metal-organic compounds
Di-μ-chlorido-bis[(1,10-phenanthroline-κ2N,N′)(trichloroacetato-κO)copper(II)]
aDepartment of Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, PO Box 1655, Tabriz, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, and dDepartment of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, PO Box 5166616471, Tabriz, Iran
*Correspondence e-mail: edward.tiekink@gmail.com
The title compound, [Cu2(C2Cl3O2)2Cl2(C12H8N2)2], features a centrosymmetric binuclear complex. The coordination geometry around the CuII atom is square-pyramidal, comprising two N atoms from a symmetrically chelating 1,10-phenanthroline ligand, one O atom from a trichloroacetate ligand and two Cl− anions. In addition, there is a weak intramolecular Cu⋯O interaction of 2.9403 (14) Å involving the carbonyl O atom of the trichloroacetate ligand. The central Cu2Cl2 core takes the form of a rhombus, owing to the disparate Cu—Cl bond lengths. Molecules are connected in the by C—H⋯Cl and C—H⋯O interactions.
Related literature
For background to crystal engineering studies of CuII 1,10-phenanthroline complexes, see: De Burgomaster et al. (2010). For specialized crystallization techniques, see: Harrowfield et al. (1996). For closely related binuclear CuII molecules with chloride, carboxylate and bipyridine ligands, see: Jiang et al. (2007); Zheng et al. (2008). For descriptive parameters of pyramidal and trigonal–bipyramidal geometries, see: Addison et al. (1984); Spek (2009).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812003947/bt5807sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812003947/bt5807Isup2.hkl
1,10-Phenanthroline (1 mmol) was placed in one arm of a branched tube (Harrowfield et al., 1996) and a mixture of copper(II) chloride dihydrate (1 mmol) and trichloroacetic acid (1 mmol) in the other. Ethanol was then added to fill both arms, the tube was sealed and the ligand-containing arm immersed in a bath at 333 K, while the other was left at ambient temperature. After 3 d, crystals had deposited in the arm held at ambient temperature. They were filtered off, washed with acetone and ether, and air dried. Yield: 85%. M.p. = 530 K.
H-atoms were placed in calculated positions [C—H 0.95 Å, Uiso(H) = 1.2Ueq(C)] and were included in the
in the riding model approximation.Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu2(C2Cl3O2)2Cl2(C12H8N2)2] | F(000) = 876 |
Mr = 883.15 | Dx = 1.893 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2yn | Cell parameters from 7160 reflections |
a = 9.2961 (2) Å | θ = 4.6–76.4° |
b = 17.3529 (2) Å | µ = 8.43 mm−1 |
c = 10.6201 (2) Å | T = 100 K |
β = 115.269 (3)° | Chip, blue |
V = 1549.25 (5) Å3 | 0.15 × 0.10 × 0.05 mm |
Z = 2 |
Agilent SuperNova Dual diffractometer with Atlas detector | 3233 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 3049 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.019 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 76.6°, θmin = 5.1° |
ω scans | h = −6→11 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −21→21 |
Tmin = 0.365, Tmax = 0.678 | l = −13→11 |
11808 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.070 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0394P)2 + 1.203P] where P = (Fo2 + 2Fc2)/3 |
3233 reflections | (Δ/σ)max = 0.001 |
208 parameters | Δρmax = 0.52 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
[Cu2(C2Cl3O2)2Cl2(C12H8N2)2] | V = 1549.25 (5) Å3 |
Mr = 883.15 | Z = 2 |
Monoclinic, P21/n | Cu Kα radiation |
a = 9.2961 (2) Å | µ = 8.43 mm−1 |
b = 17.3529 (2) Å | T = 100 K |
c = 10.6201 (2) Å | 0.15 × 0.10 × 0.05 mm |
β = 115.269 (3)° |
Agilent SuperNova Dual diffractometer with Atlas detector | 3233 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | 3049 reflections with I > 2σ(I) |
Tmin = 0.365, Tmax = 0.678 | Rint = 0.019 |
11808 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.070 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.52 e Å−3 |
3233 reflections | Δρmin = −0.46 e Å−3 |
208 parameters |
x | y | z | Uiso*/Ueq | ||
Cu | 0.39736 (3) | 0.560830 (15) | 0.55506 (3) | 0.01748 (9) | |
Cl1 | 0.34122 (6) | 0.52569 (3) | 0.33194 (5) | 0.02267 (11) | |
Cl2 | 0.62010 (6) | 0.73740 (3) | 0.34999 (5) | 0.02598 (11) | |
Cl3 | 0.39347 (5) | 0.84979 (2) | 0.34988 (5) | 0.02186 (11) | |
Cl4 | 0.65647 (5) | 0.80961 (3) | 0.60933 (5) | 0.02227 (11) | |
O1 | 0.51331 (16) | 0.65057 (7) | 0.53709 (14) | 0.0210 (3) | |
O2 | 0.28218 (16) | 0.71570 (8) | 0.44642 (15) | 0.0239 (3) | |
N1 | 0.24794 (19) | 0.48328 (9) | 0.57670 (16) | 0.0185 (3) | |
N2 | 0.41913 (18) | 0.59423 (9) | 0.74473 (16) | 0.0178 (3) | |
C1 | 0.2369 (2) | 0.49090 (10) | 0.70005 (19) | 0.0169 (3) | |
C2 | 0.1599 (2) | 0.42989 (11) | 0.4880 (2) | 0.0221 (4) | |
H2 | 0.1681 | 0.4236 | 0.4025 | 0.027* | |
C3 | 0.0548 (2) | 0.38227 (11) | 0.5162 (2) | 0.0248 (4) | |
H3 | −0.0075 | 0.3450 | 0.4496 | 0.030* | |
C4 | 0.0421 (2) | 0.38958 (11) | 0.6400 (2) | 0.0237 (4) | |
H4 | −0.0289 | 0.3578 | 0.6598 | 0.028* | |
C5 | 0.1367 (2) | 0.44524 (11) | 0.7372 (2) | 0.0202 (4) | |
C6 | 0.1352 (2) | 0.45803 (12) | 0.8702 (2) | 0.0241 (4) | |
H6 | 0.0657 | 0.4284 | 0.8956 | 0.029* | |
C7 | 0.2308 (2) | 0.51143 (12) | 0.9603 (2) | 0.0242 (4) | |
H7 | 0.2299 | 0.5173 | 1.0489 | 0.029* | |
C8 | 0.3335 (2) | 0.55923 (11) | 0.9239 (2) | 0.0198 (4) | |
C9 | 0.4369 (2) | 0.61606 (12) | 1.0113 (2) | 0.0232 (4) | |
H9 | 0.4454 | 0.6235 | 1.1028 | 0.028* | |
C10 | 0.5252 (2) | 0.66045 (11) | 0.9628 (2) | 0.0241 (4) | |
H10 | 0.5952 | 0.6987 | 1.0209 | 0.029* | |
C11 | 0.5113 (2) | 0.64899 (11) | 0.8271 (2) | 0.0214 (4) | |
H11 | 0.5696 | 0.6813 | 0.7934 | 0.026* | |
C12 | 0.3321 (2) | 0.54982 (10) | 0.79196 (19) | 0.0172 (3) | |
C13 | 0.4236 (2) | 0.70725 (10) | 0.47750 (19) | 0.0182 (4) | |
C14 | 0.5177 (2) | 0.77358 (11) | 0.44580 (19) | 0.0184 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.02157 (16) | 0.01456 (15) | 0.01898 (15) | −0.00160 (10) | 0.01120 (12) | −0.00039 (9) |
Cl1 | 0.0286 (2) | 0.0222 (2) | 0.0181 (2) | 0.00446 (17) | 0.01078 (18) | 0.00221 (16) |
Cl2 | 0.0307 (2) | 0.0248 (2) | 0.0302 (2) | −0.00004 (18) | 0.0204 (2) | −0.00146 (18) |
Cl3 | 0.0233 (2) | 0.0184 (2) | 0.0213 (2) | 0.00170 (16) | 0.00706 (18) | 0.00467 (16) |
Cl4 | 0.0216 (2) | 0.0225 (2) | 0.0189 (2) | −0.00312 (16) | 0.00503 (17) | 0.00003 (16) |
O1 | 0.0221 (7) | 0.0157 (6) | 0.0266 (7) | 0.0007 (5) | 0.0118 (6) | 0.0035 (5) |
O2 | 0.0188 (7) | 0.0208 (7) | 0.0320 (7) | −0.0012 (5) | 0.0108 (6) | 0.0019 (6) |
N1 | 0.0209 (7) | 0.0157 (7) | 0.0190 (7) | −0.0006 (6) | 0.0086 (6) | 0.0005 (6) |
N2 | 0.0171 (7) | 0.0166 (7) | 0.0209 (7) | −0.0009 (6) | 0.0091 (6) | −0.0021 (6) |
C1 | 0.0169 (8) | 0.0159 (8) | 0.0177 (8) | 0.0014 (7) | 0.0072 (7) | 0.0012 (7) |
C2 | 0.0250 (10) | 0.0192 (9) | 0.0196 (9) | −0.0025 (7) | 0.0072 (8) | −0.0030 (7) |
C3 | 0.0226 (9) | 0.0186 (9) | 0.0276 (10) | −0.0034 (7) | 0.0054 (8) | −0.0027 (7) |
C4 | 0.0203 (9) | 0.0185 (9) | 0.0313 (10) | −0.0018 (7) | 0.0100 (8) | 0.0025 (8) |
C5 | 0.0187 (9) | 0.0175 (9) | 0.0236 (9) | 0.0008 (7) | 0.0082 (8) | 0.0040 (7) |
C6 | 0.0254 (10) | 0.0244 (9) | 0.0273 (10) | 0.0016 (8) | 0.0157 (9) | 0.0063 (8) |
C7 | 0.0280 (10) | 0.0263 (10) | 0.0226 (9) | 0.0039 (8) | 0.0149 (8) | 0.0032 (8) |
C8 | 0.0192 (9) | 0.0203 (9) | 0.0190 (9) | 0.0046 (7) | 0.0074 (7) | 0.0001 (7) |
C9 | 0.0210 (9) | 0.0254 (10) | 0.0212 (9) | 0.0051 (7) | 0.0072 (8) | −0.0047 (7) |
C10 | 0.0183 (9) | 0.0230 (9) | 0.0276 (10) | 0.0010 (7) | 0.0064 (8) | −0.0087 (8) |
C11 | 0.0182 (9) | 0.0180 (9) | 0.0284 (10) | −0.0005 (7) | 0.0103 (8) | −0.0046 (7) |
C12 | 0.0162 (8) | 0.0164 (8) | 0.0195 (8) | 0.0016 (7) | 0.0080 (7) | 0.0003 (7) |
C13 | 0.0219 (9) | 0.0163 (8) | 0.0175 (8) | −0.0015 (7) | 0.0094 (7) | −0.0017 (7) |
C14 | 0.0185 (8) | 0.0180 (8) | 0.0191 (8) | 0.0007 (7) | 0.0083 (7) | 0.0007 (7) |
Cu—O1 | 1.9491 (13) | C2—H2 | 0.9500 |
Cu—N1 | 2.0163 (16) | C3—C4 | 1.375 (3) |
Cu—N2 | 2.0214 (16) | C3—H3 | 0.9500 |
Cu—Cl1 | 2.2811 (5) | C4—C5 | 1.413 (3) |
Cu—Cl1i | 2.6666 (5) | C4—H4 | 0.9500 |
Cl1—Cui | 2.6666 (5) | C5—C6 | 1.436 (3) |
Cl2—C14 | 1.7785 (19) | C6—C7 | 1.356 (3) |
Cl3—C14 | 1.7652 (19) | C6—H6 | 0.9500 |
Cl4—C14 | 1.7772 (19) | C7—C8 | 1.437 (3) |
O1—C13 | 1.270 (2) | C7—H7 | 0.9500 |
O2—C13 | 1.220 (2) | C8—C12 | 1.405 (3) |
N1—C2 | 1.326 (2) | C8—C9 | 1.413 (3) |
N1—C1 | 1.363 (2) | C9—C10 | 1.375 (3) |
N2—C11 | 1.328 (2) | C9—H9 | 0.9500 |
N2—C12 | 1.359 (2) | C10—C11 | 1.405 (3) |
C1—C5 | 1.402 (3) | C10—H10 | 0.9500 |
C1—C12 | 1.430 (2) | C11—H11 | 0.9500 |
C2—C3 | 1.406 (3) | C13—C14 | 1.567 (3) |
O1—Cu—N1 | 168.83 (6) | C4—C5—C6 | 124.07 (18) |
O1—Cu—N2 | 92.53 (6) | C7—C6—C5 | 121.42 (18) |
N1—Cu—N2 | 81.87 (6) | C7—C6—H6 | 119.3 |
O1—Cu—Cl1 | 90.15 (4) | C5—C6—H6 | 119.3 |
N1—Cu—Cl1 | 94.40 (5) | C6—C7—C8 | 120.98 (18) |
N2—Cu—Cl1 | 173.20 (5) | C6—C7—H7 | 119.5 |
O1—Cu—Cl1i | 93.33 (4) | C8—C7—H7 | 119.5 |
N1—Cu—Cl1i | 96.47 (5) | C12—C8—C9 | 116.77 (18) |
N2—Cu—Cl1i | 91.64 (5) | C12—C8—C7 | 118.51 (18) |
Cl1—Cu—Cl1i | 94.440 (17) | C9—C8—C7 | 124.72 (18) |
Cu—Cl1—Cui | 85.560 (17) | C10—C9—C8 | 119.49 (18) |
C13—O1—Cu | 113.24 (12) | C10—C9—H9 | 120.3 |
C2—N1—C1 | 118.26 (16) | C8—C9—H9 | 120.3 |
C2—N1—Cu | 129.20 (13) | C9—C10—C11 | 119.75 (18) |
C1—N1—Cu | 112.51 (12) | C9—C10—H10 | 120.1 |
C11—N2—C12 | 118.75 (16) | C11—C10—H10 | 120.1 |
C11—N2—Cu | 128.60 (13) | N2—C11—C10 | 121.87 (18) |
C12—N2—Cu | 112.52 (12) | N2—C11—H11 | 119.1 |
N1—C1—C5 | 123.17 (17) | C10—C11—H11 | 119.1 |
N1—C1—C12 | 116.54 (16) | N2—C12—C8 | 123.27 (17) |
C5—C1—C12 | 120.28 (17) | N2—C12—C1 | 116.50 (16) |
N1—C2—C3 | 122.30 (18) | C8—C12—C1 | 120.23 (17) |
N1—C2—H2 | 118.9 | O2—C13—O1 | 129.09 (18) |
C3—C2—H2 | 118.9 | O2—C13—C14 | 119.30 (16) |
C4—C3—C2 | 120.00 (18) | O1—C13—C14 | 111.59 (16) |
C4—C3—H3 | 120.0 | C13—C14—Cl3 | 112.75 (13) |
C2—C3—H3 | 120.0 | C13—C14—Cl2 | 110.35 (12) |
C3—C4—C5 | 118.77 (18) | Cl3—C14—Cl2 | 108.20 (10) |
C3—C4—H4 | 120.6 | C13—C14—Cl4 | 106.71 (12) |
C5—C4—H4 | 120.6 | Cl3—C14—Cl4 | 108.88 (10) |
C1—C5—C4 | 117.49 (18) | Cl2—C14—Cl4 | 109.93 (10) |
C1—C5—C6 | 118.44 (18) | ||
O1—Cu—Cl1—Cui | 93.35 (4) | C3—C4—C5—C1 | 1.0 (3) |
N1—Cu—Cl1—Cui | −96.86 (5) | C3—C4—C5—C6 | −179.53 (19) |
Cl1i—Cu—Cl1—Cui | 0.0 | C1—C5—C6—C7 | −1.7 (3) |
N1—Cu—O1—C13 | −31.8 (4) | C4—C5—C6—C7 | 178.81 (19) |
N2—Cu—O1—C13 | −91.39 (13) | C5—C6—C7—C8 | 2.2 (3) |
Cl1—Cu—O1—C13 | 82.36 (12) | C6—C7—C8—C12 | 0.4 (3) |
Cl1i—Cu—O1—C13 | 176.82 (12) | C6—C7—C8—C9 | −179.89 (19) |
O1—Cu—N1—C2 | 117.1 (3) | C12—C8—C9—C10 | 2.3 (3) |
N2—Cu—N1—C2 | 177.57 (18) | C7—C8—C9—C10 | −177.43 (19) |
Cl1—Cu—N1—C2 | 3.29 (17) | C8—C9—C10—C11 | 0.2 (3) |
Cl1i—Cu—N1—C2 | −91.69 (17) | C12—N2—C11—C10 | 2.1 (3) |
O1—Cu—N1—C1 | −60.8 (4) | Cu—N2—C11—C10 | −173.53 (14) |
N2—Cu—N1—C1 | −0.31 (13) | C9—C10—C11—N2 | −2.5 (3) |
Cl1—Cu—N1—C1 | −174.59 (12) | C11—N2—C12—C8 | 0.5 (3) |
Cl1i—Cu—N1—C1 | 90.43 (12) | Cu—N2—C12—C8 | 176.88 (14) |
O1—Cu—N2—C11 | −12.19 (17) | C11—N2—C12—C1 | −179.01 (16) |
N1—Cu—N2—C11 | 177.52 (17) | Cu—N2—C12—C1 | −2.7 (2) |
Cl1i—Cu—N2—C11 | 81.21 (16) | C9—C8—C12—N2 | −2.7 (3) |
O1—Cu—N2—C12 | 171.92 (13) | C7—C8—C12—N2 | 177.00 (17) |
N1—Cu—N2—C12 | 1.63 (12) | C9—C8—C12—C1 | 176.80 (17) |
Cl1i—Cu—N2—C12 | −94.68 (12) | C7—C8—C12—C1 | −3.5 (3) |
C2—N1—C1—C5 | −0.2 (3) | N1—C1—C12—N2 | 2.5 (2) |
Cu—N1—C1—C5 | 177.90 (14) | C5—C1—C12—N2 | −176.45 (16) |
C2—N1—C1—C12 | −179.17 (17) | N1—C1—C12—C8 | −177.04 (16) |
Cu—N1—C1—C12 | −1.0 (2) | C5—C1—C12—C8 | 4.0 (3) |
C1—N1—C2—C3 | 1.0 (3) | Cu—O1—C13—O2 | 9.5 (3) |
Cu—N1—C2—C3 | −176.75 (14) | Cu—O1—C13—C14 | −171.79 (11) |
N1—C2—C3—C4 | −0.8 (3) | O2—C13—C14—Cl3 | −6.2 (2) |
C2—C3—C4—C5 | −0.3 (3) | O1—C13—C14—Cl3 | 174.97 (13) |
N1—C1—C5—C4 | −0.8 (3) | O2—C13—C14—Cl2 | −127.31 (16) |
C12—C1—C5—C4 | 178.13 (17) | O1—C13—C14—Cl2 | 53.85 (18) |
N1—C1—C5—C6 | 179.71 (17) | O2—C13—C14—Cl4 | 113.29 (17) |
C12—C1—C5—C6 | −1.4 (3) | O1—C13—C14—Cl4 | −65.55 (17) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···Cl3ii | 0.95 | 2.80 | 3.679 (2) | 154 |
C4—H4···O2iii | 0.95 | 2.49 | 3.302 (3) | 144 |
C7—H7···Cl1iv | 0.95 | 2.73 | 3.638 (2) | 159 |
Symmetry codes: (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x, −y+1, −z+1; (iv) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C2Cl3O2)2Cl2(C12H8N2)2] |
Mr | 883.15 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 9.2961 (2), 17.3529 (2), 10.6201 (2) |
β (°) | 115.269 (3) |
V (Å3) | 1549.25 (5) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 8.43 |
Crystal size (mm) | 0.15 × 0.10 × 0.05 |
Data collection | |
Diffractometer | Agilent SuperNova Dual diffractometer with Atlas detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.365, 0.678 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11808, 3233, 3049 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.631 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.070, 1.05 |
No. of reflections | 3233 |
No. of parameters | 208 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.52, −0.46 |
Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Cu—O1 | 1.9491 (13) | Cu—Cl1 | 2.2811 (5) |
Cu—N1 | 2.0163 (16) | Cu—Cl1i | 2.6666 (5) |
Cu—N2 | 2.0214 (16) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···Cl3ii | 0.95 | 2.80 | 3.679 (2) | 154 |
C4—H4···O2iii | 0.95 | 2.49 | 3.302 (3) | 144 |
C7—H7···Cl1iv | 0.95 | 2.73 | 3.638 (2) | 159 |
Symmetry codes: (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x, −y+1, −z+1; (iv) x, y, z+1. |
Footnotes
‡Additional correspondence author, e-mail: shahverdizadeh@iaut.ac.ir.
Acknowledgements
The authors gratefully acknowledge support of this study by Tabriz Azad University, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/HIR/MOHE/SC/12).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
De Burgomaster, P., Liu, H., Ouellette, W., O'Connor, C. J. & Zubieta, J. (2010). CrystEngComm, 12, 446–469. CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165–1169. CSD CrossRef Web of Science Google Scholar
Jiang, H., Ma, J.-F. & Zhang, W.-L. (2007). Acta Cryst. E63, m1681. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zheng, X.-Y., He, Y.-H. & Feng, Y.-L. (2008). Chin. J. Inorg. Chem. 24, 1400–1405. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Research on copperII phenanthroline derivatives continues to attract interest in the context of crystal engineering of copper coordination polymers (De Burgomaster et al., 2010). Herein, we report the title CuII complex, (I).
The CuII atom in binuclear (I), Fig. 1, is coordinated by two Cl atoms, which form dissimilar Cu—Cl bond lengths, two N atoms from a symmetrically chelating 1,10-phenanthroline ligand, and one O atom from a trichloroacetate ligand, Table 1. The structure of (I) is centrosymmetric and the central Cu2O2 has the form of a rhombus. The carbonyl-O2 atom forms a weak intramolecular Cu···O contact of 2.9403 (14) Å. The asymmetric mode of coordination of the carboxylate is reflected in the disparate C—O bond distances with the longer C13—O1 distance [1.270 (2) Å] being associated with the shorter Cu—O1 interaction, and the short C13—O2 distance [1.220 (2) Å] associated with the weaker Cu—O2 contact.
The resultant Cl2N2O donor set defines a square pyramid. This assignment is based on the value calculated for τ of 0.07 for the Cu atom, which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Spek, 2009; Addison et al., 1984). In this description, the less tightly bound Cli atom defines the axial site (i: 1 - x, 1 - y, 1 - z).
The observed coordination geometry in (I) resembles closely those found in the analogous structures with the carboxylate ligands being 2-anilinobenzoate (Jiang et al., 2007) and p-tolylthioacetate (Zheng et al., 2008).
In the crystal packing, molecules assembles into layers in the ac plane and are connected into the three dimensional architecture by C—H···Cl and C—H···O interactions, Fig. 2 and Table 2.