organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1′-Methyl-4′-phenyl­di­spiro­[chromane-3,3′-pyrrolidine-2′,3′′-indoline]-2,2′′-dione

aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cCAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 30 January 2012; accepted 24 February 2012; online 29 February 2012)

In the title compound, C26H22N2O3, the pyrrolidine ring adopts an envelope conformation with the N atom as the flap. In the crystal, pairs of centrosymmetrically related mol­ecules are linked into dimers by N—H⋯O hydrogen bonds. In addition, there are C—H⋯O hydrogen bonds.

Related literature

For a related structure, see: Gangadharan et al. (2010[Gangadharan, R., SethuSankar, K., Bakthadoss, M., Sivakumar, N. & Velmurugan, D. (2010). Acta Cryst. E66, o2935.]).

[Scheme 1]

Experimental

Crystal data
  • C26H22N2O3

  • Mr = 410.46

  • Triclinic, [P \overline 1]

  • a = 8.9280 (4) Å

  • b = 10.0923 (4) Å

  • c = 11.9044 (5) Å

  • α = 95.027 (1)°

  • β = 93.172 (1)°

  • γ = 98.991 (2)°

  • V = 1052.78 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruke Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.983

  • 28847 measured reflections

  • 7433 independent reflections

  • 4947 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.190

  • S = 1.05

  • 7433 reflections

  • 289 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.90 (2) 1.94 (2) 2.8362 (16) 169 (2)
C21—H21⋯O2ii 0.93 2.53 3.261 (3) 136 (0)
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Substituted pyrrolidine compounds have gained much importance since they are the basic structural elements of many alkaloids and pharmacologically active compounds while molecules with the indole moiety posses anti-inflammatory and antibacterial properties. In view of their importance, the crystal structure determination of the title compound was carried out and the results are presented herein. The molecular structure of the title compound is shown in Fig. 1. In the molecule, the oxindole moiety and phenyl ring are almost coplanar with the pyrrolidine ring attached to C1 and C18 respectively. Dihedral angle (C9—C18—C19—C24) formed between pyrrolidine ring and benzene ring is 71.4 (2) ° and the dihedral angle (C2—C1—N1—C26) between oxindole moiety and benzene ring is 48.8 (2) °. Pyrrolidine ring adopts envelope conformation (Gangadharan et al., 2010) and the benzopyran ring adopts half chair conformation. In the crystal, pairs of centrosymmetrically related molecules are linked into dimers by C21—H21···O2, N2—H2···O1 hydrogen bonds (Fig. 2).

Related literature top

For a related structure, see: Gangadharan et al. (2010).

Experimental top

A mixture of (E)-3-benzylidinechroman-2-one (0.118 g, 0.5 mmol), isatin (0.080 g, 0.55 mmol) and N-methylglycine (0.025 g, 0.55 mmol) in toluene (5 ml) was refluxed. After completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (10 ml) and extracted with ethyl acetate (3 x 10 ml). The combined organic layer was concentrated under reduced pressure. The crude mass was purified by column chromatography on silica gel (Acme 100–200 mesh), using ethylacetate: hexanes (2: 8) to afford the 1'-methyl-4'-phenyl-1",2,2",4-tetrahydro dispiro[1-benzopyran-3,3'-pyrrolidine-2',3''-indole]-2, 2''-dione as a colorless solid.

Refinement top

The H atoms H18, H2 were isotropically refined. All other H atoms were positioned geometrically and were treated as riding on their parent atoms, with C—H distances of 0.93–0.97 Å and Uiso(H)=1.2Ueq(C) or Uiso(H)=1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms
[Figure 2] Fig. 2. Crystal packing diagram. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
1'-Methyl-4'-phenyldispiro[chromane-3,3'-pyrrolidine-2',3''- indoline]-2,2''-dione top
Crystal data top
C26H22N2O3Z = 2
Mr = 410.46F(000) = 432
Triclinic, P1Dx = 1.295 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9280 (4) ÅCell parameters from 8834 reflections
b = 10.0923 (4) Åθ = 2.1–31.2°
c = 11.9044 (5) ŵ = 0.09 mm1
α = 95.027 (1)°T = 293 K
β = 93.172 (1)°Block, colourless
γ = 98.991 (2)°0.25 × 0.20 × 0.20 mm
V = 1052.78 (8) Å3
Data collection top
Bruke Kappa APEXII CCD
diffractometer
7433 independent reflections
Radiation source: fine-focus sealed tube4947 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scanθmax = 32.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1313
Tmin = 0.979, Tmax = 0.983k = 1515
28847 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0895P)2 + 0.2365P]
where P = (Fo2 + 2Fc2)/3
7433 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C26H22N2O3γ = 98.991 (2)°
Mr = 410.46V = 1052.78 (8) Å3
Triclinic, P1Z = 2
a = 8.9280 (4) ÅMo Kα radiation
b = 10.0923 (4) ŵ = 0.09 mm1
c = 11.9044 (5) ÅT = 293 K
α = 95.027 (1)°0.25 × 0.20 × 0.20 mm
β = 93.172 (1)°
Data collection top
Bruke Kappa APEXII CCD
diffractometer
7433 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4947 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.983Rint = 0.028
28847 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.45 e Å3
7433 reflectionsΔρmin = 0.40 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18688 (14)0.30903 (14)0.18304 (10)0.0327 (3)
C20.09250 (16)0.38274 (17)0.10248 (12)0.0418 (3)
C30.31829 (16)0.52072 (17)0.14566 (12)0.0419 (3)
C40.4325 (2)0.6297 (2)0.14951 (17)0.0582 (5)
H40.42040.70490.11220.070*
C50.5666 (2)0.6226 (2)0.21141 (18)0.0635 (5)
H50.64540.69550.21730.076*
C60.58552 (19)0.5102 (2)0.26430 (17)0.0587 (5)
H60.67750.50740.30400.070*
C70.46918 (17)0.40086 (17)0.25926 (13)0.0452 (3)
H70.48280.32410.29400.054*
C80.33290 (15)0.40837 (15)0.20164 (11)0.0351 (3)
C90.09670 (14)0.27119 (13)0.28914 (10)0.0317 (3)
C100.21315 (19)0.27681 (17)0.39002 (12)0.0461 (4)
C110.2129 (2)0.51265 (18)0.42028 (13)0.0525 (4)
C120.3071 (3)0.6340 (2)0.45399 (17)0.0697 (6)
H120.39980.63610.49430.084*
C130.2604 (3)0.7499 (2)0.4267 (2)0.0862 (8)
H130.32210.83220.44860.103*
C140.1256 (3)0.7471 (2)0.3680 (3)0.0917 (9)
H140.09530.82740.35070.110*
C150.0312 (2)0.62413 (19)0.3332 (2)0.0744 (7)
H150.06100.62280.29230.089*
C160.0758 (2)0.50551 (16)0.35981 (15)0.0513 (4)
C170.01337 (17)0.36729 (14)0.32385 (14)0.0421 (3)
H17A0.08530.37180.26070.051*
H17B0.06990.33440.38580.051*
C180.02149 (16)0.12015 (14)0.25787 (12)0.0367 (3)
C190.14732 (17)0.08374 (14)0.26735 (12)0.0383 (3)
C200.2008 (2)0.00358 (17)0.34999 (15)0.0493 (4)
H200.13160.02380.40080.059*
C210.3542 (2)0.0364 (2)0.35854 (19)0.0636 (5)
H210.38760.09090.41420.076*
C220.4578 (2)0.0044 (2)0.2848 (2)0.0648 (5)
H220.56150.02130.29090.078*
C230.4073 (2)0.08315 (19)0.20232 (18)0.0577 (4)
H230.47720.11060.15220.069*
C240.25367 (19)0.12229 (17)0.19277 (14)0.0484 (4)
H240.22120.17500.13580.058*
C250.07155 (18)0.08433 (17)0.14028 (14)0.0472 (4)
H25A0.09000.00810.13170.057*
H25B0.00510.09570.08250.057*
C260.2647 (2)0.1770 (2)0.01946 (15)0.0658 (5)
H26A0.28590.08890.00450.099*
H26B0.35580.24190.02010.099*
H26C0.18810.19960.03190.099*
N10.21084 (14)0.17778 (14)0.13261 (10)0.0428 (3)
N20.17482 (15)0.50215 (16)0.08736 (12)0.0505 (4)
O10.03426 (13)0.33760 (14)0.05740 (10)0.0572 (3)
O20.26613 (17)0.18314 (15)0.41917 (12)0.0730 (4)
O30.26132 (16)0.39709 (13)0.45070 (9)0.0581 (3)
H180.073 (2)0.0690 (19)0.3078 (16)0.053 (5)*
H20.141 (3)0.561 (3)0.043 (2)0.082 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0289 (6)0.0406 (7)0.0290 (5)0.0065 (5)0.0015 (4)0.0062 (5)
C20.0331 (7)0.0558 (9)0.0372 (6)0.0032 (6)0.0030 (5)0.0192 (6)
C30.0322 (7)0.0527 (9)0.0410 (7)0.0021 (6)0.0025 (5)0.0139 (6)
C40.0464 (9)0.0589 (11)0.0683 (11)0.0048 (8)0.0023 (8)0.0254 (9)
C50.0396 (9)0.0687 (12)0.0760 (12)0.0117 (8)0.0004 (8)0.0120 (10)
C60.0315 (7)0.0757 (13)0.0653 (10)0.0010 (8)0.0071 (7)0.0068 (9)
C70.0328 (7)0.0540 (9)0.0485 (8)0.0081 (6)0.0040 (6)0.0053 (7)
C80.0283 (6)0.0447 (7)0.0324 (5)0.0056 (5)0.0012 (4)0.0047 (5)
C90.0321 (6)0.0341 (6)0.0294 (5)0.0060 (5)0.0000 (4)0.0064 (4)
C100.0500 (9)0.0525 (9)0.0335 (6)0.0004 (7)0.0050 (6)0.0097 (6)
C110.0573 (10)0.0521 (9)0.0420 (7)0.0065 (8)0.0170 (7)0.0106 (7)
C120.0730 (13)0.0658 (13)0.0579 (10)0.0195 (10)0.0225 (9)0.0181 (9)
C130.0796 (16)0.0548 (12)0.1143 (19)0.0182 (11)0.0515 (15)0.0220 (12)
C140.0894 (18)0.0363 (10)0.153 (3)0.0090 (10)0.0573 (18)0.0030 (12)
C150.0570 (11)0.0395 (9)0.130 (2)0.0092 (8)0.0375 (12)0.0069 (11)
C160.0527 (9)0.0362 (8)0.0659 (10)0.0049 (7)0.0294 (8)0.0011 (7)
C170.0398 (7)0.0343 (7)0.0533 (8)0.0055 (6)0.0146 (6)0.0039 (6)
C180.0383 (7)0.0314 (6)0.0409 (6)0.0068 (5)0.0008 (5)0.0068 (5)
C190.0410 (7)0.0289 (6)0.0438 (7)0.0033 (5)0.0020 (5)0.0024 (5)
C200.0507 (9)0.0420 (8)0.0550 (9)0.0032 (7)0.0026 (7)0.0129 (7)
C210.0551 (11)0.0607 (11)0.0745 (12)0.0034 (9)0.0131 (9)0.0216 (9)
C220.0429 (9)0.0596 (11)0.0901 (14)0.0007 (8)0.0113 (9)0.0090 (10)
C230.0426 (9)0.0532 (10)0.0763 (12)0.0074 (7)0.0062 (8)0.0083 (9)
C240.0447 (8)0.0454 (8)0.0547 (8)0.0045 (7)0.0024 (7)0.0121 (7)
C250.0454 (8)0.0435 (8)0.0495 (8)0.0046 (6)0.0030 (6)0.0083 (6)
C260.0545 (10)0.0891 (15)0.0478 (9)0.0027 (10)0.0143 (8)0.0172 (9)
N10.0386 (6)0.0483 (7)0.0398 (6)0.0072 (5)0.0044 (5)0.0064 (5)
N20.0375 (7)0.0602 (8)0.0551 (7)0.0006 (6)0.0069 (5)0.0322 (7)
O10.0380 (6)0.0728 (8)0.0591 (7)0.0045 (5)0.0165 (5)0.0340 (6)
O20.0793 (10)0.0703 (9)0.0686 (8)0.0103 (7)0.0305 (7)0.0277 (7)
O30.0700 (8)0.0631 (8)0.0334 (5)0.0065 (6)0.0066 (5)0.0011 (5)
Geometric parameters (Å, º) top
C1—N11.4576 (19)C14—C151.403 (3)
C1—C81.5081 (19)C14—H140.9300
C1—C21.5538 (18)C15—C161.376 (3)
C1—C91.5780 (17)C15—H150.9300
C2—O11.2269 (17)C16—C171.508 (2)
C2—N21.342 (2)C17—H17A0.9700
C3—C41.374 (2)C17—H17B0.9700
C3—C81.384 (2)C18—C191.507 (2)
C3—N21.4004 (18)C18—C251.524 (2)
C4—C51.385 (3)C18—H180.963 (19)
C4—H40.9300C19—C201.386 (2)
C5—C61.373 (3)C19—C241.387 (2)
C5—H50.9300C20—C211.378 (3)
C6—C71.387 (2)C20—H200.9300
C6—H60.9300C21—C221.374 (3)
C7—C81.3791 (18)C21—H210.9300
C7—H70.9300C22—C231.369 (3)
C9—C171.5329 (19)C22—H220.9300
C9—C101.5355 (18)C23—C241.381 (2)
C9—C181.5703 (19)C23—H230.9300
C10—O21.190 (2)C24—H240.9300
C10—O31.352 (2)C25—N11.451 (2)
C11—C161.374 (3)C25—H25A0.9700
C11—O31.376 (2)C25—H25B0.9700
C11—C121.386 (3)C26—N11.455 (2)
C12—C131.361 (4)C26—H26A0.9600
C12—H120.9300C26—H26B0.9600
C13—C141.352 (4)C26—H26C0.9600
C13—H130.9300N2—H20.90 (2)
N1—C1—C8112.08 (11)C11—C16—C17117.49 (15)
N1—C1—C2112.81 (11)C15—C16—C17124.38 (19)
C8—C1—C2100.71 (11)C16—C17—C9109.17 (12)
N1—C1—C9102.40 (10)C16—C17—H17A109.8
C8—C1—C9118.45 (10)C9—C17—H17A109.8
C2—C1—C9110.83 (10)C16—C17—H17B109.8
O1—C2—N2125.61 (13)C9—C17—H17B109.8
O1—C2—C1125.71 (13)H17A—C17—H17B108.3
N2—C2—C1108.65 (11)C19—C18—C25113.59 (12)
C4—C3—C8122.53 (14)C19—C18—C9117.93 (11)
C4—C3—N2128.00 (15)C25—C18—C9104.50 (11)
C8—C3—N2109.47 (13)C19—C18—H18108.4 (11)
C3—C4—C5117.08 (17)C25—C18—H18105.9 (11)
C3—C4—H4121.5C9—C18—H18105.6 (11)
C5—C4—H4121.5C20—C19—C24117.72 (15)
C6—C5—C4121.37 (17)C20—C19—C18119.68 (13)
C6—C5—H5119.3C24—C19—C18122.54 (13)
C4—C5—H5119.3C21—C20—C19121.44 (16)
C5—C6—C7120.81 (16)C21—C20—H20119.3
C5—C6—H6119.6C19—C20—H20119.3
C7—C6—H6119.6C22—C21—C20119.96 (17)
C8—C7—C6118.55 (15)C22—C21—H21120.0
C8—C7—H7120.7C20—C21—H21120.0
C6—C7—H7120.7C23—C22—C21119.50 (17)
C7—C8—C3119.56 (13)C23—C22—H22120.2
C7—C8—C1130.97 (13)C21—C22—H22120.2
C3—C8—C1109.44 (11)C22—C23—C24120.71 (17)
C17—C9—C10106.84 (12)C22—C23—H23119.6
C17—C9—C18115.14 (11)C24—C23—H23119.6
C10—C9—C18108.11 (11)C23—C24—C19120.66 (16)
C17—C9—C1114.41 (10)C23—C24—H24119.7
C10—C9—C1107.83 (11)C19—C24—H24119.7
C18—C9—C1104.19 (10)N1—C25—C18104.63 (12)
O2—C10—O3116.72 (14)N1—C25—H25A110.8
O2—C10—C9125.09 (15)C18—C25—H25A110.8
O3—C10—C9118.19 (14)N1—C25—H25B110.8
C16—C11—O3120.30 (15)C18—C25—H25B110.8
C16—C11—C12122.4 (2)H25A—C25—H25B108.9
O3—C11—C12117.26 (19)N1—C26—H26A109.5
C13—C12—C11118.4 (2)N1—C26—H26B109.5
C13—C12—H12120.8H26A—C26—H26B109.5
C11—C12—H12120.8N1—C26—H26C109.5
C14—C13—C12121.0 (2)H26A—C26—H26C109.5
C14—C13—H13119.5H26B—C26—H26C109.5
C12—C13—H13119.5C25—N1—C26113.77 (13)
C13—C14—C15120.6 (2)C25—N1—C1107.07 (11)
C13—C14—H14119.7C26—N1—C1115.04 (14)
C15—C14—H14119.7C2—N2—C3111.66 (12)
C16—C15—C14119.6 (2)C2—N2—H2123.0 (16)
C16—C15—H15120.2C3—N2—H2125.4 (16)
C14—C15—H15120.2C10—O3—C11121.15 (13)
C11—C16—C15118.10 (18)
N1—C1—C2—O155.8 (2)O3—C11—C16—C173.1 (2)
C8—C1—C2—O1175.48 (16)C12—C11—C16—C17177.50 (15)
C9—C1—C2—O158.3 (2)C14—C15—C16—C110.0 (3)
N1—C1—C2—N2122.10 (15)C14—C15—C16—C17177.93 (19)
C8—C1—C2—N22.45 (16)C11—C16—C17—C938.46 (19)
C9—C1—C2—N2123.75 (14)C15—C16—C17—C9139.47 (17)
C8—C3—C4—C50.8 (3)C10—C9—C17—C1655.64 (15)
N2—C3—C4—C5178.43 (18)C18—C9—C17—C16175.70 (12)
C3—C4—C5—C61.5 (3)C1—C9—C17—C1663.61 (16)
C4—C5—C6—C71.4 (3)C17—C9—C18—C191.43 (17)
C5—C6—C7—C81.2 (3)C10—C9—C18—C19117.93 (13)
C6—C7—C8—C33.4 (2)C1—C9—C18—C19127.55 (12)
C6—C7—C8—C1178.90 (15)C17—C9—C18—C25125.80 (13)
C4—C3—C8—C73.3 (2)C10—C9—C18—C25114.84 (13)
N2—C3—C8—C7176.04 (14)C1—C9—C18—C250.32 (13)
C4—C3—C8—C1178.51 (16)C25—C18—C19—C20125.64 (16)
N2—C3—C8—C12.10 (17)C9—C18—C19—C20111.63 (15)
N1—C1—C8—C755.00 (19)C25—C18—C19—C2451.34 (19)
C2—C1—C8—C7175.16 (15)C9—C18—C19—C2471.39 (18)
C9—C1—C8—C763.9 (2)C24—C19—C20—C210.2 (3)
N1—C1—C8—C3122.86 (13)C18—C19—C20—C21177.37 (16)
C2—C1—C8—C32.69 (14)C19—C20—C21—C220.6 (3)
C9—C1—C8—C3118.24 (13)C20—C21—C22—C230.9 (3)
N1—C1—C9—C17149.91 (11)C21—C22—C23—C240.2 (3)
C8—C1—C9—C1786.25 (14)C22—C23—C24—C190.7 (3)
C2—C1—C9—C1729.36 (16)C20—C19—C24—C230.9 (2)
N1—C1—C9—C1091.39 (12)C18—C19—C24—C23177.93 (15)
C8—C1—C9—C1032.45 (16)C19—C18—C25—N1154.07 (12)
C2—C1—C9—C10148.06 (12)C9—C18—C25—N124.21 (15)
N1—C1—C9—C1823.33 (12)C18—C25—N1—C26169.91 (15)
C8—C1—C9—C18147.17 (12)C18—C25—N1—C141.67 (15)
C2—C1—C9—C1897.22 (12)C8—C1—N1—C25168.45 (11)
C17—C9—C10—O2142.82 (18)C2—C1—N1—C2578.71 (14)
C18—C9—C10—O218.3 (2)C9—C1—N1—C2540.46 (13)
C1—C9—C10—O293.76 (19)C8—C1—N1—C2664.05 (15)
C17—C9—C10—O337.78 (17)C2—C1—N1—C2648.79 (17)
C18—C9—C10—O3162.25 (13)C9—C1—N1—C26167.96 (12)
C1—C9—C10—O385.65 (16)O1—C2—N2—C3176.54 (17)
C16—C11—C12—C130.6 (3)C1—C2—N2—C31.40 (19)
O3—C11—C12—C13178.83 (17)C4—C3—N2—C2179.75 (18)
C11—C12—C13—C140.0 (3)C8—C3—N2—C20.4 (2)
C12—C13—C14—C150.5 (4)O2—C10—O3—C11176.59 (16)
C13—C14—C15—C160.6 (4)C9—C10—O3—C112.9 (2)
O3—C11—C16—C15178.85 (16)C16—C11—O3—C1026.0 (2)
C12—C11—C16—C150.6 (3)C12—C11—O3—C10154.60 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.90 (2)1.94 (2)2.8362 (16)169 (2)
C21—H21···O2ii0.932.533.261 (3)136 (0)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC26H22N2O3
Mr410.46
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.9280 (4), 10.0923 (4), 11.9044 (5)
α, β, γ (°)95.027 (1), 93.172 (1), 98.991 (2)
V3)1052.78 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruke Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.979, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
28847, 7433, 4947
Rint0.028
(sin θ/λ)max1)0.751
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.190, 1.05
No. of reflections7433
No. of parameters289
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.40

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.90 (2)1.94 (2)2.8362 (16)169 (2)
C21—H21···O2ii0.9302.5263.261 (3)136 (0)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1.
 

Acknowledgements

AS thanks the UGC, India, for financial support.

References

First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGangadharan, R., SethuSankar, K., Bakthadoss, M., Sivakumar, N. & Velmurugan, D. (2010). Acta Cryst. E66, o2935.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds