90.007 (2)0.019 (2)0.015 (2)0.0000 (17)0.0023 (16)0.0018 (18)
C100.012 (2)0.018 (2)0.012 (2)0.0026 (18)0.0020 (17)0.0000 (17)
C110.013 (2)0.021 (2)0.013 (2)0.0009 (18)0.0011 (17)0.0012 (18)
C120.019 (2)0.020 (2)0.011 (2)0.0035 (19)0.0031 (18)0.0005 (18)
C130.016 (2)0.019 (2)0.009 (2)0.0001 (18)0.0025 (17)0.0017 (17)
Geometric parameters (Å, º) top
V—O11.904 (3)C3—C41.405 (7)
V—O22.006 (3)C3—H30.9500
V—O31.610 (4)C4—C51.379 (7)
V—O41.654 (3)C4—H40.9500
V—N12.140 (4)C5—C61.405 (6)
O1—C11.327 (6)C5—H50.9500
O2—C81.307 (5)C6—C71.441 (7)
N2—C81.301 (6)C7—H70.9500
N2—N11.396 (5)C8—C91.485 (6)
N1—C71.285 (6)C9—C131.394 (7)
N3—C111.335 (6)C9—C101.406 (6)
N3—C121.336 (6)C10—C111.370 (7)
N3—H10.8800C10—H100.9500
C1—C21.402 (7)C11—H110.9500
C1—C61.418 (6)C12—C131.382 (7)
C2—C31.383 (7)C12—H120.9500
C2—H20.9500C13—H130.9500
O3—V—O4108.16 (19)C5—C4—H4120.6
O3—V—O1102.77 (18)C3—C4—H4120.6
O4—V—O198.34 (16)C4—C5—C6121.5 (4)
O3—V—O2101.95 (17)C4—C5—H5119.2
O4—V—O291.08 (15)C6—C5—H5119.2
O1—V—O2149.21 (14)C5—C6—C1119.6 (4)
O3—V—N1104.35 (17)C5—C6—C7119.4 (4)
O4—V—N1146.37 (17)C1—C6—C7121.0 (4)
O1—V—N182.48 (15)N1—C7—C6124.0 (4)
O2—V—N173.82 (14)N1—C7—H7118.0
C1—O1—V134.3 (3)C6—C7—H7118.0
C8—O2—V115.9 (3)N2—C8—O2124.9 (4)
C8—N2—N1108.0 (4)N2—C8—C9116.8 (4)
C7—N1—N2114.2 (4)O2—C8—C9118.3 (4)
C7—N1—V129.1 (3)C13—C9—C10119.1 (4)
N2—N1—V116.3 (3)C13—C9—C8121.0 (4)
C11—N3—C12122.0 (4)C10—C9—C8119.9 (4)
C11—N3—H1119.0C11—C10—C9118.8 (4)
C12—N3—H1119.0C11—C10—H10120.6
O1—C1—C2119.1 (4)C9—C10—H10120.6
O1—C1—C6122.7 (4)N3—C11—C10120.8 (4)
C2—C1—C6118.2 (4)N3—C11—H11119.6
C3—C2—C1121.3 (4)C10—C11—H11119.6
C3—C2—H2119.3N3—C12—C13120.5 (4)
C1—C2—H2119.3N3—C12—H12119.7
C2—C3—C4120.6 (5)C13—C12—H12119.7
C2—C3—H3119.7C12—C13—C9118.8 (4)
C4—C3—H3119.7C12—C13—H13120.6
C5—C4—C3118.8 (4)C9—C13—H13120.6
O3—V—O1—C173.7 (4)C4—C5—C6—C7178.8 (5)
O4—V—O1—C1175.5 (4)O1—C1—C6—C5176.7 (4)
O2—V—O1—C169.0 (6)C2—C1—C6—C51.9 (7)
N1—V—O1—C129.4 (4)O1—C1—C6—C71.9 (7)
O3—V—O2—C892.1 (3)C2—C1—C6—C7179.6 (4)
O4—V—O2—C8159.1 (3)N2—N1—C7—C6179.6 (4)
O1—V—O2—C850.7 (5)V—N1—C7—C67.4 (7)
N1—V—O2—C89.6 (3)C5—C6—C7—N1175.7 (5)
C8—N2—N1—C7179.4 (4)C1—C6—C7—N15.7 (7)
C8—N2—N1—V6.2 (5)N1—N2—C8—O22.6 (6)
O3—V—N1—C782.3 (4)N1—N2—C8—C9177.3 (4)
O4—V—N1—C7112.8 (5)V—O2—C8—N210.6 (6)
O1—V—N1—C719.1 (4)V—O2—C8—C9169.3 (3)
O2—V—N1—C7179.2 (4)N2—C8—C9—C13179.7 (4)
O3—V—N1—N289.8 (3)O2—C8—C9—C130.4 (7)
O4—V—N1—N275.1 (4)N2—C8—C9—C101.5 (7)
O1—V—N1—N2168.9 (3)O2—C8—C9—C10178.3 (4)
O2—V—N1—N28.7 (3)C13—C9—C10—C110.5 (7)
V—O1—C1—C2154.5 (4)C8—C9—C10—C11179.2 (4)
V—O1—C1—C627.0 (7)C12—N3—C11—C100.8 (7)
O1—C1—C2—C3176.1 (4)C9—C10—C11—N30.5 (7)
C6—C1—C2—C32.5 (7)C11—N3—C12—C130.0 (7)
C1—C2—C3—C41.5 (7)N3—C12—C13—C91.0 (7)
C2—C3—C4—C50.2 (7)C10—C9—C13—C121.2 (7)
C3—C4—C5—C60.8 (7)C8—C9—C13—C12179.9 (4)
C4—C5—C6—C10.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O4i0.881.752.610 (5)164
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[V(C13H10N3O2)O2]
Mr323.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.1215 (3), 14.5243 (6), 11.9233 (5)
β (°) 94.081 (3)
V3)1230.16 (9)
Z4
Radiation typeCu Kα
µ (mm1)6.96
Crystal size (mm)0.25 × 0.25 × 0.25
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.275, 0.275
No. of measured, independent and
observed [I > 2σ(I)] reflections
2559, 2559, 2467
Rint0.000
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.171, 1.26
No. of reflections2559
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.36, 0.84

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
V—O11.904 (3)V—O41.654 (3)
V—O22.006 (3)V—N12.140 (4)
V—O31.610 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O4i0.881.752.610 (5)164
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: shahverdizadeh@iaut.ac.ir.

Acknowledgements

The authors gratefully acknowledge support of this study by Tabriz Azad University, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165–1169.  CSD CrossRef Web of Science Google Scholar
First citationShahverdizadeh, G. H., Ng, S. W., Tiekink, E. R. T. & Mirtamizdoust, B. (2012). Acta Cryst. E68, m221-m222.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Q., Li, C.-Y., Bian, H.-D., Liang, H., Song, H.-S. & Wang, H.-G. (2007). Chin. J. Struct. Chem. 26, 37–40.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds