metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m242-m243

Di-μ-chlorido-bis­­[(1,10-phenanthroline-κ2N,N′)(tri­chloro­acetato-κO)copper(II)]

aDepartment of Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, PO Box 1655, Tabriz, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, and dDepartment of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, PO Box 5166616471, Tabriz, Iran
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 27 January 2012; accepted 30 January 2012; online 4 February 2012)

The title compound, [Cu2(C2Cl3O2)2Cl2(C12H8N2)2], features a centrosymmetric binuclear complex. The coordination geometry around the CuII atom is square-pyramidal, comprising two N atoms from a symmetrically chelating 1,10-phenanthroline ligand, one O atom from a trichloro­acetate ligand and two Cl anions. In addition, there is a weak intra­molecular Cu⋯O inter­action of 2.9403 (14) Å involving the carbonyl O atom of the trichloro­acetate ligand. The central Cu2Cl2 core takes the form of a rhombus, owing to the disparate Cu—Cl bond lengths. Mol­ecules are connected in the crystal structure by C—H⋯Cl and C—H⋯O inter­actions.

Related literature

For background to crystal engineering studies of CuII 1,10-phenanthroline complexes, see: De Burgomaster et al. (2010[De Burgomaster, P., Liu, H., Ouellette, W., O'Connor, C. J. & Zubieta, J. (2010). CrystEngComm, 12, 446-469.]). For specialized crystallization techniques, see: Harrowfield et al. (1996[Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165-1169.]). For closely related binuclear CuII mol­ecules with chloride, carboxyl­ate and bipyridine ligands, see: Jiang et al. (2007[Jiang, H., Ma, J.-F. & Zhang, W.-L. (2007). Acta Cryst. E63, m1681.]); Zheng et al. (2008[Zheng, X.-Y., He, Y.-H. & Feng, Y.-L. (2008). Chin. J. Inorg. Chem. 24, 1400-1405.]). For descriptive parameters of pyramidal and trigonal–bipyramidal geometries, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2Cl3O2)2Cl2(C12H8N2)2]

  • Mr = 883.15

  • Monoclinic, P 21 /n

  • a = 9.2961 (2) Å

  • b = 17.3529 (2) Å

  • c = 10.6201 (2) Å

  • β = 115.269 (3)°

  • V = 1549.25 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 8.43 mm−1

  • T = 100 K

  • 0.15 × 0.10 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.365, Tmax = 0.678

  • 11808 measured reflections

  • 3233 independent reflections

  • 3049 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.070

  • S = 1.05

  • 3233 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected bond lengths (Å)

Cu—O1 1.9491 (13)
Cu—N1 2.0163 (16)
Cu—N2 2.0214 (16)
Cu—Cl1 2.2811 (5)
Cu—Cl1i 2.6666 (5)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl3ii 0.95 2.80 3.679 (2) 154
C4—H4⋯O2iii 0.95 2.49 3.302 (3) 144
C7—H7⋯Cl1iv 0.95 2.73 3.638 (2) 159
Symmetry codes: (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z+1; (iv) x, y, z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Research on copperII phenanthroline derivatives continues to attract interest in the context of crystal engineering of copper coordination polymers (De Burgomaster et al., 2010). Herein, we report the title CuII complex, (I).

The CuII atom in binuclear (I), Fig. 1, is coordinated by two Cl atoms, which form dissimilar Cu—Cl bond lengths, two N atoms from a symmetrically chelating 1,10-phenanthroline ligand, and one O atom from a trichloroacetate ligand, Table 1. The structure of (I) is centrosymmetric and the central Cu2O2 has the form of a rhombus. The carbonyl-O2 atom forms a weak intramolecular Cu···O contact of 2.9403 (14) Å. The asymmetric mode of coordination of the carboxylate is reflected in the disparate C—O bond distances with the longer C13—O1 distance [1.270 (2) Å] being associated with the shorter Cu—O1 interaction, and the short C13—O2 distance [1.220 (2) Å] associated with the weaker Cu—O2 contact.

The resultant Cl2N2O donor set defines a square pyramid. This assignment is based on the value calculated for τ of 0.07 for the Cu atom, which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Spek, 2009; Addison et al., 1984). In this description, the less tightly bound Cli atom defines the axial site (i: 1 - x, 1 - y, 1 - z).

The observed coordination geometry in (I) resembles closely those found in the analogous structures with the carboxylate ligands being 2-anilinobenzoate (Jiang et al., 2007) and p-tolylthioacetate (Zheng et al., 2008).

In the crystal packing, molecules assembles into layers in the ac plane and are connected into the three dimensional architecture by C—H···Cl and C—H···O interactions, Fig. 2 and Table 2.

Related literature top

For background to crystal engineering studies of CuII 1,10-phenanthroline complexes, see: De Burgomaster et al. (2010). For specialized crystallization techniques, see: Harrowfield et al. (1996). For closely related binuclear CuII molecules with chloride, carboxylate and bipyridine ligands, see: Jiang et al. (2007); Zheng et al. (2008). For descriptive parameters of pyramidal and trigonal–bipyramidal geometries, see: Addison et al. (1984); Spek (2009).

Experimental top

1,10-Phenanthroline (1 mmol) was placed in one arm of a branched tube (Harrowfield et al., 1996) and a mixture of copper(II) chloride dihydrate (1 mmol) and trichloroacetic acid (1 mmol) in the other. Ethanol was then added to fill both arms, the tube was sealed and the ligand-containing arm immersed in a bath at 333 K, while the other was left at ambient temperature. After 3 d, crystals had deposited in the arm held at ambient temperature. They were filtered off, washed with acetone and ether, and air dried. Yield: 85%. M.p. = 530 K.

Refinement top

H-atoms were placed in calculated positions [C—H 0.95 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Unlabelled atoms are related by the symmetry operation 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents for (I). The C—H···Cl and C—H···O interactions are shown as orange and blue dashed lines, respectively.
Di-µ-chlorido-bis[(1,10-phenanthroline- κ2N,N')(trichloroacetato-κO)copper(II)] top
Crystal data top
[Cu2(C2Cl3O2)2Cl2(C12H8N2)2]F(000) = 876
Mr = 883.15Dx = 1.893 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 7160 reflections
a = 9.2961 (2) Åθ = 4.6–76.4°
b = 17.3529 (2) ŵ = 8.43 mm1
c = 10.6201 (2) ÅT = 100 K
β = 115.269 (3)°Chip, blue
V = 1549.25 (5) Å30.15 × 0.10 × 0.05 mm
Z = 2
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
3233 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3049 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
Detector resolution: 10.4041 pixels mm-1θmax = 76.6°, θmin = 5.1°
ω scansh = 611
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2121
Tmin = 0.365, Tmax = 0.678l = 1311
11808 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0394P)2 + 1.203P]
where P = (Fo2 + 2Fc2)/3
3233 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Cu2(C2Cl3O2)2Cl2(C12H8N2)2]V = 1549.25 (5) Å3
Mr = 883.15Z = 2
Monoclinic, P21/nCu Kα radiation
a = 9.2961 (2) ŵ = 8.43 mm1
b = 17.3529 (2) ÅT = 100 K
c = 10.6201 (2) Å0.15 × 0.10 × 0.05 mm
β = 115.269 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
3233 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3049 reflections with I > 2σ(I)
Tmin = 0.365, Tmax = 0.678Rint = 0.019
11808 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.05Δρmax = 0.52 e Å3
3233 reflectionsΔρmin = 0.46 e Å3
208 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.39736 (3)0.560830 (15)0.55506 (3)0.01748 (9)
Cl10.34122 (6)0.52569 (3)0.33194 (5)0.02267 (11)
Cl20.62010 (6)0.73740 (3)0.34999 (5)0.02598 (11)
Cl30.39347 (5)0.84979 (2)0.34988 (5)0.02186 (11)
Cl40.65647 (5)0.80961 (3)0.60933 (5)0.02227 (11)
O10.51331 (16)0.65057 (7)0.53709 (14)0.0210 (3)
O20.28218 (16)0.71570 (8)0.44642 (15)0.0239 (3)
N10.24794 (19)0.48328 (9)0.57670 (16)0.0185 (3)
N20.41913 (18)0.59423 (9)0.74473 (16)0.0178 (3)
C10.2369 (2)0.49090 (10)0.70005 (19)0.0169 (3)
C20.1599 (2)0.42989 (11)0.4880 (2)0.0221 (4)
H20.16810.42360.40250.027*
C30.0548 (2)0.38227 (11)0.5162 (2)0.0248 (4)
H30.00750.34500.44960.030*
C40.0421 (2)0.38958 (11)0.6400 (2)0.0237 (4)
H40.02890.35780.65980.028*
C50.1367 (2)0.44524 (11)0.7372 (2)0.0202 (4)
C60.1352 (2)0.45803 (12)0.8702 (2)0.0241 (4)
H60.06570.42840.89560.029*
C70.2308 (2)0.51143 (12)0.9603 (2)0.0242 (4)
H70.22990.51731.04890.029*
C80.3335 (2)0.55923 (11)0.9239 (2)0.0198 (4)
C90.4369 (2)0.61606 (12)1.0113 (2)0.0232 (4)
H90.44540.62351.10280.028*
C100.5252 (2)0.66045 (11)0.9628 (2)0.0241 (4)
H100.59520.69871.02090.029*
C110.5113 (2)0.64899 (11)0.8271 (2)0.0214 (4)
H110.56960.68130.79340.026*
C120.3321 (2)0.54982 (10)0.79196 (19)0.0172 (3)
C130.4236 (2)0.70725 (10)0.47750 (19)0.0182 (4)
C140.5177 (2)0.77358 (11)0.44580 (19)0.0184 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.02157 (16)0.01456 (15)0.01898 (15)0.00160 (10)0.01120 (12)0.00039 (9)
Cl10.0286 (2)0.0222 (2)0.0181 (2)0.00446 (17)0.01078 (18)0.00221 (16)
Cl20.0307 (2)0.0248 (2)0.0302 (2)0.00004 (18)0.0204 (2)0.00146 (18)
Cl30.0233 (2)0.0184 (2)0.0213 (2)0.00170 (16)0.00706 (18)0.00467 (16)
Cl40.0216 (2)0.0225 (2)0.0189 (2)0.00312 (16)0.00503 (17)0.00003 (16)
O10.0221 (7)0.0157 (6)0.0266 (7)0.0007 (5)0.0118 (6)0.0035 (5)
O20.0188 (7)0.0208 (7)0.0320 (7)0.0012 (5)0.0108 (6)0.0019 (6)
N10.0209 (7)0.0157 (7)0.0190 (7)0.0006 (6)0.0086 (6)0.0005 (6)
N20.0171 (7)0.0166 (7)0.0209 (7)0.0009 (6)0.0091 (6)0.0021 (6)
C10.0169 (8)0.0159 (8)0.0177 (8)0.0014 (7)0.0072 (7)0.0012 (7)
C20.0250 (10)0.0192 (9)0.0196 (9)0.0025 (7)0.0072 (8)0.0030 (7)
C30.0226 (9)0.0186 (9)0.0276 (10)0.0034 (7)0.0054 (8)0.0027 (7)
C40.0203 (9)0.0185 (9)0.0313 (10)0.0018 (7)0.0100 (8)0.0025 (8)
C50.0187 (9)0.0175 (9)0.0236 (9)0.0008 (7)0.0082 (8)0.0040 (7)
C60.0254 (10)0.0244 (9)0.0273 (10)0.0016 (8)0.0157 (9)0.0063 (8)
C70.0280 (10)0.0263 (10)0.0226 (9)0.0039 (8)0.0149 (8)0.0032 (8)
C80.0192 (9)0.0203 (9)0.0190 (9)0.0046 (7)0.0074 (7)0.0001 (7)
C90.0210 (9)0.0254 (10)0.0212 (9)0.0051 (7)0.0072 (8)0.0047 (7)
C100.0183 (9)0.0230 (9)0.0276 (10)0.0010 (7)0.0064 (8)0.0087 (8)
C110.0182 (9)0.0180 (9)0.0284 (10)0.0005 (7)0.0103 (8)0.0046 (7)
C120.0162 (8)0.0164 (8)0.0195 (8)0.0016 (7)0.0080 (7)0.0003 (7)
C130.0219 (9)0.0163 (8)0.0175 (8)0.0015 (7)0.0094 (7)0.0017 (7)
C140.0185 (8)0.0180 (8)0.0191 (8)0.0007 (7)0.0083 (7)0.0007 (7)
Geometric parameters (Å, º) top
Cu—O11.9491 (13)C2—H20.9500
Cu—N12.0163 (16)C3—C41.375 (3)
Cu—N22.0214 (16)C3—H30.9500
Cu—Cl12.2811 (5)C4—C51.413 (3)
Cu—Cl1i2.6666 (5)C4—H40.9500
Cl1—Cui2.6666 (5)C5—C61.436 (3)
Cl2—C141.7785 (19)C6—C71.356 (3)
Cl3—C141.7652 (19)C6—H60.9500
Cl4—C141.7772 (19)C7—C81.437 (3)
O1—C131.270 (2)C7—H70.9500
O2—C131.220 (2)C8—C121.405 (3)
N1—C21.326 (2)C8—C91.413 (3)
N1—C11.363 (2)C9—C101.375 (3)
N2—C111.328 (2)C9—H90.9500
N2—C121.359 (2)C10—C111.405 (3)
C1—C51.402 (3)C10—H100.9500
C1—C121.430 (2)C11—H110.9500
C2—C31.406 (3)C13—C141.567 (3)
O1—Cu—N1168.83 (6)C4—C5—C6124.07 (18)
O1—Cu—N292.53 (6)C7—C6—C5121.42 (18)
N1—Cu—N281.87 (6)C7—C6—H6119.3
O1—Cu—Cl190.15 (4)C5—C6—H6119.3
N1—Cu—Cl194.40 (5)C6—C7—C8120.98 (18)
N2—Cu—Cl1173.20 (5)C6—C7—H7119.5
O1—Cu—Cl1i93.33 (4)C8—C7—H7119.5
N1—Cu—Cl1i96.47 (5)C12—C8—C9116.77 (18)
N2—Cu—Cl1i91.64 (5)C12—C8—C7118.51 (18)
Cl1—Cu—Cl1i94.440 (17)C9—C8—C7124.72 (18)
Cu—Cl1—Cui85.560 (17)C10—C9—C8119.49 (18)
C13—O1—Cu113.24 (12)C10—C9—H9120.3
C2—N1—C1118.26 (16)C8—C9—H9120.3
C2—N1—Cu129.20 (13)C9—C10—C11119.75 (18)
C1—N1—Cu112.51 (12)C9—C10—H10120.1
C11—N2—C12118.75 (16)C11—C10—H10120.1
C11—N2—Cu128.60 (13)N2—C11—C10121.87 (18)
C12—N2—Cu112.52 (12)N2—C11—H11119.1
N1—C1—C5123.17 (17)C10—C11—H11119.1
N1—C1—C12116.54 (16)N2—C12—C8123.27 (17)
C5—C1—C12120.28 (17)N2—C12—C1116.50 (16)
N1—C2—C3122.30 (18)C8—C12—C1120.23 (17)
N1—C2—H2118.9O2—C13—O1129.09 (18)
C3—C2—H2118.9O2—C13—C14119.30 (16)
C4—C3—C2120.00 (18)O1—C13—C14111.59 (16)
C4—C3—H3120.0C13—C14—Cl3112.75 (13)
C2—C3—H3120.0C13—C14—Cl2110.35 (12)
C3—C4—C5118.77 (18)Cl3—C14—Cl2108.20 (10)
C3—C4—H4120.6C13—C14—Cl4106.71 (12)
C5—C4—H4120.6Cl3—C14—Cl4108.88 (10)
C1—C5—C4117.49 (18)Cl2—C14—Cl4109.93 (10)
C1—C5—C6118.44 (18)
O1—Cu—Cl1—Cui93.35 (4)C3—C4—C5—C11.0 (3)
N1—Cu—Cl1—Cui96.86 (5)C3—C4—C5—C6179.53 (19)
Cl1i—Cu—Cl1—Cui0.0C1—C5—C6—C71.7 (3)
N1—Cu—O1—C1331.8 (4)C4—C5—C6—C7178.81 (19)
N2—Cu—O1—C1391.39 (13)C5—C6—C7—C82.2 (3)
Cl1—Cu—O1—C1382.36 (12)C6—C7—C8—C120.4 (3)
Cl1i—Cu—O1—C13176.82 (12)C6—C7—C8—C9179.89 (19)
O1—Cu—N1—C2117.1 (3)C12—C8—C9—C102.3 (3)
N2—Cu—N1—C2177.57 (18)C7—C8—C9—C10177.43 (19)
Cl1—Cu—N1—C23.29 (17)C8—C9—C10—C110.2 (3)
Cl1i—Cu—N1—C291.69 (17)C12—N2—C11—C102.1 (3)
O1—Cu—N1—C160.8 (4)Cu—N2—C11—C10173.53 (14)
N2—Cu—N1—C10.31 (13)C9—C10—C11—N22.5 (3)
Cl1—Cu—N1—C1174.59 (12)C11—N2—C12—C80.5 (3)
Cl1i—Cu—N1—C190.43 (12)Cu—N2—C12—C8176.88 (14)
O1—Cu—N2—C1112.19 (17)C11—N2—C12—C1179.01 (16)
N1—Cu—N2—C11177.52 (17)Cu—N2—C12—C12.7 (2)
Cl1i—Cu—N2—C1181.21 (16)C9—C8—C12—N22.7 (3)
O1—Cu—N2—C12171.92 (13)C7—C8—C12—N2177.00 (17)
N1—Cu—N2—C121.63 (12)C9—C8—C12—C1176.80 (17)
Cl1i—Cu—N2—C1294.68 (12)C7—C8—C12—C13.5 (3)
C2—N1—C1—C50.2 (3)N1—C1—C12—N22.5 (2)
Cu—N1—C1—C5177.90 (14)C5—C1—C12—N2176.45 (16)
C2—N1—C1—C12179.17 (17)N1—C1—C12—C8177.04 (16)
Cu—N1—C1—C121.0 (2)C5—C1—C12—C84.0 (3)
C1—N1—C2—C31.0 (3)Cu—O1—C13—O29.5 (3)
Cu—N1—C2—C3176.75 (14)Cu—O1—C13—C14171.79 (11)
N1—C2—C3—C40.8 (3)O2—C13—C14—Cl36.2 (2)
C2—C3—C4—C50.3 (3)O1—C13—C14—Cl3174.97 (13)
N1—C1—C5—C40.8 (3)O2—C13—C14—Cl2127.31 (16)
C12—C1—C5—C4178.13 (17)O1—C13—C14—Cl253.85 (18)
N1—C1—C5—C6179.71 (17)O2—C13—C14—Cl4113.29 (17)
C12—C1—C5—C61.4 (3)O1—C13—C14—Cl465.55 (17)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl3ii0.952.803.679 (2)154
C4—H4···O2iii0.952.493.302 (3)144
C7—H7···Cl1iv0.952.733.638 (2)159
Symmetry codes: (ii) x+1/2, y1/2, z+1/2; (iii) x, y+1, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C2Cl3O2)2Cl2(C12H8N2)2]
Mr883.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.2961 (2), 17.3529 (2), 10.6201 (2)
β (°) 115.269 (3)
V3)1549.25 (5)
Z2
Radiation typeCu Kα
µ (mm1)8.43
Crystal size (mm)0.15 × 0.10 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.365, 0.678
No. of measured, independent and
observed [I > 2σ(I)] reflections
11808, 3233, 3049
Rint0.019
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.070, 1.05
No. of reflections3233
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.46

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu—O11.9491 (13)Cu—Cl12.2811 (5)
Cu—N12.0163 (16)Cu—Cl1i2.6666 (5)
Cu—N22.0214 (16)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl3ii0.952.803.679 (2)154
C4—H4···O2iii0.952.493.302 (3)144
C7—H7···Cl1iv0.952.733.638 (2)159
Symmetry codes: (ii) x+1/2, y1/2, z+1/2; (iii) x, y+1, z+1; (iv) x, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: shahverdizadeh@iaut.ac.ir.

Acknowledgements

The authors gratefully acknowledge support of this study by Tabriz Azad University, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDe Burgomaster, P., Liu, H., Ouellette, W., O'Connor, C. J. & Zubieta, J. (2010). CrystEngComm, 12, 446–469.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165–1169.  CSD CrossRef Web of Science Google Scholar
First citationJiang, H., Ma, J.-F. & Zhang, W.-L. (2007). Acta Cryst. E63, m1681.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, X.-Y., He, Y.-H. & Feng, Y.-L. (2008). Chin. J. Inorg. Chem. 24, 1400–1405.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m242-m243
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds