organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Fluoro­phen­yl)-1-(4-nitro­phen­yl)-3-(pyridin-4-yl)-1H-pyrazol-5-amine

aFaculty of Science, Chemistry Department, Islamic University of Gaza, Gaza Strip, Palestinian Territories, bInstitute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and cDepartment of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 30 January 2012; accepted 31 January 2012; online 10 February 2012)

In the crystal structure of the title compound, C20H14FN5O2, the pyrazole ring forms dihedral angles of 59.3 (2), 25.6 (2) and 46.0 (2)° with the directly attached 4-fluoro­phenyl, pyridine and nitro­phenyl rings, respectively. The crystal packing is characterized by inter­molecular N—H⋯N and N—H⋯O hydrogen bonds.

Related literature

For p38α MAP kinase inhibitors having a vicinal 4-fluoro­phen­yl/pyridin-4-yl system connected to a five-membered heterocyclic core, see: Abu Thaher et al. (2009[Abu Thaher, B., Koch, P., Schattel, V. & Laufer, S. (2009). J. Med. Chem. 52, 2613-2617.]); Peifer et al. (2006[Peifer, C., Wagner, G. & Laufer, S. (2006). Curr. Top. Med. Chem. 6, 113-149.]). For inhibitory activity and preparation of the title compound, see: Abu Thaher et al. (2012[Abu Thaher, B., Arnsmann, M., Totzke, F., Ehlert, J. E., Kubbutat, M. H. G., Schächtele, C., Zimmermann, M. O., Koch, P., Boeckler, F. M. & Laufer, S. A. (2012). J. Med. Chem. 55, 961-965.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14FN5O2

  • Mr = 375.36

  • Triclinic, [P \overline 1]

  • a = 8.5088 (14) Å

  • b = 9.8797 (11) Å

  • c = 10.4264 (14) Å

  • α = 79.906 (10)°

  • β = 78.764 (10)°

  • γ = 86.245 (9)°

  • V = 845.9 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.89 mm−1

  • T = 193 K

  • 0.35 × 0.35 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 3416 measured reflections

  • 3185 independent reflections

  • 2835 reflections with I > 2σ(I)

  • Rint = 0.020

  • 3 standard reflections every 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.247

  • S = 1.18

  • 3185 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯O14i 0.91 2.29 3.149 (4) 158
N6—H6B⋯N26ii 0.87 2.19 2.985 (3) 151
Symmetry codes: (i) x, y-1, z; (ii) x, y, z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Compounds having a vicinal 4-fluorophenyl/pyridin-4-yl system connected to a five-membered heterocyclic core have been considered to be potential p38α MAP kinase inhibitors (Abu Thaher et al. 2009, Peifer et al. 2006). Recently, we showed that the regioisomeric switch from 3-(4-fluorophenyl)-4-(pyridin-4-yl)-1-(aryl)-1H-pyrazol-5-amine to 4-(4-fluorophenyl)-3-(pyridin-4-yl)-1-(aryl)-1H-pyrazol-5-amine completely changed the inhibitory profile from p38α MAP kinase to kinases releant in cancer (Abu Thaher et al. 2012).

In the crystal structure of the title compound (Fig. 1), the pyrazole ring forms dihedral angels of 59.3 (2)°, 25.6 (2)° and 46.0 (2)° with the 4-fluorophenyl, pyridine and nitrophenyl rings, respectively. The 4-fluorophenyl ring encloses dihedral angels of 59.3 (2)° and 17.5 (2)° toward the pyridine and 4-nitrophenyl rings, respectively. The pyridine ring is orientated at a dihedral angle of 42.4 (2)° toward the nitrophenyl ring.

The crystal packing (Fig. 2) shows that the amino function acts as a hydrogen bond donor of two intermolecular hydrogen bonds - one to the nitrogen atom (N26) of the pyridine ring and another one to one oxygen atom (O14) of the nitro group of two different molecules. The length of the hydrogen bonds is 2.19 Å and 2.29 Å, respectively (Table 1). The two hydrogen bonds result in a two dimensional network parallel to the b-c-plan.

Related literature top

For p38α MAP kinase inhibitors having a vicinal 4-fluorophenyl/pyridin-4-yl system connected to a five-membered heterocyclic core, see: Abu Thaher et al. (2009); Peifer et al. (2006). For inhibitory activity and preparation of the title compound, see: Abu Thaher et al. (2012). [Please correct the scheme to show the "4-nitrophenyl" group]

Experimental top

20 mmol of LDA was added to 30 ml of dry THF in a three neck flask and cooled to 195 K. 14 mmol of 4-fluorophenylacetonitril in 10 ml THF was added dropwise and the reaction mixture was stirred for 45 min. 5 mmol of N-(4-nitrophenyl)-4-pyridinecarbohydrazonoyl chloride was added slowly to the reaction and stirring was continued for 1 h. After warming to 293 K, 50 ml of water was added to the reaction mixture and extracted with ethyl acetate (2x 50 ml). The organic layer was dried over Na2SO4. The solvent was removed under redued pressure to about 5 ml and the pure product precipitated. Yield: 36%. Recrystallization from THF/diethylether resulted in crystals suitable for X-ray.

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). H atoms bonded to N were located in a difference map and constrained to this position. All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the a-axis (hydrogen bonding is shown with dashed lines).
4-(4-Fluorophenyl)-1-(4-nitrophenyl)-3-(pyridin-4-yl)-1H-pyrazol- 5-amine top
Crystal data top
C20H14FN5O2Z = 2
Mr = 375.36F(000) = 388
Triclinic, P1Dx = 1.474 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 8.5088 (14) ÅCell parameters from 25 reflections
b = 9.8797 (11) Åθ = 65–69°
c = 10.4264 (14) ŵ = 0.89 mm1
α = 79.906 (10)°T = 193 K
β = 78.764 (10)°Block, brown
γ = 86.245 (9)°0.35 × 0.35 × 0.20 mm
V = 845.9 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.020
Radiation source: rotating anodeθmax = 69.8°, θmin = 4.4°
Graphite monochromatorh = 100
ω/2θ scansk = 1212
3416 measured reflectionsl = 1212
3185 independent reflections3 standard reflections every 60 min
2835 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.247 w = 1/[σ2(Fo2) + (0.1328P)2 + 1.0029P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max < 0.001
3185 reflectionsΔρmax = 0.49 e Å3
254 parametersΔρmin = 0.73 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.056 (6)
Crystal data top
C20H14FN5O2γ = 86.245 (9)°
Mr = 375.36V = 845.9 (2) Å3
Triclinic, P1Z = 2
a = 8.5088 (14) ÅCu Kα radiation
b = 9.8797 (11) ŵ = 0.89 mm1
c = 10.4264 (14) ÅT = 193 K
α = 79.906 (10)°0.35 × 0.35 × 0.20 mm
β = 78.764 (10)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.020
3416 measured reflections3 standard reflections every 60 min
3185 independent reflections intensity decay: 2%
2835 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.247H-atom parameters constrained
