metal-organic compounds
cis-Dioxido[N′-(2-oxidobenzylidene)pyridinium-4-carbohydrazidato-κ3O,N′,O′]vanadium(V)
aDepartment of Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, PO Box 1655, Tabriz, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, and dDepartment of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, PO Box 5166616471, Tabriz, Iran
*Correspondence e-mail: edward.tiekink@gmail.com
The title Schiff base complex, [V(C13H10N3O2)O2], features a square-pyramidal coordination geometry defined by the O,N′,O′-donors of the tridentate Schiff base ligand and two oxide O atoms; one oxide O atom occupies the apical position. In the crystal, pyridinium–oxide N—H⋯O hydrogen bonds lead to zigzag supramolecular chains with a flattened topology along [101]. The investigated crystal was twinned by nonmerohedry; the minor component refined to 18.5 (5)%.
Related literature
For a related Schiff base vanadyl complex containing a protonated pyridyl residue, see: Yu et al. (2007). For the crystallization procedure, see: Harrowfield et al. (1996). For a related structure, see: Shahverdizadeh et al. (2012). For additional structural analysis, see: Spek (2009); Addison et al. (1984).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812003637/bt5805sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812003637/bt5805Isup2.hkl
A solution of salicylaldehyde (10 mmol) in EtOH (25 ml) was added drop-wise to the solution of 4-pyridinecarboxylic acid hydrazide (10 mmol) in EtOH (15 ml). The mixture was refluxed for 8 h. The yellow precipitate was removed by filtration and recrystallized from MeOH solution. The product (0.5 mmol) was placed in one arm of a branched tube (Harrowfield et al., 1996) and vanadium(IV) oxide acetylacetonate (0.5 mmol) in the other. Methanol was then added to fill both arms, the tube sealed and the ligand-containing arm immersed in a bath at 333 K, while the other was left at ambient temperature. After 8 d, crystals had deposited in the arm held at ambient temperature. These filtered off, washed with acetone and ether, and air-dried. Yield: 72%. M.pt. 566 K.
The crystal was a non-merohedral twin. The twin components were separated by the TwinRotMat routine in PLATON (Spek, 2009); the minor component refined to 18.5 (5)%. Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, Uiso(H) 1.2Ueq(C)] and were included in the
in the riding model approximation. The pyridinium H-atom was located in a difference Fourier map and was refined with a distance restraint of N—H 0.88±0.01 Å with Uiso(H) 1.2Ueq(N). The maximum and minimum residual electron density peaks of 1.36 and 0.84 e Å-3, respectively, were located 0.91 Å and 0.65 Å from the V atom, respectively. Owing to poor agreement, the reflection (4 8 11) was omitted from the final refinement.Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[V(C13H10N3O2)O2] | F(000) = 656 |
