metal-organic compounds
μ3-Chlorido-tris(bis{1-[2-(dimethylamino)ethyl]-3-methylimidazol-2-ylidene}silver(I)) dichloride
aJohannes Kepler Universität Linz, Institut für Anorganische Chemie, Altenbergerstrasse 69, A-4040 Linz, Austria
*Correspondence e-mail: uwe.monkowius@jku.at
In the 3Cl(C8H15N3)6]Cl2, the AgI ion, which is located on a twofold rotation axis, exists in a T-shape coordination environment. Two carbene C atoms of the N-heterocyclic carbene (NHC) ligands are bonded tightly forming a slightly bent [Ag(NHC)2]+ cation [C—Ag—C angle = 162.80 (18)°]. Three of these complex cations are further aggregated by one bridging chloride anion, which is lying on a threefold rotoinversion axis and is only loosely binding to the Ag+ ions. The N atom of the amine group is not engaged in any coordinative bond.
of the title compound, [AgRelated literature
For related literature concerning similar N-heterocyclic et al. (2011); Topf, Hirtenlehner & Monkowius (2011); Leitner et al. (2011). For related structures, see: Hirtenlehner et al. (2011); Wang et al. (2006). For details of the preparation, see: Topf, Hirtenlehner, Zabel et al. (2011).
see: Topf, Hirtenlehner, FleckExperimental
Crystal data
|
Data collection: APEX2 and GIS (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812004473/bt5811sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812004473/bt5811Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812004473/bt5811Isup3.cdx
Crystals of the title compound were formed in an attempt to synthesize the silver cluster (C8H15N3)4Ag10Cl10 according to a literature procedure (Topf, Hirtenlehner, Zabel et al., 2011).
The hydrogen atoms were placed in calculated positions with C—H = 0.95–0.99 Å and refined using a riding model with Uiso(H) = 1.5 Ueq(C) for methyl groups and Uiso(H) = 1.2 Ueq(C) for methylen and aromatic hydrogen atoms. The highest residual electron density peak is located 1.28 Å from H9A and the deepest hole is located 0.53 Å from C9.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).[Ag3Cl(C8H15N3)2]Cl2 | F(000) = 4176 |
Mr = 1349.34 | Dx = 1.434 Mg m−3 |
Trigonal, R3c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.7300 (16) Å | µ = 1.11 mm−1 |
c = 66.789 (12) Å | T = 200 K |
V = 9373 (2) Å3 | Prism, colourless |
Z = 6 | 0.50 × 0.36 × 0.31 mm |
Bruker SMART X2S diffractometer | 1859 independent reflections |
Radiation source: sealed MicroFocus tube | 1590 reflections with I > 2σ(I) |
Doubly curved silicon crystal monochromator | Rint = 0.060 |
ω scans | θmax = 25.1°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −15→14 |
Tmin = 0.61, Tmax = 0.73 | k = −15→15 |
18593 measured reflections | l = −79→79 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0504P)2 + 47.4314P] where P = (Fo2 + 2Fc2)/3 |
1859 reflections | (Δ/σ)max = 0.001 |
113 parameters | Δρmax = 1.28 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
[Ag3Cl(C8H15N3)2]Cl2 | Z = 6 |
Mr = 1349.34 | Mo Kα radiation |
Trigonal, R3c | µ = 1.11 mm−1 |
a = 12.7300 (16) Å | T = 200 K |
c = 66.789 (12) Å | 0.50 × 0.36 × 0.31 mm |
V = 9373 (2) Å3 |
Bruker SMART X2S diffractometer | 1859 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 1590 reflections with I > 2σ(I) |
Tmin = 0.61, Tmax = 0.73 | Rint = 0.060 |
18593 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0504P)2 + 47.4314P] where P = (Fo2 + 2Fc2)/3 |
1859 reflections | Δρmax = 1.28 e Å−3 |
113 parameters | Δρmin = −0.46 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.90085 (3) | 0.3333 | 0.0833 | 0.03038 (16) | |
C6 | 1.1504 (3) | 0.5164 (4) | 0.05466 (6) | 0.0422 (9) | |
H6A | 1.1374 | 0.5764 | 0.0617 | 0.063* | |
H6B | 1.2184 | 0.558 | 0.0453 | 0.063* | |
H6C | 1.1689 | 0.4703 | 0.0644 | 0.063* | |
C1 | 0.9354 (3) | 0.3530 (3) | 0.05243 (5) | 0.0257 (7) | |
N2 | 0.8610 (3) | 0.2965 (3) | 0.03679 (4) | 0.0284 (6) | |
C5 | 0.7252 (4) | 0.0798 (4) | 0.03044 (7) | 0.0543 (11) | |
H5A | 0.6394 | 0.0146 | 0.0315 | 0.065* | |
H5B | 0.7471 | 0.0909 | 0.0161 | 0.065* | |
N1 | 1.0411 (2) | 0.4340 (2) | 0.04359 (4) | 0.0271 (6) | |
C4 | 0.7366 (3) | 0.1961 (4) | 0.03843 (6) | 0.0388 (9) | |
H4A | 0.682 | 0.2158 | 0.0308 | 0.047* | |
H4B | 0.7112 | 0.1848 | 0.0526 | 0.047* | |
C3 | 0.9192 (3) | 0.3417 (3) | 0.01870 (6) | 0.0358 (9) | |
H3 | 0.8853 | 0.3163 | 0.0057 | 0.043* | |
C2 | 1.0327 (3) | 0.4284 (3) | 0.02306 (5) | 0.0341 (8) | |
H2 | 1.095 | 0.4766 | 0.0138 | 0.041* | |
N3 | 0.8016 (3) | 0.0410 (3) | 0.04089 (6) | 0.0475 (9) | |
C8 | 0.7953 (7) | −0.0580 (6) | 0.02927 (11) | 0.101 (2) | |
H8A | 0.842 | −0.0898 | 0.036 | 0.151* | |
H8B | 0.829 | −0.0286 | 0.0159 | 0.151* | |
H8C | 0.7104 | −0.1226 | 0.028 | 0.151* | |
C9 | 0.7645 (7) | 0.0065 (6) | 0.06074 (11) | 0.114 (3) | |
H9A | 0.772 | 0.0761 | 0.0682 | 0.172* | |
H9B | 0.8157 | −0.0217 | 0.067 | 0.172* | |
H9C | 0.6797 | −0.0591 | 0.0609 | 0.172* | |
Cl1 | 0.6667 | 0.3333 | 0.0833 | 0.0307 (4) | |
Cl2 | 0.3333 | 0.6667 | 0.00857 (2) | 0.0344 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0353 (2) | 0.0290 (2) | 0.0247 (2) | 0.01451 (11) | 0.00056 (7) | 0.00112 (14) |
C6 | 0.032 (2) | 0.035 (2) | 0.048 (2) | 0.0078 (17) | −0.0022 (17) | −0.0035 (17) |
C1 | 0.0288 (17) | 0.0288 (17) | 0.0267 (18) | 0.0197 (15) | −0.0005 (14) | 0.0007 (13) |
N2 | 0.0256 (14) | 0.0345 (16) | 0.0289 (16) | 0.0180 (13) | 0.0007 (12) | −0.0018 (12) |
C5 | 0.040 (2) | 0.053 (3) | 0.057 (3) | 0.013 (2) | −0.003 (2) | −0.005 (2) |
N1 | 0.0246 (14) | 0.0259 (14) | 0.0314 (15) | 0.0131 (12) | 0.0013 (11) | 0.0016 (12) |
C4 | 0.0238 (18) | 0.046 (2) | 0.044 (2) | 0.0161 (17) | −0.0016 (15) | −0.0062 (18) |
C3 | 0.040 (2) | 0.048 (2) | 0.0245 (19) | 0.0255 (18) | 0.0000 (15) | 0.0000 (15) |