S = 1.18Δρmax = 0.49 e Å3
3185 reflectionsΔρmin = 0.73 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2765 (3)0.5908 (2)0.7116 (2)0.0313 (6)
C20.2170 (4)0.4635 (3)0.7619 (3)0.0296 (7)
C30.2085 (4)0.4005 (3)0.6544 (3)0.0303 (7)
C40.2649 (4)0.5007 (3)0.5421 (3)0.0309 (7)
N50.3086 (3)0.6147 (3)0.5750 (2)0.0325 (6)
N60.1761 (3)0.4154 (3)0.8957 (2)0.0339 (6)
H6A0.16660.32310.91810.051*
H6B0.23820.44420.94200.051*
C70.3021 (4)0.6985 (3)0.7779 (3)0.0306 (7)
C80.4406 (4)0.7722 (3)0.7327 (3)0.0385 (8)
H80.52220.74310.66610.046*
C90.4599 (4)0.8882 (3)0.7848 (3)0.0407 (8)
H90.55460.93940.75560.049*
C100.3373 (4)0.9277 (3)0.8805 (3)0.0365 (8)
C110.2029 (4)0.8520 (3)0.9310 (3)0.0369 (7)
H110.12300.88020.99920.044*
C120.1854 (4)0.7340 (3)0.8809 (3)0.0338 (7)
H120.09520.67830.91630.041*
N130.3484 (4)1.0589 (3)0.9244 (3)0.0436 (7)
O140.2312 (4)1.1002 (2)0.9998 (3)0.0565 (8)
O150.4705 (4)1.1239 (3)0.8826 (3)0.0571 (8)
C160.1488 (4)0.2617 (3)0.6615 (3)0.0322 (7)
C170.2460 (5)0.1614 (3)0.6016 (3)0.0402 (8)
H170.35430.18020.56160.048*
C180.1847 (6)0.0344 (4)0.6006 (4)0.0535 (11)
H180.24930.03310.55830.064*
C190.0299 (6)0.0088 (4)0.6616 (4)0.0530 (11)
C200.0680 (5)0.1035 (4)0.7234 (4)0.0537 (10)
H200.17510.08270.76550.064*
C210.0064 (4)0.2304 (3)0.7228 (3)0.0410 (8)
H210.07240.29700.76540.049*
F220.0294 (4)0.1151 (2)0.6613 (3)0.0839 (11)
C230.2733 (4)0.4946 (3)0.4002 (3)0.0311 (7)
C240.3791 (4)0.5746 (3)0.3017 (3)0.0325 (7)
H240.44920.63360.32460.039*
C250.3810 (4)0.5674 (3)0.1697 (3)0.0351 (7)
H250.45300.62370.10380.042*
N260.2871 (4)0.4856 (3)0.1299 (2)0.0377 (7)
C270.1860 (4)0.4099 (3)0.2248 (3)0.0380 (8)
H270.11850.35110.19850.046*
C280.1722 (4)0.4108 (3)0.3597 (3)0.0358 (7)
H280.09600.35590.42280.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0511 (15)0.0246 (12)0.0214 (12)0.0101 (10)0.0109 (10)0.0043 (9)
C20.0429 (15)0.0256 (14)0.0222 (13)0.0076 (11)0.0086 (11)0.0039 (11)
C30.0468 (16)0.0247 (14)0.0228 (13)0.0090 (12)0.0129 (12)0.0028 (11)
C40.0462 (16)0.0268 (14)0.0226 (14)0.0093 (12)0.0126 (12)0.0026 (11)
N50.0520 (15)0.0280 (12)0.0194 (11)0.0121 (10)0.0087 (10)0.0029 (9)
N60.0572 (16)0.0265 (12)0.0207 (12)0.0128 (11)0.0116 (11)0.0023 (9)
C70.0497 (17)0.0234 (14)0.0220 (13)0.0074 (12)0.0134 (12)0.0027 (10)
C80.0541 (19)0.0316 (16)0.0323 (16)0.0127 (14)0.0101 (14)0.0053 (12)
C90.0567 (19)0.0307 (16)0.0373 (17)0.0164 (14)0.0114 (14)0.0044 (13)
C100.063 (2)0.0234 (15)0.0271 (14)0.0100 (13)0.0179 (14)0.0027 (11)
C110.060 (2)0.0285 (15)0.0250 (14)0.0076 (13)0.0133 (13)0.0042 (11)
C120.0519 (18)0.0271 (15)0.0243 (14)0.0106 (13)0.0097 (12)0.0033 (11)
N130.076 (2)0.0256 (13)0.0334 (14)0.0117 (13)0.0178 (14)0.0038 (11)
O140.094 (2)0.0309 (13)0.0451 (14)0.0082 (13)0.0039 (14)0.0144 (11)
O150.084 (2)0.0341 (13)0.0586 (17)0.0257 (13)0.0204 (14)0.0071 (12)
