organic compounds
(E)-N-(1-Benzothiophen-3-ylmethylidene)-2,6-dimethylaniline
aKırıkkale University, Faculty of Arts and Sciences, Physics Department, 71450 Kırıkkale, Turkey, bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, cOndokuz Mayıs University, Arts and Sciences Faculty, Department of Chemistry, 55139 Samsun, Turkey, and dGiresun University, Faculty of Arts and Sciences, Department of Physics, 28100 Giresun, Turkey
*Correspondence e-mail: necmisamsun@gmail.com
In the title compound, C17H15NS, the benzothiophene residue and the substituted benzene ring are oriented at a dihedral angle of 61.99 (7)°. An intermolecular C—H⋯π interaction contributes to the stability of the crystal structure.
Related literature
For the biological properties of ); Layer (1963); Ingold (1969). For industrial applications of see: Taggi et al. (2002). For chemical properties of see: Aydoğan et al. (2001); Tanak et al. (2010); Ingold (1969). For related structures, see: Ağar et al. (2010); Ceylan et al. (2011); Dege, Şekerci et al. (2006); Demirtaş et al. (2009); Dege, Içbudak & Adıyaman (2006, 2007); Genç et al. (2004); İnaç et al. (2012); Tecer et al. (2010). For the structural properties benzothiophene derivatives, see: Alarcon et al. (1999); Cohen et al. (1964); Hadjoudis et al. (1987); Inamoto et al. (2008); Köysal et al. (2007); Karabıyık et al. (2008); Kobayashi et al. (2009); Mlochowski & Potaczek (2009); Novopoltseva (1995); Tanak et al. (2010); Xu et al. (1994); Zhang et al. (2001).
see: Barton & Ollis (1979Experimental
Crystal data
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: OLEX2, WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812004151/bt5806sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812004151/bt5806Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812004151/bt5806Isup3.cml
The compound (E)-1-(1-benzothiophen-3-yl)-N-(2,6-dimethylphenyl)methanimine was prepared by reflux a mixture of a solution containing 1-benzothiophene-3-carbaldehyde (0.026 g 0.16 mmol) in 20 ml e thanol and a solution containing 2,6-Dimethylaniline (0.0192 g 0.16 mmol) in 20 ml e thanol. The reaction mixture was stirred for 1 hunder reflux. The crystals of 2(E)-1-(1-benzothiophen-3-yl)-N-(2,6-dimethylphenyl)methanimine suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield % 58; m.p 75–77°C).
All hydrogen atoms were positioned geometrically [C—H=0.930 and 0.960] and treated as riding with Uiso(H)=1.2Ueq(C) or 1.5Ueq(Cmethyl).
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: WinGX (Farrugia, 1997) and SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and 50% probability displacement ellipsoids. |
C17H15NS | F(000) = 280 |
Mr = 265.36 | Dx = 1.225 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 1387 reflections |
a = 8.0446 (10) Å | θ = 3.5–27.3° |
b = 8.8031 (9) Å | µ = 0.21 mm−1 |
c = 10.2809 (10) Å | T = 296 K |
β = 98.989 (11)° | Prism, brown |
V = 719.12 (14) Å3 | 0.17 × 0.15 × 0.12 mm |
Z = 2 |
Oxford Diffraction SuperNova (single source at offset) Eos diffractometer | 2024 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 1722 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.021 |
Detector resolution: 16.0454 pixels mm-1 | θmax = 27.4°, θmin = 3.5° |
ω scans | h = −10→5 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | k = −5→11 |
Tmin = 0.965, Tmax = 0.975 | l = −10→13 |
2788 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.101 | w = 1/[σ2(Fo2) + (0.0397P)2 + 0.1075P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2024 reflections | Δρmax = 0.15 e Å−3 |
174 parameters | Δρmin = −0.23 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 497 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.10 (11) |
C17H15NS | V = 719.12 (14) Å3 |
Mr = 265.36 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 8.0446 (10) Å | µ = 0.21 mm−1 |
b = 8.8031 (9) Å | T = 296 K |
c = 10.2809 (10) Å | 0.17 × 0.15 × 0.12 mm |
β = 98.989 (11)° |
Oxford Diffraction SuperNova (single source at offset) Eos diffractometer | 2024 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | 1722 reflections with I > 2σ(I) |
Tmin = 0.965, Tmax = 0.975 | Rint = 0.021 |
2788 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.101 | Δρmax = 0.15 e Å−3 |
S = 1.05 | Δρmin = −0.23 e Å−3 |
2024 reflections | Absolute structure: Flack (1983), 497 Friedel pairs |
174 parameters | Absolute structure parameter: 0.10 (11) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.82893 (13) | 0.27137 (12) | 0.24201 (7) | 0.0801 (3) | |
N1 | 0.9883 (3) | 0.2484 (3) | 0.7306 (2) | 0.0511 (6) | |
C10 | 1.0962 (3) | 0.1995 (3) | 0.8467 (2) | 0.0491 (7) | |
C7 | 0.9176 (4) | 0.2495 (4) | 0.4948 (2) | 0.0565 (7) | |
C6 | 0.7680 (3) | 0.3424 (3) | 0.4760 (2) | 0.0453 (6) | |
C11 | 1.0246 (4) | 0.1127 (4) | 0.9370 (3) | 0.0567 (8) | |
C5 | 0.6838 (4) | 0.4137 (4) | 0.5683 (3) | 0.0560 (8) | |
H5 | 0.7222 | 0.4028 | 0.6579 | 0.067* | |
C2 | 0.5615 (4) | 0.4471 (4) | 0.2995 (3) | 0.0659 (9) | |
H2 | 0.5210 | 0.4585 | 0.2103 | 0.079* | |
C13 | 1.2877 (5) | 0.1134 (5) | 1.0815 (3) | 0.0766 (11) | |
H13 | 1.3528 | 0.0846 | 1.1605 | 0.092* | |
C15 | 1.2650 (4) | 0.2449 (4) | 0.8730 (3) | 0.0590 (8) | |
C1 | 0.7043 (4) | 0.3622 (3) | 0.3416 (3) | 0.0551 (8) | |
C9 | 1.0162 (4) | 0.2036 (4) | 0.6197 (3) | 0.0575 (8) | |
H9 | 1.1054 | 0.1370 | 0.6173 | 0.069* | |
C14 | 1.3571 (4) | 0.2000 (5) | 0.9925 (4) | 0.0784 (12) | |
H14 | 1.4692 | 0.2294 | 1.0129 | 0.094* | |
C3 | 0.4813 (5) | 0.5139 (5) | 0.3930 (3) | 0.0772 (11) | |
H3 | 0.3835 | 0.5696 | 0.3671 | 0.093* | |
C12 | 1.1233 (4) | 0.0697 (4) | 1.0539 (3) | 0.0695 (9) | |
H12 | 1.0771 | 0.0105 | 1.1141 | 0.083* | |
C4 | 0.5443 (4) | 0.4995 (5) | 0.5254 (3) | 0.0698 (10) | |
H4 | 0.4904 | 0.5494 | 0.5869 | 0.084* | |
C8 | 0.9607 (5) | 0.2058 (4) | 0.3779 (3) | 0.0772 (11) | |
H8 | 1.0539 | 0.1452 | 0.3720 | 0.093* | |
C17 | 0.8439 (4) | 0.0649 (6) | 0.9089 (4) | 0.0854 (12) | |
H17A | 0.7741 | 0.1528 | 0.8880 | 0.128* | |
H17B | 0.8135 | 0.0155 | 0.9850 | 0.128* | |
H17C | 0.8282 | −0.0040 | 0.8357 | 0.128* | |
C16 | 1.3420 (5) | 0.3460 (6) | 0.7799 (4) | 0.0923 (12) | |
H16A | 1.3583 | 0.2888 | 0.7033 | 0.138* | |
H16C | 1.4485 | 0.3834 | 0.8231 | 0.138* | |
H16B | 1.2681 | 0.4300 | 0.7538 | 0.138* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.1139 (8) | 0.0853 (7) | 0.0394 (4) | 0.0236 (6) | 0.0066 (4) | −0.0016 (5) |
N1 | 0.0541 (12) | 0.0557 (15) | 0.0416 (11) | 0.0048 (12) | 0.0016 (10) | 0.0060 (12) |
C10 | 0.0502 (14) | 0.0525 (17) | 0.0424 (14) | 0.0067 (14) | 0.0003 (12) | −0.0035 (13) |
C7 | 0.0698 (18) | 0.0563 (19) | 0.0427 (13) | 0.0091 (16) | 0.0063 (13) | 0.0045 (15) |
C6 | 0.0565 (15) | 0.0399 (15) | 0.0375 (13) | −0.0026 (13) | 0.0012 (11) | 0.0045 (12) |
C11 | 0.0616 (17) | 0.065 (2) | 0.0417 (15) | 0.0004 (16) | 0.0021 (13) | 0.0005 (15) |
C5 | 0.0612 (18) | 0.062 (2) | 0.0426 (15) | 0.0031 (16) | 0.0024 (13) | 0.0041 (15) |
C2 | 0.078 (2) | 0.065 (2) | 0.0483 (16) | 0.0040 (18) | −0.0110 (16) | 0.0069 (16) |
C13 | 0.073 (2) | 0.099 (3) | 0.0517 (18) | 0.025 (2) | −0.0101 (17) | 0.003 (2) |
C15 | 0.0512 (16) | 0.064 (2) | 0.0607 (16) | −0.0009 (16) | 0.0049 (14) | −0.0074 (18) |
C1 | 0.075 (2) | 0.0468 (17) | 0.0405 (15) | −0.0068 (16) | 0.0007 (14) | 0.0026 (13) |
C9 | 0.0655 (18) | 0.058 (2) | 0.0466 (15) | 0.0141 (16) | 0.0024 (14) | 0.0058 (14) |
C14 | 0.0481 (16) | 0.100 (3) | 0.082 (2) | 0.0119 (19) | −0.0083 (17) | −0.025 (2) |
C3 | 0.075 (2) | 0.085 (3) | 0.066 (2) | 0.020 (2) | −0.0052 (18) | 0.008 (2) |
C12 | 0.083 (2) | 0.074 (2) | 0.0495 (18) | 0.015 (2) | 0.0025 (17) | 0.0097 (18) |
C4 | 0.069 (2) | 0.081 (3) | 0.058 (2) | 0.0190 (19) | 0.0062 (17) | 0.0024 (18) |
C8 | 0.098 (3) | 0.081 (3) | 0.0517 (18) | 0.028 (2) | 0.0096 (17) | 0.0013 (18) |
C17 | 0.072 (2) | 0.114 (3) | 0.068 (2) | −0.025 (2) | 0.0046 (19) | 0.016 (2) |
C16 | 0.077 (2) | 0.099 (3) | 0.102 (3) | −0.019 (2) | 0.020 (2) | −0.005 (2) |
S1—C8 | 1.717 (3) | C13—C12 | 1.363 (5) |
S1—C1 | 1.736 (3) | C13—C14 | 1.375 (5) |
N1—C9 | 1.260 (3) | C13—H13 | 0.9300 |
N1—C10 | 1.428 (3) | C15—C14 | 1.390 (4) |
C10—C11 | 1.395 (4) | C15—C16 | 1.509 (5) |
C10—C15 | 1.400 (4) | C9—H9 | 0.9300 |
C7—C8 | 1.357 (4) | C14—H14 | 0.9300 |
C7—C6 | 1.442 (4) | C3—C4 | 1.382 (5) |
C7—C9 | 1.456 (4) | C3—H3 | 0.9300 |
C6—C5 | 1.398 (4) | C12—H12 | 0.9300 |
C6—C1 | 1.407 (3) | C4—H4 | 0.9300 |
C11—C12 | 1.386 (4) | C8—H8 | 0.9300 |
C11—C17 | 1.497 (4) | C17—H17A | 0.9600 |
C5—C4 | 1.367 (4) | C17—H17B | 0.9600 |
C5—H5 | 0.9300 | C17—H17C | 0.9600 |
C2—C3 | 1.371 (5) | C16—H16A | 0.9600 |
C2—C1 | 1.382 (4) | C16—H16C | 0.9600 |
C2—H2 | 0.9300 | C16—H16B | 0.9600 |
C8—S1—C1 | 90.84 (15) | N1—C9—H9 | 117.9 |
C9—N1—C10 | 119.5 (2) | C7—C9—H9 | 117.9 |
C11—C10—C15 | 121.1 (2) | C13—C14—C15 | 122.0 (3) |
C11—C10—N1 | 117.4 (2) | C13—C14—H14 | 119.0 |
C15—C10—N1 | 121.3 (3) | C15—C14—H14 | 119.0 |
C8—C7—C6 | 111.4 (2) | C2—C3—C4 | 120.7 (3) |
C8—C7—C9 | 121.5 (3) | C2—C3—H3 | 119.6 |
C6—C7—C9 | 127.1 (2) | C4—C3—H3 | 119.6 |
C5—C6—C1 | 118.0 (3) | C13—C12—C11 | 120.6 (3) |
C5—C6—C7 | 130.2 (2) | C13—C12—H12 | 119.7 |
C1—C6—C7 | 111.7 (2) | C11—C12—H12 | 119.7 |
C12—C11—C10 | 119.1 (3) | C5—C4—C3 | 121.6 (3) |
C12—C11—C17 | 119.9 (3) | C5—C4—H4 | 119.2 |
C10—C11—C17 | 121.0 (3) | C3—C4—H4 | 119.2 |
C4—C5—C6 | 119.3 (3) | C7—C8—S1 | 114.5 (3) |
C4—C5—H5 | 120.3 | C7—C8—H8 | 122.7 |
C6—C5—H5 | 120.3 | S1—C8—H8 | 122.7 |
C3—C2—C1 | 118.2 (3) | C11—C17—H17A | 109.5 |
C3—C2—H2 | 120.9 | C11—C17—H17B | 109.5 |
C1—C2—H2 | 120.9 | H17A—C17—H17B | 109.5 |
C12—C13—C14 | 120.0 (3) | C11—C17—H17C | 109.5 |
C12—C13—H13 | 120.0 | H17A—C17—H17C | 109.5 |
C14—C13—H13 | 120.0 | H17B—C17—H17C | 109.5 |
C14—C15—C10 | 117.2 (3) | C15—C16—H16A | 109.5 |
C14—C15—C16 | 120.9 (3) | C15—C16—H16C | 109.5 |
C10—C15—C16 | 121.8 (3) | H16A—C16—H16C | 109.5 |
C2—C1—C6 | 122.1 (3) | C15—C16—H16B | 109.5 |
C2—C1—S1 | 126.4 (2) | H16A—C16—H16B | 109.5 |
C6—C1—S1 | 111.5 (2) | H16C—C16—H16B | 109.5 |
N1—C9—C7 | 124.2 (3) | ||
C9—N1—C10—C11 | −117.4 (3) | C5—C6—C1—S1 | 177.9 (2) |
C9—N1—C10—C15 | 66.6 (4) | C7—C6—C1—S1 | −1.2 (3) |
C8—C7—C6—C5 | −178.2 (3) | C8—S1—C1—C2 | 179.8 (3) |
C9—C7—C6—C5 | 1.9 (6) | C8—S1—C1—C6 | 1.0 (2) |
C8—C7—C6—C1 | 0.7 (4) | C10—N1—C9—C7 | −178.1 (3) |
C9—C7—C6—C1 | −179.2 (3) | C8—C7—C9—N1 | 175.4 (4) |
C15—C10—C11—C12 | −0.7 (5) | C6—C7—C9—N1 | −4.7 (5) |
N1—C10—C11—C12 | −176.8 (3) | C12—C13—C14—C15 | −0.4 (6) |
C15—C10—C11—C17 | 179.7 (3) | C10—C15—C14—C13 | 0.6 (5) |
N1—C10—C11—C17 | 3.6 (5) | C16—C15—C14—C13 | 177.2 (4) |
C1—C6—C5—C4 | −0.2 (5) | C1—C2—C3—C4 | 1.5 (6) |
C7—C6—C5—C4 | 178.7 (3) | C14—C13—C12—C11 | −0.5 (6) |
C11—C10—C15—C14 | −0.1 (5) | C10—C11—C12—C13 | 1.0 (5) |
N1—C10—C15—C14 | 175.8 (3) | C17—C11—C12—C13 | −179.4 (4) |
C11—C10—C15—C16 | −176.6 (3) | C6—C5—C4—C3 | 2.0 (6) |
N1—C10—C15—C16 | −0.7 (5) | C2—C3—C4—C5 | −2.7 (6) |
C3—C2—C1—C6 | 0.3 (5) | C6—C7—C8—S1 | 0.1 (4) |
C3—C2—C1—S1 | −178.4 (3) | C9—C7—C8—S1 | 180.0 (3) |
C5—C6—C1—C2 | −1.0 (4) | C1—S1—C8—C7 | −0.7 (3) |
C7—C6—C1—C2 | 180.0 (3) |
Cg2 is the centroid of the (C1-C6) ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···Cg2i | 0.93 | 2.95 | 3.872 (4) | 171 |
Symmetry code: (i) −x, y−1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C17H15NS |
Mr | 265.36 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 296 |
a, b, c (Å) | 8.0446 (10), 8.8031 (9), 10.2809 (10) |
β (°) | 98.989 (11) |
V (Å3) | 719.12 (14) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.21 |
Crystal size (mm) | 0.17 × 0.15 × 0.12 |
Data collection | |
Diffractometer | Oxford Diffraction SuperNova (single source at offset) Eos diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.965, 0.975 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2788, 2024, 1722 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.647 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.101, 1.05 |
No. of reflections | 2024 |
No. of parameters | 174 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.23 |
Absolute structure | Flack (1983), 497 Friedel pairs |
Absolute structure parameter | 0.10 (11) |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), WinGX (Farrugia, 1997) and SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and ORTEP-3 for Windows (Farrugia, 1997), OLEX2 (Dolomanov et al., 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Cg2 is the centroid of the (C1-C6) ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···Cg2i | 0.93 | 2.95 | 3.872 (4) | 171 |
Symmetry code: (i) −x, y−1/2, −z+1. |
Acknowledgements
The authors thank Ondokuz Mayis University, Giresun University and Kırıkkale University, Turkey, for financial support of this study.
References
Ağar, A., Tanak, H. & Yavuz, M. (2010). Mol. Phys. 108, 1759–1772. Google Scholar
Alarcon, S. H., Pagani, D., Bacigalupo, J. & Olivieri, A. C. (1999). J. Mol. Struct. 475, 233–240. Google Scholar
Aydoğan, F., Öcal, N., Turgut, Z. & Yolaçan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480. CAS Google Scholar
Barton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon. Google Scholar
Ceylan, Ü., Tanak, H., Gümüş, S. & Ağar, E. (2011). Acta Cryst. E67, o2004. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051. CrossRef Web of Science Google Scholar
Dege, N., Içbudak, H. & Adıyaman, E. (2006). Acta Cryst. C62, m401–m403. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Dege, N., Içbudak, H. & Adıyaman, E. (2007). Acta Cryst. C63, m13–m15. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dege, N., Şekerci, M., Servi, S., Dinçer, M. & Demirbaş, Ü. (2006). Turk. J. Chem. 30, 103–108. CAS Google Scholar
Demirtaş, G., Dege, N., Şekerci, M., Servi, S. & Dinçer, M. (2009). Acta Cryst. E65, o1668. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Genç, S., Dege, N., Yılmaz, I., Çukurovalı, A. & Dinçer, M. (2004). Acta Cryst. E60, e10. Web of Science CrossRef IUCr Journals Google Scholar
Hadjoudis, E., Vitterakis, M. & Mavridis, I. M. (1987). Tetrahedron, 43, 1345–1360. CrossRef CAS Web of Science Google Scholar
Inaç, H., Dege, N., Gümüş, S., Ağar, E. & Soylu, M. S. (2012). Acta Cryst. E68, o361. Web of Science CSD CrossRef IUCr Journals Google Scholar
Inamoto, K., Arai, Y., Hiroya, K. & Doi, T. (2008). Chem. Commun. pp. 5529–5531. Web of Science CrossRef Google Scholar
Ingold, C. K. (1969). In Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca, New York: Cornell University Press. Google Scholar
Karabıyık, H., Ocak İskeleli, N., Petek, H., Albayrak, Ç. & Ağar, E. (2008). J. Mol. Struct. 873, 130–136. Google Scholar
Kobayashi, K., Egara, Y., Fukamachi, S. & Konishi, H. (2009). Tetrahedron, 65, 9633–9636. Web of Science CrossRef CAS Google Scholar
Köysal, Y., Işık, Ş. & Ağar, A. (2007). Acta Cryst. E63, o4916. Web of Science CSD CrossRef IUCr Journals Google Scholar
Layer, R. W. (1963). Chem. Rev. 63, 489–510. CrossRef CAS Web of Science Google Scholar
Mlochowski, J. & Potaczek, P. (2009). Phosphorus Sulfur Slicon Relat. Elem. 184, 1115–1123. CAS Google Scholar
Novopoltseva, O. M. (1995). Cand. Sci. (Chem.) dissertation, University of Volgograd, Russia. Google Scholar
Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635. Web of Science CrossRef PubMed CAS Google Scholar
Tanak, H., Ağar, A. & Yavuz, M. (2010). J. Mol. Model. 16, 577–587. Web of Science CSD CrossRef PubMed CAS Google Scholar
Tecer, E., Dege, N., Zülfikaroğlu, A., Şenyüz, N. & Batı, H. (2010). Acta Cryst. E66, o3369–o3370. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. & Liu, H.-X. (1994). Acta Cryst. C50, 1169–1171. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Zhang, Y., Guo, Z. J. & You, X. Z. (2001). J. Am. Chem. Soc. 123, 9378–9387. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Benzothiophene derivatives are undoubtedly one of the most important classes of heterocycles, because some of molecules having the benzothiophene skeleton have been reported to axhibit wide variety of biological activities (Kobayashi et al., 2009). Therefore, we (İnaç et al. 2012) and others (İnamoto et al., 2008; Mlochowski & Potaczek, 2009) have recently reported efficient methods for the synthesis of benzothiophenes. However, there are only a few reports on the synthesis of 1-(benzo[b]thiophen-3-yl)-N-methylmethanamines, which may also be of potential biological importance.
Schiff bases, i.e., compounds having a double C=N bond, are used as starting materials in the synthesis of important drugs, such as antibiotics and antiallergic, antiphlogistic, and antitumor substances (Barton & Ollis, 1979; Layer, 1963; Ingold 1969). On the industrial scale, they have a wide range of applications, such as dyes and pigments (Taggi et al., 2002). They are also used as components of rubber compounds (Novopoltseva, 1995). Schiff base compounds display interesting photochromic and thermochromic features in the solid state and can be classified in terms of these properties (Cohen et al., 1964). Photo- and thermochromism arise via H-atom transfer from the hydroxy O atom to the imine N atom (Hadjoudis et al., 1987;Xu et al., 1994). Such proton-exchanging materials can be utilized for the design of various molecular electronic devices (Alarcon et al., 1999). In general, Schiff bases display two possible tautomeric forms, the phenol-imine (OH) and the keto-amine (NH) forms. Depending on the tautomers, two types of intramolecular hydrogen bonds are observed in Schiff bases: O—H···N in phenol-imine (Köysal et al., 2007) and N—H···O in keto-amine tautomers. By means of increasing development of computational chemistry in the past decade, the research of theoretical modeling of drug design, functional material design, etc., has become more mature than ever. Many important chemical and physical properties of biological and chemical systems can be predicted from the first principles by various computational techniques (Zhang et al., 2001). Schiff bases have also been employed as ligands for the complexation of metal ions (Aydoğan et al., 2001).
The molecular structure is not planar (Fig.1); the dihedral angle between the C10—C17 benzene and the C1—C8/S1 benzothiophene ring is 61.99 (7)°. The dihedral angle between the methylenemethanamine and bezothiophene group is 3.22 (50)°. The length of the C9=N1 double bond is 1.260 (3) Å, slightly shorter than standard 1.28 Å value of a C=N double bond and consistent with related structures (Ağar et al., 2010; Ceylan et al. 2011; Dege, Şekerci et al., 2006; Genç et al. 2004; İnaç et al., 2012; Tanak et al., 2010; Tecer et al., 2010).
The C1—S1 and C8—S1 bond distances are 1.736 (3) Å and 1.717 (3) Å, respectively. The C—S bond distances are compatible with the literature (Dege, Içbudak & Adıyaman, 2006, 2007; Demirtaş et al., 2009).
The crystal structure is stabilized by an intermolecular C—H···π stacking interaction (C9—H9···Cg2i = 2.95 Å) [symmetry code (i): -x, -1/2 + y, 1 - z; Cg2 is the centroids of ring C1—C6].