C2 | 0.039 (2) | 0.039 (2) | 0.0290 (19) | 0.0233 (17) | 0.0095 (15) | 0.0072 (15) |
N3 | 0.0411 (19) | 0.0327 (18) | 0.061 (2) | 0.0126 (15) | −0.0096 (17) | −0.0030 (16) |
C8 | 0.108 (5) | 0.066 (4) | 0.121 (6) | 0.039 (4) | 0.011 (4) | −0.010 (4) |
C9 | 0.132 (7) | 0.081 (5) | 0.069 (4) | 0.007 (4) | −0.034 (4) | 0.012 (3) |
Cl1 | 0.0299 (6) | 0.0299 (6) | 0.0323 (10) | 0.0150 (3) | 0 | 0 |
Cl2 | 0.0356 (5) | 0.0356 (5) | 0.0319 (7) | 0.0178 (3) | 0 | 0 |
Ag1—C1i | 2.099 (3) | N1—C2 | 1.374 (5) |
Ag1—C1 | 2.099 (3) | C4—H4A | 0.99 |
C6—N1 | 1.458 (5) | C4—H4B | 0.99 |
C6—H6A | 0.98 | C3—C2 | 1.340 (5) |
C6—H6B | 0.98 | C3—H3 | 0.95 |
C6—H6C | 0.98 | C2—H2 | 0.95 |
C1—N2 | 1.350 (5) | N3—C9 | 1.402 (8) |
C1—N1 | 1.355 (4) | N3—C8 | 1.447 (7) |
N2—C3 | 1.383 (5) | C8—H8A | 0.98 |
N2—C4 | 1.459 (5) | C8—H8B | 0.98 |
C5—N3 | 1.469 (6) | C8—H8C | 0.98 |
C5—C4 | 1.511 (6) | C9—H9A | 0.98 |
C5—H5A | 0.99 | C9—H9B | 0.98 |
C5—H5B | 0.99 | C9—H9C | 0.98 |
C1i—Ag1—C1 | 162.80 (18) | N2—C4—H4B | 109.4 |
N1—C6—H6A | 109.5 | C5—C4—H4B | 109.4 |
N1—C6—H6B | 109.5 | H4A—C4—H4B | 108.0 |
H6A—C6—H6B | 109.5 | C2—C3—N2 | 106.6 (3) |
N1—C6—H6C | 109.5 | C2—C3—H3 | 126.7 |
H6A—C6—H6C | 109.5 | N2—C3—H3 | 126.7 |
H6B—C6—H6C | 109.5 | C3—C2—N1 | 106.5 (3) |
N2—C1—N1 | 103.5 (3) | C3—C2—H2 | 126.8 |
N2—C1—Ag1 | 130.4 (3) | N1—C2—H2 | 126.8 |
N1—C1—Ag1 | 126.0 (2) | C9—N3—C8 | 111.8 (5) |
C1—N2—C3 | 111.5 (3) | C9—N3—C5 | 112.2 (5) |
C1—N2—C4 | 125.0 (3) | C8—N3—C5 | 106.3 (4) |
C3—N2—C4 | 123.4 (3) | N3—C8—H8A | 109.5 |
N3—C5—C4 | 114.0 (3) | N3—C8—H8B | 109.5 |
N3—C5—H5A | 108.8 | H8A—C8—H8B | 109.5 |
C4—C5—H5A | 108.8 | N3—C8—H8C | 109.5 |
N3—C5—H5B | 108.8 | H8A—C8—H8C | 109.5 |
C4—C5—H5B | 108.8 | H8B—C8—H8C | 109.5 |
H5A—C5—H5B | 107.7 | N3—C9—H9A | 109.5 |
C1—N1—C2 | 111.9 (3) | N3—C9—H9B | 109.5 |
C1—N1—C6 | 123.7 (3) | H9A—C9—H9B | 109.5 |
C2—N1—C6 | 124.4 (3) | N3—C9—H9C | 109.5 |
N2—C4—C5 | 111.3 (3) | H9A—C9—H9C | 109.5 |
N2—C4—H4A | 109.4 | H9B—C9—H9C | 109.5 |
C5—C4—H4A | 109.4 |
Symmetry code: (i) x−y+1/3, −y+2/3, −z+1/6. |
Experimental details
Crystal data | |
Chemical formula | [Ag3Cl(C8H15N3)2]Cl2 |
Mr | 1349.34 |
Crystal system, space group | Trigonal, R3c |
Temperature (K) | 200 |
a, c (Å) | 12.7300 (16), 66.789 (12) |
V (Å3) | 9373 (2) |
Z | 6 |
Radiation type | Mo Kα |
µ (mm−1) | 1.11 |
Crystal size (mm) | 0.50 × 0.36 × 0.31 |
Data collection | |
Diffractometer | Bruker SMART X2S diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.61, 0.73 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18593, 1859, 1590 |
Rint | 0.060 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.095, 1.03 |
No. of reflections | 1859 |
No. of parameters | 113 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0504P)2 + 47.4314P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.28, −0.46 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).
Acknowledgements
We thank Professor Günther Knör for fruitful discussion and generous support of the experimental work.
References
Bruker (2009). APEX2, GIS, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hirtenlehner, C., Krims, C., Hölbling, J., List, M., Zabel, M., Fleck, M., Berger, R. J. F., Schoefberger, W. & Monkowius, U. (2011). Dalton Trans. 40, 9899–9910. Web of Science CSD CrossRef CAS PubMed Google Scholar
Leitner, S., List, M. & Monkowius, U. (2011). Z. Naturforsch. Teil B, 66, 1255–1260. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Topf, C., Hirtenlehner, C., Fleck, M., List, M. & Monkowius, U. (2011). Z. Anorg. Allg. Chem. 637, 2129–2134. Web of Science CSD CrossRef CAS Google Scholar
Topf, C., Hirtenlehner, C. & Monkowius, U. (2011). J. Organomet. Chem. 696, 3274–3278. Web of Science CSD CrossRef CAS Google Scholar
Topf, C., Hirtenlehner, C., Zabel, M., List, M., Fleck, M. & Monkowius, U. (2011). Organometallics, pp. 2755–2764. Web of Science CSD CrossRef CAS Google Scholar
Wang, X., Liu, S., Wenig, L.-H. & Jin, G.-X. (2006). Organometallics, 25, 3565–3569. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our studies on gold- and silver-complexes bearing functionalized N-heterocyclic carbenes (NHCs), we became interested in examples with amino groups containing side arms at a nitrogen atom of the NHC ligands (Topf, Hirtenlehner, Fleck et al. (2011); Topf, Hirtenlehner & Monkowius (2011); Leitner et al., 2011; Hirtenlehner et al., 2011). Just recently, we published the multifarious coordination patterns of such silver complexes (Topf, Hirtenlehner, Zabel et al., 2011): E.g., in the ionic compound [(C8H15N3)2Ag][AgCl2], which is formed from the respective imidazolium chloride and Ag2O in dichloromethane, the ions are aggregated to infinite chains with short silver-silver contacts. Treatment of this complex with HBF4 yields the cluster (C8H15N3)4Ag10Cl10 with the carbene carbon atom binding in a unusual µ2-fashion to two silver atoms. In an attempt to prepare this cluster, crystals of the title compound were formed representing the third silver chloride complex in the series of this ligand. The formation of this complex is easily rationalized by the precipitation of AgCl from [(C8H15N3)2Ag][AgCl2] in solution.
The silver atom is in a slightly bent linear coordination with an Ag1—C1 bond length of 2.099 (3) Å and an angle C1—Ag1—C1i of 162.8 (2)°. Perpendicular to the C1—Ag1—C1i vector, a chloride anion is loosely binding with an Ag1—Cl1 bond length of 2.981 (1) Å. The chloride Cl1 is linking three [(C8H15N3)2Ag]+ units in a µ3-fashion forming a D3 symmteric trimeric aggregate. The net 2+ charge is balanced by two non-interacting chloride ions. Within other cationic species of the type [(NHC)2Ag]+, the imidazole ring planes are usually found in a coplanar arrangement due to a higher π-backbonding contribution compared to a perpendicular orientation. Presumably because of steric reasons, the [(C8H15N3)2Ag]+ moiety features an arrangement with both imidazole ring planes approaching a perpendicular orientation [N1—C1—C1i—N1i 89.8°]. The distance between two silver atoms within the trimer is 5.164 Å, which is well beyond the range of argentophilic interactions. It should be noted, that this aggregation pattern is very rare and to the best of our knowledge reported only for {[(NHC)2Ag]3(µ3-I)}I2 (NHC = 1-methyl-3-picolyl-imidazol-2-ylidene) (Wang et al., 2006) and {[(NHC)2Au]3(µ3-Br)}Br2 (NHC= 1-methyl-3-benzyl-imidazol-2-ylidene) (Hirtenlehner et al., 2011).