Mr = 323.18 | Dx = 1.745 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2yn | Cell parameters from 5747 reflections |
a = 7.1215 (3) Å | θ = 3.0–76.6° |
b = 14.5243 (6) Å | µ = 6.96 mm−1 |
c = 11.9233 (5) Å | T = 100 K |
β = 94.081 (3)° | Polyhedron, brown |
V = 1230.16 (9) Å3 | 0.25 × 0.25 × 0.25 mm |
Z = 4 |
Agilent SuperNova Dual diffractometer with Atlas detector | 2559 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 2467 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.000 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 76.8°, θmin = 4.8° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −18→18 |
Tmin = 0.275, Tmax = 0.275 | l = −1→14 |
2559 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.064 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.171 | H-atom parameters constrained |
S = 1.26 | w = 1/[σ2(Fo2) + (0.0278P)2 + 7.6276P] where P = (Fo2 + 2Fc2)/3 |
2559 reflections | (Δ/σ)max < 0.001 |
191 parameters | Δρmax = 1.36 e Å−3 |
0 restraints | Δρmin = −0.84 e Å−3 |
[V(C13H10N3O2)O2] | V = 1230.16 (9) Å3 |
Mr = 323.18 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 7.1215 (3) Å | µ = 6.96 mm−1 |
b = 14.5243 (6) Å | T = 100 K |
c = 11.9233 (5) Å | 0.25 × 0.25 × 0.25 mm |
β = 94.081 (3)° |
Agilent SuperNova Dual diffractometer with Atlas detector | 2559 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | 2467 reflections with I > 2σ(I) |
Tmin = 0.275, Tmax = 0.275 | Rint = 0.000 |
2559 measured reflections |
R[F2 > 2σ(F2)] = 0.064 | 0 restraints |
wR(F2) = 0.171 | H-atom parameters constrained |
S = 1.26 | Δρmax = 1.36 e Å−3 |
2559 reflections | Δρmin = −0.84 e Å−3 |
191 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
V | 0.65274 (12) | 0.54174 (6) | 0.30415 (6) | 0.0148 (2) | |
O1 | 0.5622 (5) | 0.6639 (2) | 0.3213 (3) | 0.0182 (7) | |
O2 | 0.6790 (5) | 0.4125 (2) | 0.3624 (3) | 0.0153 (7) | |
O3 | 0.8525 (5) | 0.5579 (3) | 0.2519 (3) | 0.0236 (8) | |
O4 | 0.4995 (5) | 0.5080 (2) | 0.2016 (3) | 0.0203 (8) | |
N2 | 0.7647 (6) | 0.4717 (3) | 0.5387 (3) | 0.0153 (8) | |
N1 | 0.7142 (6) | 0.5531 (3) | 0.4819 (3) | 0.0131 (8) | |
N3 | 0.9037 (6) | 0.1409 (3) | 0.5891 (3) | 0.0160 (8) | |
H1 | 0.9366 | 0.0860 | 0.6149 | 0.019* | |
C1 | 0.6069 (7) | 0.7323 (3) | 0.3920 (4) | 0.0135 (9) | |
C2 | 0.5699 (7) | 0.8232 (3) | 0.3575 (4) | 0.0162 (9) | |
H2 | 0.5206 | 0.8347 | 0.2827 | 0.019* | |
C3 | 0.6035 (7) | 0.8964 (3) | 0.4303 (4) | 0.0186 (10) | |
H3 | 0.5744 | 0.9573 | 0.4055 | 0.022* | |
C4 | 0.6804 (7) | 0.8817 (3) | 0.5407 (4) | 0.0180 (10) | |
H4 | 0.7032 | 0.9319 | 0.5907 | 0.022* | |
C5 | 0.7221 (7) | 0.7929 (3) | 0.5749 (4) | 0.0146 (9) | |
H5 | 0.7756 | 0.7825 | 0.6491 | 0.018* | |
C6 | 0.6874 (6) | 0.7174 (3) | 0.5027 (4) | 0.0135 (9) | |
C7 | 0.7303 (7) | 0.6258 (3) | 0.5432 (4) | 0.0146 (9) | |
H7 | 0.7731 | 0.6187 | 0.6201 | 0.018* | |
C8 | 0.7437 (7) | 0.4041 (3) | 0.4673 (4) | 0.0140 (9) | |
C9 | 0.7986 (6) | 0.3110 (3) | 0.5094 (4) | 0.0135 (9) | |
C10 | 0.8734 (6) | 0.2998 (3) | 0.6209 (4) | 0.0144 (9) | |
H10 | 0.8878 | 0.3512 | 0.6700 | 0.017* | |
C11 | 0.9251 (7) | 0.2134 (3) | 0.6575 (4) | 0.0158 (9) | |
H11 | 0.9768 | 0.2051 | 0.7325 | 0.019* | |
C12 | 0.8337 (7) | 0.1491 (3) | 0.4826 (4) | 0.0165 (10) | |
H12 | 0.8204 | 0.0959 | 0.4363 | 0.020* | |
C13 | 0.7805 (7) | 0.2341 (3) | 0.4394 (4) | 0.0147 (9) | |
H13 | 0.7326 | 0.2402 | 0.3633 | 0.018* |
U11 | U22 | U33 | U12 | U13 | U23 | |
V | 0.0189 (4) | 0.0164 (4) | 0.0089 (4) | −0.0021 (3) | 0.0006 (3) | −0.0011 (3) |
O1 | 0.0264 (19) | 0.0157 (16) | 0.0122 (16) | 0.0027 (14) | −0.0009 (14) | −0.0033 (13) |
O2 | 0.0190 (17) | 0.0179 (16) | 0.0084 (14) | 0.0027 (14) | −0.0028 (12) | 0.0011 (12) |
O3 | 0.028 (2) | 0.0260 (19) | 0.0183 (17) | −0.0065 (16) | 0.0091 (15) | −0.0051 (14) |
O4 | 0.028 (2) | 0.0172 (16) | 0.0151 (17) | −0.0034 (15) | −0.0057 (14) | 0.0013 (13) |
N2 | 0.018 (2) | 0.0150 (19) | 0.0125 (18) | −0.0010 (16) | −0.0001 (15) | 0.0001 (15) |
N1 | 0.0134 (19) | 0.0172 (19) | 0.0090 (17) | −0.0012 (15) | 0.0024 (14) | 0.0010 (14) |
N3 | 0.016 (2) | 0.0169 (19) | 0.0153 (19) | 0.0043 (16) | 0.0030 (15) | 0.0024 (15) |
C1 | 0.011 (2) | 0.018 (2) | 0.012 (2) | 0.0004 (17) | 0.0019 (17) | −0.0018 (17) |
C2 | 0.015 (2) | 0.022 (2) | 0.012 (2) | 0.0002 (19) | 0.0031 (17) | 0.0031 (18) |
C3 | 0.018 (2) | 0.014 (2) | 0.025 (3) | 0.0009 (19) | 0.007 (2) | 0.0022 (19) |
C4 | 0.014 (2) | 0.018 (2) | 0.022 (2) | −0.0007 (19) | 0.0019 (19) | −0.0026 (19) |
C5 | 0.015 (2) | 0.018 (2) | 0.011 (2) | 0.0007 (18) | 0.0040 (17) | −0.0035 (17) |
C6 | 0.009 (2) | 0.019 (2) | 0.013 (2) | −0.0009 (17) | 0.0049 (17) | −0.0017 (17) |
C7 | 0.015 (2) | 0.021 (2) | 0.008 (2) | −0.0014 (19) | 0.0021 (17) | −0.0007 (17) |
C8 | 0.013 (2) | 0.018 (2) | 0.012 (2) | −0.0003 (18) | 0.0014 (17) | 0.0021 (17) |
C9 | 0.007 (2) | 0.019 (2) | 0.015 (2) | 0.0000 (17) | 0.0023 (16) | 0.0018 (18) |
C10 | 0.012 (2) | 0.018 (2) | 0.012 (2) | −0.0026 (18) | −0.0020 (17) | 0.0000 (17) |
C11 | 0.013 (2) | 0.021 (2) | 0.013 (2) | 0.0009 (18) | 0.0011 (17) | 0.0012 (18) |
C12 | 0.019 (2) | 0.020 (2) | 0.011 (2) | 0.0035 (19) | 0.0031 (18) | −0.0005 (18) |
C13 | 0.016 (2) | 0.019 (2) | 0.009 (2) | −0.0001 (18) | 0.0025 (17) | 0.0017 (17) |
V—O1 | 1.904 (3) | C3—C4 | 1.405 (7) |
V—O2 | 2.006 (3) | C3—H3 | 0.9500 |
V—O3 | 1.610 (4) | C4—C5 | 1.379 (7) |
V—O4 | 1.654 (3) | C4—H4 | 0.9500 |
V—N1 | 2.140 (4) | C5—C6 | 1.405 (6) |
O1—C1 | 1.327 (6) | C5—H5 | 0.9500 |
O2—C8 | 1.307 (5) | C6—C7 | 1.441 (7) |
N2—C8 | 1.301 (6) | C7—H7 | 0.9500 |
N2—N1 | 1.396 (5) | C8—C9 | 1.485 (6) |
N1—C7 | 1.285 (6) | C9—C13 | 1.394 (7) |
N3—C11 | 1.335 (6) | C9—C10 | 1.406 (6) |
N3—C12 | 1.336 (6) | C10—C11 | 1.370 (7) |
N3—H1 | 0.8800 | C10—H10 | 0.9500 |
C1—C2 | 1.402 (7) | C11—H11 | 0.9500 |
C1—C6 | 1.418 (6) | C12—C13 | 1.382 (7) |
C2—C3 | 1.383 (7) | C12—H12 | 0.9500 |
C2—H2 | 0.9500 | C13—H13 | 0.9500 |
O3—V—O4 | 108.16 (19) | C5—C4—H4 | 120.6 |
O3—V—O1 | 102.77 (18) | C3—C4—H4 | 120.6 |
O4—V—O1 | 98.34 (16) | C4—C5—C6 | 121.5 (4) |
O3—V—O2 | 101.95 (17) | C4—C5—H5 | 119.2 |
O4—V—O2 | 91.08 (15) | C6—C5—H5 | 119.2 |
O1—V—O2 | 149.21 (14) | C5—C6—C1 | 119.6 (4) |
O3—V—N1 | 104.35 (17) | C5—C6—C7 | 119.4 (4) |
O4—V—N1 | 146.37 (17) | C1—C6—C7 | 121.0 (4) |
O1—V—N1 | 82.48 (15) | N1—C7—C6 | 124.0 (4) |
O2—V—N1 | 73.82 (14) | N1—C7—H7 | 118.0 |
C1—O1—V | 134.3 (3) | C6—C7—H7 | 118.0 |
C8—O2—V | 115.9 (3) | N2—C8—O2 | 124.9 (4) |
C8—N2—N1 | 108.0 (4) | N2—C8—C9 | 116.8 (4) |
C7—N1—N2 | 114.2 (4) | O2—C8—C9 | 118.3 (4) |
C7—N1—V | 129.1 (3) | C13—C9—C10 | 119.1 (4) |
N2—N1—V | 116.3 (3) | C13—C9—C8 | 121.0 (4) |
C11—N3—C12 | 122.0 (4) | C10—C9—C8 | 119.9 (4) |
C11—N3—H1 | 119.0 | C11—C10—C9 | 118.8 (4) |
C12—N3—H1 | 119.0 | C11—C10—H10 | 120.6 |
O1—C1—C2 | 119.1 (4) | C9—C10—H10 | 120.6 |
O1—C1—C6 | 122.7 (4) | N3—C11—C10 | 120.8 (4) |
C2—C1—C6 | 118.2 (4) | N3—C11—H11 | 119.6 |
C3—C2—C1 | 121.3 (4) | C10—C11—H11 | 119.6 |
C3—C2—H2 | 119.3 | N3—C12—C13 | 120.5 (4) |
C1—C2—H2 | 119.3 | N3—C12—H12 | 119.7 |
C2—C3—C4 | 120.6 (5) | C13—C12—H12 | 119.7 |
C2—C3—H3 | 119.7 | C12—C13—C9 | 118.8 (4) |
C4—C3—H3 | 119.7 | C12—C13—H13 | 120.6 |
C5—C4—C3 | 118.8 (4) | C9—C13—H13 | 120.6 |
O3—V—O1—C1 | −73.7 (4) | C4—C5—C6—C7 | −178.8 (5) |
O4—V—O1—C1 | 175.5 (4) | O1—C1—C6—C5 | −176.7 (4) |
O2—V—O1—C1 | 69.0 (6) | C2—C1—C6—C5 | 1.9 (7) |
N1—V—O1—C1 | 29.4 (4) | O1—C1—C6—C7 | 1.9 (7) |
O3—V—O2—C8 | 92.1 (3) | C2—C1—C6—C7 | −179.6 (4) |
O4—V—O2—C8 | −159.1 (3) | N2—N1—C7—C6 | 179.6 (4) |
O1—V—O2—C8 | −50.7 (5) | V—N1—C7—C6 | 7.4 (7) |
N1—V—O2—C8 | −9.6 (3) | C5—C6—C7—N1 | −175.7 (5) |
C8—N2—N1—C7 | −179.4 (4) | C1—C6—C7—N1 | 5.7 (7) |
C8—N2—N1—V | −6.2 (5) | N1—N2—C8—O2 | −2.6 (6) |
O3—V—N1—C7 | 82.3 (4) | N1—N2—C8—C9 | 177.3 (4) |
O4—V—N1—C7 | −112.8 (5) | V—O2—C8—N2 | 10.6 (6) |
O1—V—N1—C7 | −19.1 (4) | V—O2—C8—C9 | −169.3 (3) |
O2—V—N1—C7 | −179.2 (4) | N2—C8—C9—C13 | 179.7 (4) |
O3—V—N1—N2 | −89.8 (3) | O2—C8—C9—C13 | −0.4 (7) |
O4—V—N1—N2 | 75.1 (4) | N2—C8—C9—C10 | −1.5 (7) |
O1—V—N1—N2 | 168.9 (3) | O2—C8—C9—C10 | 178.3 (4) |
O2—V—N1—N2 | 8.7 (3) | C13—C9—C10—C11 | −0.5 (7) |
V—O1—C1—C2 | 154.5 (4) | C8—C9—C10—C11 | −179.2 (4) |
V—O1—C1—C6 | −27.0 (7) | C12—N3—C11—C10 | 0.8 (7) |
O1—C1—C2—C3 | 176.1 (4) | C9—C10—C11—N3 | −0.5 (7) |
C6—C1—C2—C3 | −2.5 (7) | C11—N3—C12—C13 | 0.0 (7) |
C1—C2—C3—C4 | 1.5 (7) | N3—C12—C13—C9 | −1.0 (7) |
C2—C3—C4—C5 | 0.2 (7) | C10—C9—C13—C12 | 1.2 (7) |
C3—C4—C5—C6 | −0.8 (7) | C8—C9—C13—C12 | 179.9 (4) |
C4—C5—C6—C1 | −0.3 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H1···O4i | 0.88 | 1.75 | 2.610 (5) | 164 |
Symmetry code: (i) x+1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [V(C13H10N3O2)O2] |
Mr | 323.18 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 7.1215 (3), 14.5243 (6), 11.9233 (5) |
β (°) | 94.081 (3) |
V (Å3) | 1230.16 (9) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 6.96 |
Crystal size (mm) | 0.25 × 0.25 × 0.25 |
Data collection | |
Diffractometer | Agilent SuperNova Dual diffractometer with Atlas detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.275, 0.275 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2559, 2559, 2467 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.631 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.064, 0.171, 1.26 |
No. of reflections | 2559 |
No. of parameters | 191 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.36, −0.84 |
Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H1···O4i | 0.88 | 1.75 | 2.610 (5) | 164 |
Symmetry code: (i) x+1/2, −y+1/2, z+1/2. |
Footnotes
‡Additional correspondence author, e-mail: shahverdizadeh@iaut.ac.ir.
Acknowledgements
The authors gratefully acknowledge support of this study by Tabriz Azad University, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/HIR/MOHE/SC/12).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165–1169. CSD CrossRef Web of Science Google Scholar
Shahverdizadeh, G. H., Ng, S. W., Tiekink, E. R. T. & Mirtamizdoust, B. (2012). Acta Cryst. E68, m221-m222. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, Q., Li, C.-Y., Bian, H.-D., Liang, H., Song, H.-S. & Wang, H.-G. (2007). Chin. J. Struct. Chem. 26, 37–40. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In continuation of structural studies of vanadyl Schiff base complexes (Shahverdizadeh et al., 2012), the title complex, (I), was characterized.
The V atom in (I) is coordinated by the O,N,O-tridentate Schiff base ligand and two oxido-O atoms. The resulting NO4 donor set is based on a square pyramid with oxido-O3 atom in the axial position. The coordination geometry is quantified by the calculation of τ = 0.05 which compares with τ = 0.0 for an ideal square pyramidal geometry and τ = 1.0 for an ideal trigonal bipyramid (Addison et al., 1984). The V═O3 bond length is significantly shorter than the V═O4 bond length, Table 1, an observation ascribed to the influence exerted by the trans-N1 atom and the participation of the oxido O4 atom in hydrogen bonding, Table 2. The pyridinium-NH···O(oxido) hydrogen bonding leads to a zigzag chain along [101] with a flattened topology.
The Schiff base ligand in (I) is present as a pyridinium cation. A precedent exists in the literature in a closely related V complex (Yu et al., 2007).