C160.0545 (18)0.0257 (14)0.0198 (13)0.0108 (12)0.0149 (12)0.0005 (10)
C170.066 (2)0.0311 (16)0.0273 (15)0.0001 (14)0.0170 (14)0.0058 (12)
C180.104 (3)0.0278 (16)0.0387 (18)0.0041 (18)0.036 (2)0.0099 (14)
C190.099 (3)0.0296 (17)0.0393 (18)0.0258 (18)0.037 (2)0.0055 (14)
C200.078 (3)0.048 (2)0.0398 (18)0.0335 (19)0.0242 (18)0.0077 (16)
C210.058 (2)0.0366 (17)0.0298 (15)0.0182 (15)0.0110 (14)0.0009 (13)
F220.162 (3)0.0346 (12)0.0725 (17)0.0424 (15)0.0671 (19)0.0075 (11)
C230.0493 (17)0.0246 (14)0.0227 (14)0.0061 (12)0.0139 (12)0.0027 (11)
C240.0458 (16)0.0280 (14)0.0264 (14)0.0110 (12)0.0101 (12)0.0041 (11)
C250.0506 (18)0.0321 (15)0.0231 (14)0.0133 (13)0.0074 (12)0.0006 (11)
N260.0587 (17)0.0333 (14)0.0249 (12)0.0115 (12)0.0161 (11)0.0024 (10)
C270.0579 (19)0.0326 (16)0.0286 (15)0.0163 (14)0.0184 (14)0.0023 (12)
C280.0558 (18)0.0292 (15)0.0252 (14)0.0151 (13)0.0155 (13)0.0018 (11)
Geometric parameters (Å, º) top
N1—C21.365 (4)N13—O141.238 (4)
N1—N51.378 (3)C16—C211.379 (5)
N1—C71.416 (3)C16—C171.401 (5)
C2—N61.376 (4)C17—C181.393 (5)
C2—C31.390 (4)C17—H170.9500
C3—C41.420 (4)C18—C191.366 (6)
C3—C161.478 (4)C18—H180.9500
C4—N51.329 (4)C19—F221.355 (4)
C4—C231.479 (4)C19—C201.372 (7)
N6—H6A0.9055C20—C211.389 (5)
N6—H6B0.8721C20—H200.9500
C7—C81.384 (4)C21—H210.9500
C7—C121.390 (4)C23—C241.392 (4)
C8—C91.383 (4)C23—C281.400 (4)
C8—H80.9500C24—C251.387 (4)
C9—C101.383 (5)C24—H240.9500
C9—H90.9500C25—N261.340 (4)
C10—C111.372 (5)C25—H250.9500
C10—N131.463 (4)N26—C271.331 (4)
C11—C121.386 (4)C27—C281.390 (4)
C11—H110.9500C27—H270.9500
C12—H120.9500C28—H280.9500
N13—O151.223 (4)
C2—N1—N5112.1 (2)O14—N13—C10118.0 (3)
C2—N1—C7129.9 (2)C21—C16—C17118.8 (3)
N5—N1—C7117.9 (2)C21—C16—C3120.4 (3)
N1—C2—N6123.1 (2)C17—C16—C3120.8 (3)
N1—C2—C3106.9 (2)C18—C17—C16120.3 (4)
N6—C2—C3130.0 (3)C18—C17—H17119.8
C2—C3—C4104.2 (2)C16—C17—H17119.8
C2—C3—C16125.9 (3)C19—C18—C17118.7 (4)
C4—C3—C16129.9 (2)C19—C18—H18120.7
N5—C4—C3112.7 (2)C17—C18—H18120.7
N5—C4—C23118.7 (2)F22—C19—C18118.7 (4)
C3—C4—C23128.6 (3)F22—C19—C20118.7 (4)
C4—N5—N1104.1 (2)C18—C19—C20122.6 (3)
C2—N6—H6A115.2C19—C20—C21118.3 (4)
C2—N6—H6B113.1C19—C20—H20120.9
H6A—N6—H6B110.1C21—C20—H20120.9
C8—C7—C12121.2 (3)C16—C21—C20121.3 (4)
C8—C7—N1118.5 (3)C16—C21—H21119.4
C12—C7—N1120.2 (3)C20—C21—H21119.4
C9—C8—C7119.8 (3)C24—C23—C28117.5 (3)
C9—C8—H8120.1C24—C23—C4121.3 (3)
C7—C8—H8120.1C28—C23—C4121.2 (3)
C10—C9—C8118.2 (3)C25—C24—C23119.3 (3)
C10—C9—H9120.9C25—C24—H24120.3
C8—C9—H9120.9C23—C24—H24120.3
C11—C10—C9122.6 (3)N26—C25—C24123.7 (3)
C11—C10—N13118.9 (3)N26—C25—H25118.1
C9—C10—N13118.4 (3)C24—C25—H25118.1
C10—C11—C12119.1 (3)C27—N26—C25116.5 (3)
C10—C11—H11120.5N26—C27—C28124.6 (3)
C12—C11—H11120.5N26—C27—H27117.7
C11—C12—C7118.9 (3)C28—C27—H27117.7
C11—C12—H12120.6C27—C28—C23118.4 (3)
C7—C12—H12120.6C27—C28—H28120.8
O15—N13—O14123.3 (3)C23—C28—H28120.8
O15—N13—C10118.7 (3)
N5—N1—C2—N6179.8 (3)C11—C10—N13—O15177.7 (3)
C7—N1—C2—N63.0 (5)C9—C10—N13—O155.4 (4)
N5—N1—C2—C30.3 (3)C11—C10—N13—O144.2 (4)
C7—N1—C2—C3176.9 (3)C9—C10—N13—O14172.8 (3)
N1—C2—C3—C40.6 (3)C2—C3—C16—C2159.9 (4)
N6—C2—C3—C4179.2 (3)C4—C3—C16—C21118.1 (4)
N1—C2—C3—C16179.1 (3)C2—C3—C16—C17122.7 (3)
N6—C2—C3—C160.8 (5)C4—C3—C16—C1759.2 (5)
C2—C3—C4—N51.4 (4)C21—C16—C17—C182.1 (4)
C16—C3—C4—N5179.8 (3)C3—C16—C17—C18175.3 (3)
C2—C3—C4—C23175.8 (3)C16—C17—C18—C191.5 (5)
C16—C3—C4—C232.5 (6)C17—C18—C19—F22179.6 (3)
C3—C4—N5—N11.6 (3)C17—C18—C19—C200.3 (5)
C23—C4—N5—N1176.0 (3)F22—C19—C20—C21179.8 (3)
C2—N1—N5—C41.1 (3)C18—C19—C20—C210.3 (5)
C7—N1—N5—C4176.4 (3)C17—C16—C21—C201.5 (5)
C2—N1—C7—C8139.2 (3)C3—C16—C21—C20176.0 (3)
N5—N1—C7—C843.8 (4)C19—C20—C21—C160.3 (5)
C2—N1—C7—C1244.6 (5)N5—C4—C23—C2425.7 (5)
N5—N1—C7—C12132.4 (3)C3—C4—C23—C24157.2 (3)
C12—C7—C8—C94.0 (5)N5—C4—C23—C28152.6 (3)
N1—C7—C8—C9172.2 (3)C3—C4—C23—C2824.5 (5)
C7—C8—C9—C100.7 (5)C28—C23—C24—C250.5 (5)
C8—C9—C10—C114.0 (5)C4—C23—C24—C25178.9 (3)
C8—C9—C10—N13172.8 (3)C23—C24—C25—N260.8 (5)
C9—C10—C11—C122.6 (5)C24—C25—N26—C271.1 (5)
N13—C10—C11—C12174.2 (3)C25—N26—C27—C280.1 (5)
C10—C11—C12—C72.2 (4)N26—C27—C28—C231.4 (5)
C8—C7—C12—C115.4 (5)C24—C23—C28—C271.5 (5)
N1—C7—C12—C11170.7 (3)C4—C23—C28—C27179.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···O14i0.912.293.149 (4)158
N6—H6B···N26ii0.872.192.985 (3)151
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H14FN5O2
Mr375.36
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)8.5088 (14), 9.8797 (11), 10.4264 (14)
α, β, γ (°)79.906 (10), 78.764 (10), 86.245 (9)
V3)845.9 (2)
Z2
Radiation typeCu Kα
µ (mm1)0.89
Crystal size (mm)0.35 × 0.35 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3416, 3185, 2835
Rint0.020
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.247, 1.18
No. of reflections3185
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.73

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···O14i0.912.293.149 (4)158
N6—H6B···N26ii0.872.192.985 (3)151
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1.
 

Acknowledgements

BAT thanks the Alexander von Humboldt Foundation for funding.

References

First citationAbu Thaher, B., Arnsmann, M., Totzke, F., Ehlert, J. E., Kubbutat, M. H. G., Schächtele, C., Zimmermann, M. O., Koch, P., Boeckler, F. M. & Laufer, S. A. (2012). J. Med. Chem. 55, 961–965.  Web of Science CAS PubMed Google Scholar
First citationAbu Thaher, B., Koch, P., Schattel, V. & Laufer, S. (2009). J. Med. Chem. 52, 2613–2617.  Web of Science PubMed CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationPeifer, C., Wagner, G. & Laufer, S. (2006). Curr. Top. Med. Chem. 6, 113–149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds