organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl (Z)-2-[(4-bromo-2-formyl­phen­­oxy)meth­yl]-3-(4-methyl­phen­yl)acrylate

aDepartment of Physics, Sri Balaji Chokkalingam Engineering College, Arni, Thiruvannamalai 632 317, India, bDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, and cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 12 February 2012; accepted 14 February 2012; online 17 February 2012)

In the title compound, C19H17BrO4, the dihedral angle between the two benzene rings is 82.9 (2)°. The mol­ecular structure is stabilized by an intra­molecular C—H⋯O hydrogen bond, which generates an S(7) ring motif. The crystal packing is stabilized by C—H⋯O hydrogen bonds, which generate two centrosymmetic ring systems with R22(18) and R22(14) graph-set motifs. The crystal packing is further stabilized by inter­molecular ππ inter­actions [centroid–centroid distance = 3.984 (2) Å].

Related literature

For background to the applications of acrylates, see: de Fraine & Martin (1991[Fraine, P. J. de & Martin, A. (1991). US Patent No. 5 055 471.]); Zhang & Ji (1992[Zhang, L. P. & Ji, Z. Z. (1992). Acta Pharmacol. Sin. 27, 817-823.]). For related structures, see: Wang et al. (2011[Wang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354.]); Vijayakumar et al. (2011[Vijayakumar, S., Madhanraj, R., Murugavel, S., Selvakumar, R. & Bakthadoss, M. (2011). Acta Cryst. E67, o2690.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17BrO4

  • Mr = 389.24

  • Triclinic, [P \overline 1]

  • a = 7.9262 (4) Å

  • b = 8.9078 (5) Å

  • c = 13.2331 (6) Å

  • α = 74.387 (3)°

  • β = 83.593 (2)°

  • γ = 75.770 (3)°

  • V = 871.20 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.38 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.546, Tmax = 0.652

  • 15446 measured reflections

  • 3386 independent reflections

  • 2419 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.121

  • S = 1.01

  • 3386 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O3 0.93 2.55 3.341 (3) 143
C4—H4⋯O2i 0.93 2.57 3.474 (4) 164
C18—H18⋯O1ii 0.93 2.49 3.388 (4) 161
C5—H5⋯O4iii 0.93 2.39 3.276 (4) 159
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y-1, -z+1; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Acrylate and its derivatives are important compounds because of their agrochemical and medical applications (de Fraine et al., 1991; Zhang & Ji, 1992). We report herein the crystal structure of the title compound, (I).

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The dihedral angle between the two benzene rings is 82.9 (2)°. The methyl acrylate (O1/O2/C7—C10) plane forms dihedral angles of 87.9 (1)° and 32.6 (1)° respectively, with the bromo formyl phenyl and methyl phenyl rings. The bromine atom deviates from the plane of the attached ring by -0.011 (1) Å. The geometric parameters of the title molecule agrees well with those reported for similar structures (Wang et al., 2011, Vijayakumar et al., 2011).

The molecular structure is stabilized by an intramolecular C14—H14···O3 hydrogen bond which generates an S(7) ring motif (Bernstein et al., 1995) (Table 1). The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds. The formation of the framework can be explained in terms of two-one substructures. In the first substructure C4—H4···O2 at (x, y, z and 1 - x, -y, -z) and C18—H18···O1 at (x, y, z and 1 - x, -1 - y, 1 - z) hydrogen bonding interactions form a cyclic centrosymmetric pattern, with the graph set motif R22(18) and R22(14), respectively. These combine to form zigzag chains which propagate along [001] (Fig. 2). In the second substructure, atom C5 in the molecule at (x, y, z) acts as a hydrogen bond donor to atom O4 in the molecule at (1 + x, y, z) generating C(6) chains which are running along [100] (Fig. 3). The crystal packing is further stabilized by an intermolecular ππ interactions with CgCgi separation of 3.984 (2) Å (Fig. 4; Cg is the centroid of the (C13–C18) benzene ring).

Related literature top

For background to the applications of acrylates, see: de Fraine et al. (1991); Zhang & Ji (1992). For related structures, see: Wang et al. (2011); Vijayakumar et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A solution of 5-bromo-2-hydroxybenzaldehyde (1.0 mmol, 0.201 g) and potassium carbonate (1.5 mmol, 0.207 g) in acetonitrile solvent (10 ml) was stirred for 15 minutes at room temperature. To this solution, (Z-methyl 2-(bromomethyl)-3-p-tolylacrylate (1.2 mmol, 0.324 g) was added dropwise till the addition is complete. After the completion of the reaction as indicated by TLC, acetonitrile was evaporated. Ethylacetate (15 ml) and water (15 ml) were added to the crude mass and extracted. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent led to the crude product, which was purified through pad of silica gel (100–200 mesh) using ethylacetate and hexanes (1:9) as solvents. The pure title compound was obtained as a colorless solid (0.350 g, 90% yield). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a ethylacetate solution at room temperature.

Refinement top

All the H atoms were positioned geometrically, with C–H = 0.93–0.97 Å and constrained to ride on their parent atom, with Uiso(H) =1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing C—H···O hydrogen bonds generating R22(18)(Red dotted lines) and R22(14) (blue dotted lines) centrosymmetric dimers, forming zigzag chains along [001]. [Symmetry codes:(i)1 - x, -y, -z; (ii)1 - x, -1 - y, 1 - z; (iii)x, -1 + y, 1 + z; (iv)1 - x, -2 - y, 2 - z].
[Figure 3] Fig. 3. Part of the crystal structure of (I) showing C—H···O hydrogen bonds (blue dotted lines), with the formation of C(6) chains along [100]. [Symmetry codes: (i)1 + x, y, z; (ii)2 + x, y, z; (iii) 3 + x, y, z].
[Figure 4] Fig. 4. A view of the ππ interaction (dotted line) in the crystal structure of the title compound. Cg denotes centroid of the C13–C18 benzene ring. [Symmetry code: (i)-x, -y, 1 - z].
Methyl (Z)-2-[(4-bromo-2-formylphenoxy)methyl]- 3-(4-methylphenyl)acrylate top
Crystal data top
C19H17BrO4Z = 2
Mr = 389.24F(000) = 396
Triclinic, P1Dx = 1.484 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9262 (4) ÅCell parameters from 3452 reflections
b = 8.9078 (5) Åθ = 1.6–26.1°
c = 13.2331 (6) ŵ = 2.38 mm1
α = 74.387 (3)°T = 293 K
β = 83.593 (2)°Block, colourless
γ = 75.770 (3)°0.25 × 0.23 × 0.18 mm
V = 871.20 (8) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3386 independent reflections
Radiation source: fine-focus sealed tube2419 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 10.0 pixels mm-1θmax = 26.1°, θmin = 2.4°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1010
Tmin = 0.546, Tmax = 0.652l = 1616
15446 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0704P)2 + 0.2283P]
where P = (Fo2 + 2Fc2)/3
3386 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C19H17BrO4γ = 75.770 (3)°
Mr = 389.24V = 871.20 (8) Å3
Triclinic, P1Z = 2
a = 7.9262 (4) ÅMo Kα radiation
b = 8.9078 (5) ŵ = 2.38 mm1
c = 13.2331 (6) ÅT = 293 K
α = 74.387 (3)°0.25 × 0.23 × 0.18 mm
β = 83.593 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3386 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2419 reflections with I > 2σ(I)
Tmin = 0.546, Tmax = 0.652Rint = 0.038
15446 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.01Δρmax = 0.67 e Å3
3386 reflectionsΔρmin = 0.41 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0190 (3)0.1409 (3)0.0632 (2)0.0436 (6)
C20.0529 (4)0.2719 (3)0.0228 (2)0.0492 (7)
H20.16520.31180.04660.059*
C30.0793 (4)0.3418 (3)0.0723 (2)0.0530 (8)
C40.2463 (4)0.2851 (3)0.0381 (2)0.0521 (7)
H40.33470.33450.07270.063*
C50.2831 (4)0.1550 (3)0.0472 (2)0.0476 (7)
H50.39580.11690.07060.057*
C60.1509 (3)0.0820 (3)0.0978 (2)0.0400 (6)
C70.3452 (3)0.1066 (3)0.2212 (2)0.0463 (7)
H7A0.38050.02270.24180.056*
H7B0.42830.13950.16730.056*
C80.3425 (4)0.2459 (3)0.3141 (2)0.0491 (7)
C90.3846 (4)0.4096 (4)0.2990 (3)0.0568 (8)
C100.4617 (6)0.5711 (5)0.1796 (3)0.0814 (11)
H10A0.57510.62400.20560.122*
H10B0.46430.56180.10550.122*
H10C0.37850.63220.21510.122*
C110.1608 (4)0.0680 (4)0.1180 (3)0.0555 (8)
H110.13250.02410.17210.067*
C120.3161 (4)0.2336 (4)0.4127 (2)0.0556 (8)
H120.32710.33070.46300.067*
C130.2727 (4)0.0931 (4)0.4554 (2)0.0512 (7)
C140.1771 (4)0.0561 (4)0.4051 (2)0.0577 (8)
H140.13470.07080.33950.069*
C150.1444 (4)0.1815 (4)0.4507 (3)0.0638 (9)
H150.08070.28050.41510.077*
C160.2035 (4)0.1652 (4)0.5481 (3)0.0613 (8)
C170.2973 (4)0.0179 (4)0.5982 (3)0.0651 (9)
H170.33920.00420.66370.078*
C180.3305 (4)0.1087 (4)0.5544 (3)0.0627 (8)
H180.39290.20760.59110.075*
C190.1688 (6)0.3035 (5)0.5977 (3)0.0875 (12)
H19A0.19140.26440.67110.131*
H19B0.04930.36010.58980.131*
H19C0.24350.37440.56410.131*
Br10.03444 (6)0.52045 (4)0.19017 (3)0.0788 (2)
O10.3943 (5)0.5289 (3)0.3685 (2)0.0984 (9)
O20.4125 (3)0.4137 (3)0.19867 (17)0.0616 (6)
O30.1745 (2)0.0481 (2)0.18098 (15)0.0472 (5)
O40.3117 (3)0.1191 (3)0.0979 (2)0.0792 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0456 (16)0.0445 (15)0.0437 (15)0.0063 (12)0.0056 (12)0.0183 (12)
C20.0560 (17)0.0468 (16)0.0461 (16)0.0008 (14)0.0123 (14)0.0195 (13)
C30.079 (2)0.0398 (15)0.0375 (15)0.0019 (15)0.0099 (15)0.0129 (12)
C40.0628 (19)0.0461 (16)0.0462 (16)0.0129 (14)0.0038 (14)0.0114 (13)
C50.0452 (16)0.0483 (16)0.0493 (16)0.0105 (13)0.0031 (13)0.0121 (13)
C60.0464 (16)0.0381 (14)0.0377 (13)0.0084 (12)0.0045 (12)0.0131 (11)
C70.0401 (15)0.0445 (16)0.0497 (16)0.0047 (12)0.0049 (12)0.0076 (13)
C80.0465 (16)0.0432 (16)0.0522 (17)0.0058 (12)0.0060 (13)0.0053 (13)
C90.065 (2)0.0443 (17)0.0537 (18)0.0052 (14)0.0029 (15)0.0060 (14)
C100.105 (3)0.060 (2)0.082 (3)0.013 (2)0.005 (2)0.029 (2)
C110.0481 (19)0.061 (2)0.0616 (19)0.0093 (15)0.0014 (15)0.0259 (16)
C120.0605 (19)0.0479 (17)0.0505 (18)0.0071 (14)0.0080 (14)0.0016 (14)
C130.0554 (18)0.0500 (17)0.0438 (16)0.0113 (14)0.0004 (13)0.0060 (13)
C140.064 (2)0.0572 (19)0.0470 (17)0.0053 (15)0.0085 (15)0.0100 (14)
C150.075 (2)0.0523 (19)0.0557 (19)0.0021 (16)0.0047 (16)0.0106 (15)
C160.064 (2)0.066 (2)0.0539 (19)0.0175 (17)0.0086 (16)0.0187 (16)
C170.068 (2)0.083 (3)0.0450 (17)0.0144 (18)0.0014 (15)0.0196 (17)
C180.067 (2)0.064 (2)0.0445 (17)0.0026 (16)0.0013 (15)0.0045 (15)
C190.105 (3)0.088 (3)0.078 (3)0.020 (2)0.006 (2)0.040 (2)
Br10.1216 (4)0.0559 (3)0.0471 (2)0.0034 (2)0.01539 (19)0.00359 (15)
O10.167 (3)0.0439 (14)0.0661 (16)0.0054 (15)0.0002 (17)0.0025 (12)
O20.0770 (15)0.0477 (12)0.0569 (13)0.0091 (10)0.0040 (11)0.0118 (10)
O30.0432 (11)0.0475 (11)0.0476 (11)0.0118 (8)0.0073 (8)0.0031 (9)
O40.0420 (13)0.098 (2)0.101 (2)0.0105 (12)0.0076 (13)0.0351 (16)
Geometric parameters (Å, º) top
C1—C21.388 (4)C10—H10A0.9600
C1—C61.399 (4)C10—H10B0.9600
C1—C111.461 (4)C10—H10C0.9600
C2—C31.365 (4)C11—O41.203 (4)
C2—H20.9300C11—H110.9300
C3—C41.376 (4)C12—C131.459 (4)
C3—Br11.898 (3)C12—H120.9300
C4—C51.381 (4)C13—C141.387 (4)
C4—H40.9300C13—C181.396 (4)
C5—C61.383 (4)C14—C151.366 (5)
C5—H50.9300C14—H140.9300
C6—O31.357 (3)C15—C161.380 (5)
C7—O31.432 (3)C15—H150.9300
C7—C81.496 (4)C16—C171.369 (5)
C7—H7A0.9700C16—C191.501 (5)
C7—H7B0.9700C17—C181.360 (5)
C8—C121.328 (4)C17—H170.9300
C8—C91.477 (4)C18—H180.9300
C9—O11.196 (4)C19—H19A0.9600
C9—O21.330 (4)C19—H19B0.9600
C10—O21.442 (4)C19—H19C0.9600
C2—C1—C6119.4 (3)H10A—C10—H10C109.5
C2—C1—C11120.0 (3)H10B—C10—H10C109.5
C6—C1—C11120.6 (3)O4—C11—C1124.4 (3)
C3—C2—C1119.7 (3)O4—C11—H11117.8
C3—C2—H2120.1C1—C11—H11117.8
C1—C2—H2120.1C8—C12—C13130.8 (3)
C2—C3—C4121.1 (3)C8—C12—H12114.6
C2—C3—Br1120.1 (2)C13—C12—H12114.6
C4—C3—Br1118.9 (2)C14—C13—C18117.1 (3)
C3—C4—C5120.2 (3)C14—C13—C12124.8 (3)
C3—C4—H4119.9C18—C13—C12118.1 (3)
C5—C4—H4119.9C15—C14—C13120.8 (3)
C4—C5—C6119.5 (3)C15—C14—H14119.6
C4—C5—H5120.3C13—C14—H14119.6
C6—C5—H5120.3C14—C15—C16121.7 (3)
O3—C6—C5123.9 (2)C14—C15—H15119.1
O3—C6—C1116.0 (2)C16—C15—H15119.1
C5—C6—C1120.1 (3)C17—C16—C15117.6 (3)
O3—C7—C8109.0 (2)C17—C16—C19120.8 (3)
O3—C7—H7A109.9C15—C16—C19121.7 (3)
C8—C7—H7A109.9C18—C17—C16121.6 (3)
O3—C7—H7B109.9C18—C17—H17119.2
C8—C7—H7B109.9C16—C17—H17119.2
H7A—C7—H7B108.3C17—C18—C13121.2 (3)
C12—C8—C9116.4 (3)C17—C18—H18119.4
C12—C8—C7123.8 (3)C13—C18—H18119.4
C9—C8—C7119.6 (3)C16—C19—H19A109.5
O1—C9—O2121.9 (3)C16—C19—H19B109.5
O1—C9—C8124.7 (3)H19A—C19—H19B109.5
O2—C9—C8113.4 (3)C16—C19—H19C109.5
O2—C10—H10A109.5H19A—C19—H19C109.5
O2—C10—H10B109.5H19B—C19—H19C109.5
H10A—C10—H10B109.5C9—O2—C10115.7 (3)
O2—C10—H10C109.5C6—O3—C7117.3 (2)
C6—C1—C2—C30.2 (4)C6—C1—C11—O4174.2 (3)
C11—C1—C2—C3178.5 (3)C9—C8—C12—C13180.0 (3)
C1—C2—C3—C40.3 (4)C7—C8—C12—C135.0 (5)
C1—C2—C3—Br1179.79 (19)C8—C12—C13—C1430.2 (5)
C2—C3—C4—C50.2 (4)C8—C12—C13—C18150.1 (3)
Br1—C3—C4—C5179.8 (2)C18—C13—C14—C151.0 (5)
C3—C4—C5—C60.3 (4)C12—C13—C14—C15179.3 (3)
C4—C5—C6—O3178.7 (3)C13—C14—C15—C160.4 (5)
C4—C5—C6—C10.7 (4)C14—C15—C16—C170.1 (5)
C2—C1—C6—O3178.8 (2)C14—C15—C16—C19179.5 (3)
C11—C1—C6—O32.5 (4)C15—C16—C17—C180.5 (5)
C2—C1—C6—C50.7 (4)C19—C16—C17—C18179.8 (3)
C11—C1—C6—C5178.0 (3)C16—C17—C18—C131.1 (5)
O3—C7—C8—C1293.5 (3)C14—C13—C18—C171.4 (5)
O3—C7—C8—C991.6 (3)C12—C13—C18—C17178.9 (3)
C12—C8—C9—O10.9 (5)O1—C9—O2—C102.4 (5)
C7—C8—C9—O1176.2 (3)C8—C9—O2—C10177.4 (3)
C12—C8—C9—O2178.9 (3)C5—C6—O3—C73.3 (4)
C7—C8—C9—O23.6 (4)C1—C6—O3—C7177.2 (2)
C2—C1—C11—O44.5 (4)C8—C7—O3—C6178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O30.932.553.341 (3)143
C4—H4···O2i0.932.573.474 (4)164
C18—H18···O1ii0.932.493.388 (4)161
C5—H5···O4iii0.932.393.276 (4)159
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H17BrO4
Mr389.24
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.9262 (4), 8.9078 (5), 13.2331 (6)
α, β, γ (°)74.387 (3), 83.593 (2), 75.770 (3)
V3)871.20 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.38
Crystal size (mm)0.25 × 0.23 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.546, 0.652
No. of measured, independent and
observed [I > 2σ(I)] reflections
15446, 3386, 2419
Rint0.038
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.121, 1.01
No. of reflections3386
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.41

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O30.932.553.341 (3)143.0
C4—H4···O2i0.932.573.474 (4)163.9
C18—H18···O1ii0.932.493.388 (4)161.4
C5—H5···O4iii0.932.393.276 (4)158.6
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z+1; (iii) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: bhakthadoss@yahoo.com.

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFraine, P. J. de & Martin, A. (1991). US Patent No. 5 055 471.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijayakumar, S., Madhanraj, R., Murugavel, S., Selvakumar, R. & Bakthadoss, M. (2011). Acta Cryst. E67, o2690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L. P. & Ji, Z. Z. (1992). Acta Pharmacol. Sin. 27, 817–823.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds