organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o796-o797

2-[(E)-Phen­yl(2-phenyl­hydrazin-1-yl­­idene)meth­yl]phenol

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, bCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Avenida Brasil 4365, 21040-900, Rio de Janeiro, RJ, Brazil, cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 6 February 2012; accepted 7 February 2012; online 24 February 2012)

In the title hydrazone derivative, C19H16N2O, a twist is found between the hy­droxy­phenyl and N-bound phenyl rings [dihedral angle = 24.37 (7)°]. The C-bound phenyl ring is almost perpendicular to each of these planes [dihedral angles = 75.30 (7) and 86.00 (7)°, respectively]. The conformation about the imine bond [1.2935 (17) Å] is E. The hy­droxy group forms an intra­molecular hydrogen bond with the imine N atom. Zigzag chains along [001] mediated by N—H⋯O hydrogen bonds feature in the crystal packing.

Related literature

For background on the influence of substituents upon the supra­molecular structures of hydrazones, see: Glidewell et al. (2004[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o19-o23.]); Ferguson et al. (2005[Ferguson, G., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o613-o616.]); Wardell et al. (2007[Wardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. B63, 879-895.]); Baddeley, de Souza França et al. (2009[Baddeley, T. C., de Souza França, L., Howie, R. A., de Lima, G. M., Skakle, J. M. S., de Souza, J. D., Wardell, J. L. & Wardell, S. M. S. V. (2009). Z. Kristallogr. 224, 213-224.]); Baddeley, Howie et al. (2009[Baddeley, T. C., Howie, R. A., da Silva Lima, C. H., Kaiser, C. R., de Souza, M. V. N., Wardell, J. L. & Wardell, S. M. S. V. (2009). Z. Kristallogr. 224, 506-514.]); de Souza et al. (2010[Souza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Kaiser, C. R. (2010). Acta Cryst. E66, o698-o699.]); Howie, da Silva Lima et al. (2010[Howie, R. A., da Silva Lima, C. H., Kaiser, C. R., de Souza, M. V. N., Wardell, J. L. & Wardell, S. M. S. V. (2010). Z. Kristallogr. 225, 349-358.]); Howie, de Souza et al. (2010[Howie, R. A., de Souza, M. V. N., de Lima Ferreira, M., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2010). Z. Kristallogr. 225, 440-447.]); Nogueira et al. (2011[Nogueira, A., Vasconcelos, T. R. A., Wardell, J. L., Solange, M. S. V. & Wardell, S. M. S. V. (2011). Z. Kristallogr. 226, 846-861.]); Howie et al. (2011[Howie, R. A., de Souza, M. V. N., Pinheiro, A. C., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2011). Z. Kristallogr. 226, 483-491.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16N2O

  • Mr = 288.34

  • Monoclinic, P 21 /c

  • a = 9.6796 (3) Å

  • b = 15.3312 (5) Å

  • c = 10.3593 (2) Å

  • β = 108.149 (2)°

  • V = 1460.84 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 K

  • 0.49 × 0.38 × 0.18 mm

Data collection
  • Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.857, Tmax = 0.985

  • 16532 measured reflections

  • 3337 independent reflections

  • 2624 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.141

  • S = 1.06

  • 3337 reflections

  • 205 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.85 (1) 1.76 (1) 2.5678 (14) 157 (2)
N2—H2N⋯O1i 0.89 (2) 2.43 (2) 3.2517 (16) 155 (1)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

For some time, we have been interested in the influence of substituents upon the supramolecular structures of hydrazones, especially of those having potential biological activities. These include substituted phenylhydrazines with substituted benzaldehydes (Glidewell et al., 2004; Ferguson et al., 2005) and 2-hydroxyacetophenone (Baddeley, de Souza França et al., 2009). Hydrazones derived from substituted benzaldehydes and (pyrazinecarbonyl)hydrazine (Baddeley, Howie et al., 2009; Howie, da Silva Lima et al., 2010), 2-hydrazinyl-benzothiazole (Nogueira et al., 2011), 7-chloroquinoline-4-hydrazide (Howie, de Souza et al., 2010; de Souza et al., 2010) and 2-hydrazinylacyl-N-isonicotine (Wardell et al., 2007) have also been investigated along with L-serinyl derivatives, (S)-2-hydroxy-1-[N-(benzylidene)-hydrazinylcarbonyl]ethylcarbamate esters (Howie et al., 2011). In continuation of these studies, herein the crystal and molecular structure of (E)-2-hydroxybenzophenone phenylhydrazone (I) is described.

In (I), Fig. 1, the hydroxy-benzene and N-bound phenyl rings are twisted, forming a dihedral angle of 24.37 (7)°. These planes form dihedral angles of 75.30 (7) and 86.00 (7)°, respectively, with the C-bound phenyl ring indicating an almost perpendicular relationship. The hydroxy group forms an intramolecular hydrogen bond with the imine-N1 atom, Table 1. The configuration about the imine bond N1C7 [1.2935 (17) Å] is E.

The most prominent feature of the crystal packing is the formation of zigzag chains along [001] generated by glide symmetry and mediated by N—H···O hydrogen bonds, Fig. 2 and Table 1. Chains pack in the crystal structure with no specific intermolecular interactions between them, Fig. 3.

Related literature top

For background on the influence of substituents upon the supramolecular structures of hydrazones, see: Glidewell et al. (2004); Ferguson et al. (2005); Wardell et al. (2007); Baddeley, de Souza França et al. (2009); Baddeley, Howie et al. (2009); de Souza et al. (2010); Howie, da Silva Lima et al. (2010); Howie, de Souza et al. (2010); Nogueira et al. (2011); Howie et al. (2011).

Experimental top

A solution of phenylhydrazine and 2-hydroxybenzophenone (1 mmol each) in ethanol (20 ml) was refluxed for 1 h, rotary evaporated and the residue recrystallized from ethanol. IR (KBr, cm-1): ν 3302, 1600, 1557. Analysis found: C 78.78, H 5.81, N 9.47%; calculated for C19H16N2O: C 79.14, H 5.59, N 9.71%.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O- and N-bound H atoms were located from a difference map and refined with the distance restraints O—H = 0.84±0.01 and N—H = 0.88±0.01 Å, and with Uiso(H) = zUeq(carrier atom); z = 1.5 for O and z = 1.2 for N.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular zigzag chain in (I) sustained by N—H···O (orange dashed lines) hydrogen bonds.
[Figure 3] Fig. 3. A view in projection down the c axis of the packing of supramolecular chains in (I). The N—H···O hydrogen bonds are shown as orange dashed lines. One chain is highlighted in space-filling mode.
2-[(E)-Phenyl(2-phenylhydrazin-1-ylidene)methyl]phenol top
Crystal data top
C19H16N2OF(000) = 608
Mr = 288.34Dx = 1.311 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9588 reflections
a = 9.6796 (3) Åθ = 2.9–27.5°
b = 15.3312 (5) ŵ = 0.08 mm1
c = 10.3593 (2) ÅT = 120 K
β = 108.149 (2)°Slab, yellow
V = 1460.84 (7) Å30.49 × 0.38 × 0.18 mm
Z = 4
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
3337 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode2624 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.4°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1919
Tmin = 0.857, Tmax = 0.985l = 1313
16532 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0846P)2 + 0.1552P]
where P = (Fo2 + 2Fc2)/3
3337 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.31 e Å3
2 restraintsΔρmin = 0.40 e Å3
Crystal data top
C19H16N2OV = 1460.84 (7) Å3
Mr = 288.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6796 (3) ŵ = 0.08 mm1
b = 15.3312 (5) ÅT = 120 K
c = 10.3593 (2) Å0.49 × 0.38 × 0.18 mm
β = 108.149 (2)°
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
3337 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2624 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.985Rint = 0.044
16532 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0512 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.31 e Å3
3337 reflectionsΔρmin = 0.40 e Å3
205 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.55543 (11)0.62061 (7)0.67432 (9)0.0305 (3)
H1O0.5167 (19)0.6457 (11)0.5981 (12)0.046*
N10.49781 (12)0.67646 (7)0.42953 (11)0.0245 (3)
N20.42408 (13)0.73657 (8)0.33672 (11)0.0279 (3)
H2N0.4722 (16)0.7602 (10)0.2854 (14)0.033*
C10.68370 (14)0.57283 (9)0.51935 (12)0.0219 (3)
C20.65661 (15)0.56890 (9)0.64615 (13)0.0245 (3)
C30.73482 (15)0.51112 (9)0.74555 (13)0.0275 (3)
H30.71820.50980.83120.033*
C40.83577 (16)0.45602 (9)0.72145 (14)0.0294 (3)
H40.88720.41630.79000.035*
C50.86344 (16)0.45784 (9)0.59745 (14)0.0268 (3)
H50.93330.41960.58080.032*
C60.78782 (15)0.51608 (9)0.49900 (13)0.0245 (3)
H60.80730.51760.41460.029*
C70.60591 (14)0.63406 (8)0.41159 (12)0.0225 (3)
C80.65557 (15)0.64475 (9)0.28938 (13)0.0233 (3)
C90.57166 (16)0.61134 (10)0.16460 (13)0.0295 (3)
H90.48050.58480.15590.035*
C100.62186 (17)0.61703 (10)0.05272 (14)0.0332 (4)
H100.56590.59290.03190.040*
C110.75214 (18)0.65735 (10)0.06393 (14)0.0342 (4)
H110.78580.66080.01280.041*
C120.83445 (17)0.69288 (10)0.18688 (15)0.0331 (4)
H120.92300.72210.19390.040*
C130.78680 (16)0.68548 (9)0.29963 (14)0.0286 (3)
H130.84440.70840.38450.034*
C140.31426 (15)0.78382 (9)0.36540 (12)0.0246 (3)
C150.26578 (17)0.86137 (10)0.29652 (14)0.0335 (4)
H150.30840.88200.23120.040*
C160.15586 (17)0.90856 (11)0.32279 (15)0.0362 (4)
H160.12320.96130.27490.043*
C170.09268 (16)0.87973 (10)0.41823 (14)0.0319 (4)
H170.01730.91240.43620.038*
C180.14125 (15)0.80271 (10)0.48685 (14)0.0282 (3)
H180.09900.78270.55280.034*
C190.25048 (15)0.75439 (9)0.46098 (13)0.0253 (3)
H190.28200.70130.50820.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0325 (6)0.0394 (6)0.0258 (5)0.0046 (4)0.0178 (4)0.0006 (4)
N10.0247 (6)0.0277 (6)0.0239 (5)0.0032 (5)0.0118 (5)0.0002 (4)
N20.0281 (7)0.0352 (7)0.0262 (6)0.0094 (5)0.0171 (5)0.0058 (5)
C10.0214 (7)0.0247 (7)0.0218 (6)0.0030 (5)0.0098 (5)0.0021 (5)
C20.0230 (7)0.0287 (7)0.0250 (6)0.0044 (5)0.0122 (5)0.0049 (5)
C30.0298 (8)0.0326 (8)0.0222 (6)0.0068 (6)0.0112 (5)0.0002 (6)
C40.0298 (8)0.0279 (7)0.0299 (7)0.0031 (6)0.0086 (6)0.0047 (6)
C50.0258 (7)0.0236 (7)0.0329 (7)0.0014 (5)0.0117 (6)0.0011 (6)
C60.0265 (7)0.0251 (7)0.0246 (6)0.0029 (5)0.0120 (5)0.0025 (5)
C70.0225 (7)0.0250 (7)0.0229 (6)0.0002 (5)0.0115 (5)0.0020 (5)
C80.0250 (7)0.0248 (7)0.0238 (6)0.0054 (5)0.0130 (5)0.0016 (5)
C90.0269 (8)0.0367 (8)0.0272 (7)0.0016 (6)0.0120 (6)0.0014 (6)
C100.0355 (9)0.0428 (9)0.0235 (7)0.0085 (7)0.0124 (6)0.0001 (6)
C110.0452 (9)0.0344 (8)0.0323 (7)0.0119 (7)0.0256 (7)0.0080 (6)
C120.0353 (9)0.0301 (8)0.0442 (8)0.0019 (6)0.0274 (7)0.0032 (6)
C130.0286 (8)0.0283 (7)0.0330 (7)0.0018 (6)0.0156 (6)0.0020 (6)
C140.0225 (7)0.0314 (7)0.0218 (6)0.0029 (6)0.0094 (5)0.0035 (5)
C150.0356 (9)0.0429 (9)0.0278 (7)0.0102 (7)0.0181 (6)0.0083 (6)
C160.0359 (9)0.0428 (9)0.0347 (8)0.0160 (7)0.0180 (7)0.0112 (7)
C170.0266 (8)0.0409 (9)0.0320 (7)0.0093 (6)0.0147 (6)0.0006 (6)
C180.0254 (8)0.0346 (8)0.0291 (7)0.0012 (6)0.0151 (6)0.0023 (6)
C190.0248 (7)0.0263 (7)0.0271 (7)0.0004 (5)0.0114 (6)0.0007 (5)
Geometric parameters (Å, º) top
O1—C21.3605 (17)C9—C101.3920 (19)
O1—H1O0.853 (9)C9—H90.9500
N1—C71.2935 (17)C10—C111.376 (2)
N1—N21.3621 (16)C10—H100.9500
N2—C141.3928 (17)C11—C121.386 (2)
N2—H2N0.886 (9)C11—H110.9500
C1—C61.3963 (19)C12—C131.3875 (19)
C1—C21.4186 (17)C12—H120.9500
C1—C71.4734 (18)C13—H130.9500
C2—C31.390 (2)C14—C151.391 (2)
C3—C41.372 (2)C14—C191.3950 (19)
C3—H30.9500C15—C161.382 (2)
C4—C51.3917 (19)C15—H150.9500
C4—H40.9500C16—C171.387 (2)
C5—C61.3812 (19)C16—H160.9500
C5—H50.9500C17—C181.383 (2)
C6—H60.9500C17—H170.9500
C7—C81.4966 (17)C18—C191.3838 (19)
C8—C131.390 (2)C18—H180.9500
C8—C91.3924 (19)C19—H190.9500
C2—O1—H1O101.7 (13)C8—C9—H9120.1
C7—N1—N2120.53 (11)C11—C10—C9120.41 (13)
N1—N2—C14117.92 (10)C11—C10—H10119.8
N1—N2—H2N116.2 (11)C9—C10—H10119.8
C14—N2—H2N119.7 (11)C10—C11—C12120.21 (13)
C6—C1—C2117.62 (12)C10—C11—H11119.9
C6—C1—C7120.35 (11)C12—C11—H11119.9
C2—C1—C7122.03 (12)C13—C12—C11119.65 (14)
O1—C2—C3118.34 (12)C13—C12—H12120.2
O1—C2—C1121.80 (12)C11—C12—H12120.2
C3—C2—C1119.86 (13)C12—C13—C8120.53 (13)
C4—C3—C2120.79 (12)C12—C13—H13119.7
C4—C3—H3119.6C8—C13—H13119.7
C2—C3—H3119.6C15—C14—N2119.55 (12)
C3—C4—C5120.54 (13)C15—C14—C19119.18 (12)
C3—C4—H4119.7N2—C14—C19121.27 (12)
C5—C4—H4119.7C16—C15—C14120.26 (13)
C6—C5—C4118.98 (13)C16—C15—H15119.9
C6—C5—H5120.5C14—C15—H15119.9
C4—C5—H5120.5C15—C16—C17120.74 (14)
C5—C6—C1122.19 (12)C15—C16—H16119.6
C5—C6—H6118.9C17—C16—H16119.6
C1—C6—H6118.9C18—C17—C16118.93 (13)
N1—C7—C1117.18 (11)C18—C17—H17120.5
N1—C7—C8123.63 (12)C16—C17—H17120.5
C1—C7—C8119.19 (11)C19—C18—C17121.03 (13)
C13—C8—C9119.42 (12)C19—C18—H18119.5
C13—C8—C7120.76 (12)C17—C18—H18119.5
C9—C8—C7119.79 (12)C18—C19—C14119.87 (13)
C10—C9—C8119.73 (14)C18—C19—H19120.1
C10—C9—H9120.1C14—C19—H19120.1
C7—N1—N2—C14176.29 (12)N1—C7—C8—C972.19 (18)
C6—C1—C2—O1178.88 (12)C1—C7—C8—C9108.42 (15)
C7—C1—C2—O11.1 (2)C13—C8—C9—C101.7 (2)
C6—C1—C2—C31.25 (19)C7—C8—C9—C10176.44 (13)
C7—C1—C2—C3178.79 (12)C8—C9—C10—C111.6 (2)
O1—C2—C3—C4178.47 (12)C9—C10—C11—C120.2 (2)
C1—C2—C3—C41.7 (2)C10—C11—C12—C131.8 (2)
C2—C3—C4—C51.0 (2)C11—C12—C13—C81.7 (2)
C3—C4—C5—C60.1 (2)C9—C8—C13—C120.1 (2)
C4—C5—C6—C10.5 (2)C7—C8—C13—C12178.04 (12)
C2—C1—C6—C50.2 (2)N1—N2—C14—C15161.37 (13)
C7—C1—C6—C5179.83 (12)N1—N2—C14—C1919.38 (19)
N2—N1—C7—C1177.56 (11)N2—C14—C15—C16179.33 (14)
N2—N1—C7—C81.8 (2)C19—C14—C15—C160.1 (2)
C6—C1—C7—N1171.04 (12)C14—C15—C16—C170.3 (2)
C2—C1—C7—N18.92 (19)C15—C16—C17—C180.1 (2)
C6—C1—C7—C89.52 (19)C16—C17—C18—C190.4 (2)
C2—C1—C7—C8170.52 (12)C17—C18—C19—C140.7 (2)
N1—C7—C8—C13109.69 (16)C15—C14—C19—C180.5 (2)
C1—C7—C8—C1369.71 (17)N2—C14—C19—C18179.78 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.85 (1)1.76 (1)2.5678 (14)157 (2)
N2—H2N···O1i0.89 (2)2.43 (2)3.2517 (16)155 (1)
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H16N2O
Mr288.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)9.6796 (3), 15.3312 (5), 10.3593 (2)
β (°) 108.149 (2)
V3)1460.84 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.49 × 0.38 × 0.18
Data collection
DiffractometerBruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.857, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
16532, 3337, 2624
Rint0.044
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.141, 1.06
No. of reflections3337
No. of parameters205
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.40

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.853 (13)1.763 (13)2.5678 (14)156.6 (18)
N2—H2N···O1i0.886 (15)2.427 (15)3.2517 (16)155.0 (13)
Symmetry code: (i) x, y+3/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationBaddeley, T. C., de Souza França, L., Howie, R. A., de Lima, G. M., Skakle, J. M. S., de Souza, J. D., Wardell, J. L. & Wardell, S. M. S. V. (2009). Z. Kristallogr. 224, 213–224.  Web of Science CSD CrossRef CAS Google Scholar
First citationBaddeley, T. C., Howie, R. A., da Silva Lima, C. H., Kaiser, C. R., de Souza, M. V. N., Wardell, J. L. & Wardell, S. M. S. V. (2009). Z. Kristallogr. 224, 506–514.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o613–o616.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o19–o23.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHowie, R. A., da Silva Lima, C. H., Kaiser, C. R., de Souza, M. V. N., Wardell, J. L. & Wardell, S. M. S. V. (2010). Z. Kristallogr. 225, 349–358.  Web of Science CSD CrossRef CAS Google Scholar
First citationHowie, R. A., de Souza, M. V. N., de Lima Ferreira, M., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2010). Z. Kristallogr. 225, 440–447.  Web of Science CSD CrossRef CAS Google Scholar
First citationHowie, R. A., de Souza, M. V. N., Pinheiro, A. C., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2011). Z. Kristallogr. 226, 483–491.  Web of Science CSD CrossRef CAS Google Scholar
First citationNogueira, A., Vasconcelos, T. R. A., Wardell, J. L., Solange, M. S. V. & Wardell, S. M. S. V. (2011). Z. Kristallogr. 226, 846–861.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Kaiser, C. R. (2010). Acta Cryst. E66, o698–o699.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. B63, 879–895.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o796-o797
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds