organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o741-o742

12-{[4-(2-Fluoro­phen­yl)piperazin-1-yl]­meth­yl}-9α-hy­dr­oxy-4,8-di­methyl-3,14-dioxatri­cyclo­[9.3.0.02,4]tetra­dec-7-en-13-one

aLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia-Casablanca 20810 Mohammedia, Morocco, bLaboratoire de Chimie Biomoléculaire, Substances Naturelles et Réactivité, URAC 16, Faculté des Sciences, Semlalia, BP 2390, Boulevard My Abdellah, 40000 Marrakech, Morocco, and cLaboratoire de Chimie de Coordination, 205 Route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: mberraho@yahoo.fr

(Received 12 February 2012; accepted 13 February 2012; online 17 February 2012)

The title compound, C25H33FN2O4, was synthesized from 9α-hy­droxy­parthenolide (9α-hy­droxy-4,8-dimethyl-12-methyl­ene-3,14-dioxatricyclo­[9.3.0.02,4]tetra­dec-7-en-13-one), which was isolated from the chloro­form extract of the aerial parts of Anvillea radiata. The asymmetric unit contains two independent mol­ecules. In each mol­ecule, the ten-membered ring displays an approximative chair–chair conformation. Each of the piperazine rings adopts a perfect chair conformation, while both lactone rings show an envelope conformation, one with the C atom bearing the piperazin-1-ylmethyl group as the flap, the other with the junction C atom not attached to the ring O atom as the flap. The dihedral angles between the least-squares planes through the ten- and five-membered rings in the two mol­ecules are similar [19.1 (3) and 16.2 (3)°]. An intra­molecular O—H⋯N hydrogen bond stabilizes the mol­ecular conformation. The crystal packing is stabilized by C—H⋯O hydrogen bonds.

Related literature

For background to the medicinal uses of the plant Anvillea adiata, see: El Hassany et al. (2004[El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573-576.]); Qureshi et al. (1990[Qureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157-162.]). For the reactivity of this sesquiterpene, see: Castaneda-Acosta et al. (1997[Castaneda-Acosta, J., Pentes, H. G., Fronczek, F. R. & Fischer, N. H. (1997). J. Chem. Crystallogr. 27, 635-639.]); Hwang et al. (2006[Hwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83-91.]); Neukirch et al. (2003[Neukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503-1510.]); Neelakantan et al. (2009[Neelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346-4349.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C25H33FN2O4

  • Mr = 444.53

  • Monoclinic, P 21

  • a = 14.583 (2) Å

  • b = 6.3366 (17) Å

  • c = 24.697 (3) Å

  • β = 93.598 (14)°

  • V = 2277.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 180 K

  • 0.56 × 0.36 × 0.1 mm

Data collection
  • Agilent Xcalibur Eos Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.789, Tmax = 1.000

  • 24656 measured reflections

  • 5050 independent reflections

  • 4582 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.197

  • S = 1.12

  • 5050 reflections

  • 583 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯N1 0.82 2.19 2.979 (6) 163
O1A—H1A1⋯N2A 0.82 2.08 2.882 (6) 164
C1—H1⋯O3i 0.98 2.47 3.035 (7) 116
C13—H131⋯O3ii 0.97 2.51 3.394 (7) 152
C10—H10⋯O1 0.98 2.36 2.861 (6) 111
C10A—H10A⋯O1A 0.98 2.36 2.860 (6) 111
C13A—H13A⋯O3Aiii 0.97 2.57 3.391 (6) 143
C11A—H11A⋯O3Aiv 0.98 2.60 3.338 (6) 132
C15—H15F⋯O1v 0.96 2.42 3.375 (7) 171
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) [-x+2, y-{\script{1\over 2}}, -z]; (iv) [-x+2, y+{\script{1\over 2}}, -z]; (v) [-x+2, y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Our work lies within the framework of the evaluation of medicinal plants and in particular, Anvillea radiata. The main constituent of the chloroform extract of aerial parts of this plant is 9α-hydroxypartenolide(El Hassany et al., 2004). The reactivity of this sesquiterpene lactone and its derivatives has been the subject of several studies(Castaneda-Acosta et al.,1997; Neukirch et al., 2003; Hwang et al., 2006 Neelakantan et al., 2009), in order to prepare products with high value which can be used in the pharmacological industry. In this context,we have treated the 9α-hydroxyparthenolide with an equivalent amount of 1-(2- fluorophenyl)piperazine and isolated the 9α-Hydroxy-4,8- dimethyl-12-[(4-(2-fluorophenyl)piperazin-1-yl)methyl)]- 3,14-dioxatricyclo-[9.3.0.02,4]tetradec-7-en-13-one with a yield of 95%. The structure of this new product was confirmed by its single-crystal X-ray structure. The asymmetric unit contains two crystallographically independent molecules(Fig.1). Each molecule is built up from two fused five-and ten-membered rings with the fluorophenylpiperazine group as a substituent. The ten-membered ring displays an approximate chair-chair conformation. Whereas the lactone ring (O2A, C1A···C12A) adopt an envelope conformation, as indicated by the puckering parameters Q = 0.229 (5) Å and ϕ = 78.9 (11)°(Cremer & Pople, 1975), the other lactone ring (O2,C1···C12)shows a twisted conformation with Q = 0.204 (5) Å and ϕ =47.9 (14)°. The piperazine ring, in the two molecules, has a perfect chair conformation with QT = 0.594 (5) Å, θ = 176.5 (5)° and ϕ2 =9.0 (9)° for the ring (N1A,C17A···C18A)and QT = 0.587 (5) Å, θ = 176.2 (5)° andϕ =187.0 (7)° for the other piperazine ring (N1,C16···C19).In the first molecule (C1 to C25), the dihedral angle between the mean planes of the ten-membered ring and the lactone ring is 16.2 (3).The corresponding value in the second molecule (C1A to C25A) is 19.3 (3) °. In the crystal, C—H···O hydrogen bonding links the molecules into sheets lying parallel to the c axis (Table 1, Fig.2). In addition, the molecular conformation is stabilized by an O—H···N hydrogen bond between the hydroxy group and a piperazine N atom.

Related literature top

For background to the medicinal uses of the plant Anvillea adiata, see: El Hassany et al. (2004); Qureshi et al. (1990). For the reactivity of this sesquiterpene, see: Castaneda-Acosta et al. (1997); Hwang et al. (2006); Neukirch et al. (2003); Neelakantan et al. (2009). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

The mixture of 9α-hydroxyparthenolide (0.5 g, 2 mmol) and one equivalent of 1-(2- fluorophenyl) piperazine in EtOH (20 ml) was stirred for one night at room temperature. The next day, the reaction was stopped by adding water (10 ml) and extracted three times with ethyl acetate (3 x 20 ml). The combined organic layers were dried over anhydrous MgSO4, filtered and concentrated under vacuum to give 1 g (1.9 mmol)of the title compound (yield: 95%) which was recrystallized in ethyle acetate.

Refinement top

All H atoms were fixed geometrically and treated as riding with O—H = 0.82 Å, C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2Ueq(methylene, methine) or Uiso(H) = 1.5Ueq(methyl, OH). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus Friedel pairs were merged and any references to the Flack parameter were removed.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick,2008); program(s) used to refine structure: SHELXL97 (Sheldrick,2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : Partial packing view showing the C–H···O hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
12-{[4-(2-Fluorophenyl)piperazin-1-yl]methyl}-9α-hydroxy-4,8-dimethyl- 3,14-dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one top
Crystal data top
C25H33FN2O4F(000) = 952
Mr = 444.53Dx = 1.296 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 24632 reflections
a = 14.583 (2) Åθ = 3.5–26.4°
b = 6.3366 (17) ŵ = 0.09 mm1
c = 24.697 (3) ÅT = 180 K
β = 93.598 (14)°Block, colourless
V = 2277.7 (8) Å30.56 × 0.36 × 0.1 mm
Z = 4
Data collection top
Agilent Xcalibur Eos Gemini ultra
diffractometer
5052 independent reflections
Radiation source: fine-focus sealed tube4582 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 16.1978 pixels mm-1θmax = 26.4°, θmin = 3.5°
ω scansh = 1818
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 77
Tmin = 0.789, Tmax = 1.000l = 3030
24656 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0994P)2 + 2.617P]
where P = (Fo2 + 2Fc2)/3
5050 reflections(Δ/σ)max = 0.002
583 parametersΔρmax = 0.43 e Å3
1 restraintΔρmin = 0.37 e Å3
Crystal data top
C25H33FN2O4V = 2277.7 (8) Å3
Mr = 444.53Z = 4
Monoclinic, P21Mo Kα radiation
a = 14.583 (2) ŵ = 0.09 mm1
b = 6.3366 (17) ÅT = 180 K
c = 24.697 (3) Å0.56 × 0.36 × 0.1 mm
β = 93.598 (14)°
Data collection top
Agilent Xcalibur Eos Gemini ultra
diffractometer
5052 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4582 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 1.000Rint = 0.066
24656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0681 restraint
wR(F2) = 0.197H-atom parameters constrained
S = 1.12Δρmax = 0.43 e Å3
5050 reflectionsΔρmin = 0.37 e Å3
583 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent Technologies,2011)

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.8424 (3)0.1376 (8)0.07964 (18)0.0227 (10)
H1A0.81900.01410.10000.027*
C2A0.8236 (3)0.3358 (8)0.11130 (18)0.0250 (10)
H2A0.83360.46490.08990.030*
C3A0.7535 (3)0.3580 (9)0.15656 (19)0.0270 (11)
C4A0.7080 (4)0.5696 (10)0.1628 (2)0.0353 (13)
H4A10.74900.67730.14730.042*
H4A20.69620.60050.20110.042*
C5A0.6168 (4)0.5769 (10)0.1346 (2)0.0369 (13)
H5A10.57030.49810.15590.044*
H5A20.59620.72200.13240.044*
C6A0.6282 (4)0.4847 (9)0.0784 (2)0.0314 (12)
H6A0.66570.56000.05350.038*
C7A0.5916 (3)0.3105 (10)0.0603 (2)0.0301 (12)
C8A0.6277 (3)0.2092 (10)0.00794 (19)0.0313 (12)
H8A0.57740.13100.00730.038*
C9A0.7044 (3)0.0507 (8)0.01998 (19)0.0232 (10)
H9A10.68760.02010.05400.028*
H9A20.70800.05570.00830.028*
C10A0.8004 (3)0.1502 (8)0.02369 (17)0.0197 (9)
H10A0.79510.30010.01460.024*
C11A0.8758 (3)0.0569 (8)0.01478 (18)0.0212 (9)
H11A0.86390.09420.01910.025*
C12A0.9618 (3)0.0835 (7)0.01515 (19)0.0210 (10)
C13A0.8871 (3)0.1570 (9)0.07060 (17)0.0250 (10)
H13A0.90920.30040.06710.030*
H13B0.93300.07900.09260.030*
C14A0.7011 (4)0.1738 (9)0.1810 (2)0.0303 (11)
H14A0.73990.05120.17980.045*
H14B0.64820.14710.16080.045*
H14C0.68180.20520.21800.045*
C15A0.5173 (4)0.1808 (11)0.0897 (2)0.0382 (13)
H15A0.50680.23250.12610.057*
H15B0.53630.03580.09070.057*
H15C0.46170.19150.07110.057*
C16A0.8080 (3)0.3108 (8)0.14370 (18)0.0235 (10)
H16A0.85580.26500.17020.028*
H16B0.82490.44870.13050.028*
C17A0.7173 (3)0.3263 (8)0.17053 (18)0.0226 (10)
H17A0.67000.37810.14450.027*
H17B0.72320.42540.20050.027*
C18A0.6868 (3)0.0355 (8)0.14613 (19)0.0244 (10)
H18A0.67170.17340.16010.029*
H18B0.63890.00450.11910.029*
C19A0.7782 (3)0.0465 (8)0.12006 (19)0.0240 (10)
H19A0.77470.15020.09110.029*
H19B0.82600.09010.14680.029*
C20A0.6142 (3)0.1175 (8)0.22233 (18)0.0204 (10)
C21A0.5586 (3)0.2906 (9)0.22979 (19)0.0263 (11)
H21A0.57010.41610.21190.032*
C22A0.4857 (3)0.2809 (9)0.2634 (2)0.0325 (12)
H22A0.45010.40050.26810.039*
C23A0.4654 (4)0.0980 (10)0.2898 (2)0.0358 (13)
H23A0.41560.09200.31150.043*
C24A0.5203 (4)0.0784 (9)0.2835 (2)0.0320 (12)
H24A0.50800.20400.30110.038*
C25A0.5934 (3)0.0646 (8)0.25078 (19)0.0251 (10)
O1A0.6593 (3)0.3633 (8)0.03028 (14)0.0375 (10)
H1A10.69220.30710.05430.056*
O2A0.9417 (2)0.1221 (6)0.06803 (13)0.0256 (7)
O3A1.0412 (2)0.0722 (6)0.00239 (14)0.0281 (8)
O4A0.8513 (2)0.3533 (7)0.16622 (13)0.0319 (8)
N1A0.6909 (3)0.1189 (7)0.19052 (15)0.0215 (8)
N2A0.8010 (3)0.1602 (7)0.09816 (14)0.0218 (8)
F20.6494 (2)0.2337 (5)0.24852 (12)0.0347 (7)
C10.6454 (3)0.8975 (9)0.56683 (18)0.0250 (10)
H10.64601.04840.57550.030*
C20.6873 (3)0.7724 (9)0.61320 (18)0.0291 (11)
H20.70460.62860.60340.035*
C30.7433 (3)0.8598 (10)0.65909 (19)0.0272 (11)
C40.8206 (4)0.7248 (10)0.6835 (2)0.0347 (13)
H4A0.80430.57710.67920.042*
H4B0.82930.75410.72200.042*
C50.9112 (4)0.7675 (11)0.6563 (2)0.0369 (13)
H5A0.93660.90090.66930.044*
H5B0.95510.65740.66660.044*
C60.8975 (3)0.7746 (9)0.5959 (2)0.0312 (12)
H60.88410.64670.57870.037*
C70.9021 (3)0.9422 (10)0.5638 (2)0.0296 (11)
C80.8663 (3)0.9337 (10)0.5053 (2)0.0306 (12)
H80.90491.02530.48430.037*
C90.7670 (3)1.0168 (9)0.49891 (19)0.0269 (11)
H9A0.75411.06030.46160.032*
H9B0.76221.14080.52160.032*
C100.6936 (3)0.8562 (8)0.51388 (17)0.0212 (9)
H100.72320.71760.51720.025*
C110.6141 (3)0.8380 (8)0.47070 (18)0.0220 (10)
H110.60870.97010.45010.026*
C120.5300 (3)0.8096 (8)0.50258 (19)0.0231 (10)
C130.6249 (3)0.6545 (9)0.43165 (18)0.0254 (10)
H1310.62250.52280.45150.030*
H1320.57390.65560.40450.030*
C140.7548 (4)1.0945 (10)0.6683 (2)0.0343 (13)
H14D0.70331.16780.65110.051*
H14E0.81031.14130.65330.051*
H14F0.75791.12320.70660.051*
C150.9342 (4)1.1565 (11)0.5808 (2)0.0395 (14)
H15D0.94901.15750.61920.059*
H15E0.88641.25730.57210.059*
H15F0.98771.19280.56210.059*
C160.7315 (4)0.4575 (8)0.3813 (2)0.0272 (11)
H16C0.68280.41940.35450.033*
H16D0.73370.35170.40970.033*
C170.8227 (3)0.4615 (8)0.35471 (19)0.0261 (11)
H17C0.87190.49380.38170.031*
H17D0.83470.32380.33950.031*
C180.7965 (3)0.8276 (8)0.33228 (18)0.0219 (10)
H18C0.79110.92790.30260.026*
H18D0.84480.87600.35810.026*
C190.7061 (3)0.8165 (8)0.35974 (18)0.0229 (10)
H19C0.69130.95480.37360.027*
H19D0.65730.77530.33340.027*
C200.8968 (3)0.6153 (8)0.27872 (17)0.0192 (9)
C210.9531 (3)0.7883 (9)0.27203 (18)0.0250 (10)
H210.94260.91250.29070.030*
C221.0259 (3)0.7785 (11)0.2375 (2)0.0321 (12)
H221.06360.89530.23370.039*
C231.0416 (3)0.5970 (11)0.2094 (2)0.0343 (13)
H231.08980.59080.18660.041*
C240.9860 (3)0.4236 (10)0.2149 (2)0.0289 (11)
H240.99690.29900.19650.035*
C250.9135 (3)0.4382 (8)0.24841 (19)0.0226 (10)
O10.8713 (3)0.7258 (8)0.48416 (15)0.0429 (11)
H1B0.83550.71440.45740.064*
O20.5509 (2)0.8223 (6)0.55579 (13)0.0275 (8)
O30.4522 (2)0.7769 (7)0.48496 (15)0.0331 (9)
O40.6512 (3)0.7882 (8)0.66572 (13)0.0384 (10)
N10.7116 (3)0.6642 (7)0.40444 (14)0.0206 (8)
N20.8201 (3)0.6209 (7)0.31174 (15)0.0197 (8)
F10.8570 (2)0.2681 (5)0.25078 (12)0.0337 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.021 (2)0.021 (2)0.027 (2)0.0018 (19)0.0038 (17)0.0016 (19)
C2A0.031 (2)0.020 (2)0.024 (2)0.001 (2)0.0039 (18)0.000 (2)
C3A0.031 (3)0.025 (3)0.025 (2)0.001 (2)0.0054 (19)0.003 (2)
C4A0.045 (3)0.030 (3)0.031 (3)0.001 (3)0.005 (2)0.007 (2)
C5A0.044 (3)0.027 (3)0.038 (3)0.008 (3)0.005 (2)0.001 (2)
C6A0.028 (3)0.031 (3)0.035 (3)0.012 (2)0.001 (2)0.007 (2)
C7A0.023 (2)0.038 (3)0.030 (2)0.017 (2)0.0050 (18)0.002 (2)
C8A0.026 (2)0.043 (3)0.025 (2)0.005 (3)0.0047 (18)0.001 (2)
C9A0.019 (2)0.026 (3)0.025 (2)0.000 (2)0.0019 (16)0.000 (2)
C10A0.020 (2)0.019 (2)0.021 (2)0.0030 (19)0.0028 (16)0.0021 (18)
C11A0.017 (2)0.019 (2)0.028 (2)0.0022 (19)0.0030 (17)0.0000 (19)
C12A0.019 (2)0.012 (2)0.033 (2)0.0045 (18)0.0051 (18)0.0004 (19)
C13A0.026 (2)0.029 (3)0.020 (2)0.001 (2)0.0014 (17)0.001 (2)
C14A0.038 (3)0.028 (3)0.025 (2)0.004 (2)0.0017 (19)0.002 (2)
C15A0.030 (3)0.043 (3)0.041 (3)0.001 (3)0.006 (2)0.002 (3)
C16A0.026 (2)0.021 (2)0.023 (2)0.007 (2)0.0014 (17)0.0021 (19)
C17A0.029 (2)0.017 (2)0.022 (2)0.005 (2)0.0024 (17)0.0029 (19)
C18A0.029 (2)0.019 (2)0.026 (2)0.007 (2)0.0045 (18)0.004 (2)
C19A0.034 (3)0.019 (2)0.019 (2)0.001 (2)0.0044 (18)0.0010 (18)
C20A0.018 (2)0.019 (2)0.024 (2)0.0019 (19)0.0004 (16)0.0030 (19)
C21A0.023 (2)0.025 (3)0.030 (2)0.005 (2)0.0014 (18)0.004 (2)
C22A0.021 (2)0.030 (3)0.048 (3)0.004 (2)0.009 (2)0.007 (3)
C23A0.022 (2)0.037 (3)0.050 (3)0.004 (2)0.017 (2)0.006 (3)
C24A0.034 (3)0.026 (3)0.038 (3)0.005 (2)0.012 (2)0.001 (2)
C25A0.025 (2)0.023 (3)0.027 (2)0.002 (2)0.0029 (18)0.004 (2)
O1A0.041 (2)0.046 (2)0.0252 (18)0.021 (2)0.0003 (15)0.0071 (18)
O2A0.0223 (17)0.0273 (19)0.0280 (16)0.0037 (15)0.0084 (12)0.0013 (14)
O3A0.0203 (17)0.0241 (19)0.0400 (19)0.0054 (15)0.0029 (14)0.0019 (16)
O4A0.0317 (18)0.039 (2)0.0257 (17)0.0007 (18)0.0085 (13)0.0078 (17)
N1A0.024 (2)0.017 (2)0.0239 (19)0.0023 (16)0.0051 (15)0.0017 (16)
N2A0.030 (2)0.018 (2)0.0174 (17)0.0042 (18)0.0037 (14)0.0008 (16)
F20.0390 (17)0.0206 (16)0.0460 (17)0.0065 (14)0.0151 (13)0.0069 (14)
C10.028 (2)0.024 (2)0.024 (2)0.000 (2)0.0035 (18)0.0011 (19)
C20.037 (3)0.029 (3)0.022 (2)0.002 (2)0.0046 (19)0.003 (2)
C30.024 (2)0.035 (3)0.023 (2)0.005 (2)0.0048 (18)0.002 (2)
C40.042 (3)0.035 (3)0.026 (2)0.001 (3)0.004 (2)0.008 (2)
C50.030 (3)0.042 (3)0.038 (3)0.012 (3)0.005 (2)0.006 (3)
C60.024 (2)0.029 (3)0.040 (3)0.010 (2)0.000 (2)0.007 (2)
C70.020 (2)0.039 (3)0.030 (2)0.002 (2)0.0042 (18)0.001 (2)
C80.021 (2)0.042 (3)0.029 (3)0.003 (2)0.0067 (19)0.000 (2)
C90.025 (2)0.033 (3)0.022 (2)0.005 (2)0.0001 (17)0.003 (2)
C100.020 (2)0.020 (2)0.024 (2)0.0021 (19)0.0029 (16)0.0028 (19)
C110.018 (2)0.023 (2)0.025 (2)0.000 (2)0.0033 (17)0.0005 (19)
C120.016 (2)0.020 (3)0.034 (2)0.0014 (19)0.0056 (18)0.004 (2)
C130.021 (2)0.029 (3)0.026 (2)0.004 (2)0.0085 (17)0.004 (2)
C140.035 (3)0.035 (3)0.033 (3)0.001 (3)0.004 (2)0.009 (2)
C150.032 (3)0.047 (4)0.039 (3)0.018 (3)0.000 (2)0.002 (3)
C160.036 (3)0.019 (2)0.028 (2)0.003 (2)0.012 (2)0.001 (2)
C170.035 (3)0.019 (2)0.025 (2)0.005 (2)0.0078 (19)0.003 (2)
C180.024 (2)0.019 (2)0.023 (2)0.003 (2)0.0054 (17)0.0001 (19)
C190.025 (2)0.021 (2)0.024 (2)0.006 (2)0.0039 (17)0.001 (2)
C200.018 (2)0.024 (2)0.016 (2)0.002 (2)0.0022 (15)0.0005 (19)
C210.020 (2)0.028 (3)0.027 (2)0.004 (2)0.0022 (17)0.001 (2)
C220.020 (2)0.040 (3)0.037 (3)0.004 (2)0.0053 (19)0.005 (3)
C230.019 (2)0.050 (4)0.035 (3)0.005 (3)0.0083 (19)0.002 (3)
C240.028 (2)0.032 (3)0.027 (2)0.013 (2)0.0036 (18)0.000 (2)
C250.019 (2)0.022 (2)0.026 (2)0.004 (2)0.0001 (17)0.001 (2)
O10.032 (2)0.060 (3)0.036 (2)0.014 (2)0.0034 (16)0.018 (2)
O20.0257 (17)0.033 (2)0.0243 (16)0.0030 (16)0.0072 (12)0.0023 (15)
O30.0195 (17)0.040 (2)0.040 (2)0.0038 (17)0.0028 (14)0.0114 (18)
O40.0328 (19)0.055 (3)0.0280 (17)0.018 (2)0.0059 (14)0.0071 (19)
N10.0229 (19)0.020 (2)0.0190 (18)0.0011 (17)0.0058 (14)0.0015 (16)
N20.0219 (19)0.0167 (19)0.0212 (18)0.0000 (17)0.0076 (14)0.0002 (16)
F10.0417 (17)0.0220 (16)0.0382 (16)0.0036 (15)0.0087 (13)0.0061 (13)
Geometric parameters (Å, º) top
C1A—O2A1.462 (5)C1—O21.468 (6)
C1A—C2A1.496 (7)C1—C21.492 (7)
C1A—C10A1.548 (6)C1—C101.545 (6)
C1A—H1A0.9800C1—H10.9800
C2A—O4A1.444 (5)C2—O41.434 (6)
C2A—C3A1.473 (7)C2—C31.464 (7)
C2A—H2A0.9800C2—H20.9800
C3A—O4A1.461 (6)C3—O41.437 (6)
C3A—C4A1.500 (8)C3—C41.510 (7)
C3A—C14A1.501 (8)C3—C141.512 (8)
C4A—C5A1.540 (8)C4—C51.543 (8)
C4A—H4A10.9700C4—H4A0.9700
C4A—H4A20.9700C4—H4B0.9700
C5A—C6A1.504 (7)C5—C61.494 (7)
C5A—H5A10.9700C5—H5A0.9700
C5A—H5A20.9700C5—H5B0.9700
C6A—C7A1.317 (8)C6—C71.330 (8)
C6A—H6A0.9300C6—H60.9300
C7A—C8A1.508 (7)C7—C151.488 (9)
C7A—C15A1.509 (8)C7—C81.506 (7)
C8A—O1A1.415 (7)C8—O11.420 (8)
C8A—C9A1.546 (7)C8—C91.540 (7)
C8A—H8A0.9800C8—H80.9800
C9A—C10A1.543 (6)C9—C101.540 (7)
C9A—H9A10.9700C9—H9A0.9700
C9A—H9A20.9700C9—H9B0.9700
C10A—C11A1.526 (6)C10—C111.529 (6)
C10A—H10A0.9800C10—H100.9800
C11A—C12A1.506 (6)C11—C121.510 (6)
C11A—C13A1.517 (6)C11—C131.525 (7)
C11A—H11A0.9800C11—H110.9800
C12A—O3A1.212 (5)C12—O31.207 (5)
C12A—O2A1.343 (6)C12—O21.333 (6)
C13A—N2A1.466 (6)C13—N11.470 (5)
C13A—H13A0.9700C13—H1310.9700
C13A—H13B0.9700C13—H1320.9700
C14A—H14A0.9600C14—H14D0.9600
C14A—H14B0.9600C14—H14E0.9600
C14A—H14C0.9600C14—H14F0.9600
C15A—H15A0.9600C15—H15D0.9600
C15A—H15B0.9600C15—H15E0.9600
C15A—H15C0.9600C15—H15F0.9600
C16A—N2A1.474 (6)C16—N11.465 (7)
C16A—C17A1.520 (6)C16—C171.520 (6)
C16A—H16A0.9700C16—H16C0.9700
C16A—H16B0.9700C16—H16D0.9700
C17A—N1A1.464 (6)C17—N21.464 (6)
C17A—H17A0.9700C17—H17C0.9700
C17A—H17B0.9700C17—H17D0.9700
C18A—N1A1.468 (6)C18—N21.454 (6)
C18A—C19A1.518 (6)C18—C191.522 (6)
C18A—H18A0.9700C18—H18C0.9700
C18A—H18B0.9700C18—H18D0.9700
C19A—N2A1.463 (6)C19—N11.465 (6)
C19A—H19A0.9700C19—H19C0.9700
C19A—H19B0.9700C19—H19D0.9700
C20A—C21A1.384 (7)C20—C251.379 (7)
C20A—C25A1.394 (7)C20—C211.386 (7)
C20A—N1A1.407 (6)C20—N21.426 (5)
C21A—C22A1.391 (7)C21—C221.404 (6)
C21A—H21A0.9300C21—H210.9300
C22A—C23A1.370 (9)C22—C231.370 (9)
C22A—H22A0.9300C22—H220.9300
C23A—C24A1.389 (8)C23—C241.377 (9)
C23A—H23A0.9300C23—H230.9300
C24A—C25A1.380 (7)C24—C251.385 (6)
C24A—H24A0.9300C24—H240.9300
C25A—F21.351 (6)C25—F11.361 (6)
O1A—H1A10.8200O1—H1B0.8200
O2A—C1A—C2A107.8 (4)O2—C1—C2107.7 (4)
O2A—C1A—C10A105.7 (3)O2—C1—C10105.0 (4)
C2A—C1A—C10A110.7 (4)C2—C1—C10112.0 (4)
O2A—C1A—H1A110.8O2—C1—H1110.6
C2A—C1A—H1A110.8C2—C1—H1110.6
C10A—C1A—H1A110.8C10—C1—H1110.6
O4A—C2A—C3A60.1 (3)O4—C2—C359.5 (3)
O4A—C2A—C1A120.2 (4)O4—C2—C1120.1 (5)
C3A—C2A—C1A124.9 (4)C3—C2—C1125.1 (5)
O4A—C2A—H2A113.7O4—C2—H2113.8
C3A—C2A—H2A113.7C3—C2—H2113.8
C1A—C2A—H2A113.7C1—C2—H2113.8
O4A—C3A—C2A58.9 (3)O4—C3—C259.2 (3)
O4A—C3A—C4A115.6 (5)O4—C3—C4117.1 (5)
C2A—C3A—C4A116.4 (5)C2—C3—C4117.5 (5)
O4A—C3A—C14A113.3 (4)O4—C3—C14112.9 (5)
C2A—C3A—C14A122.8 (5)C2—C3—C14122.7 (5)
C4A—C3A—C14A116.3 (4)C4—C3—C14115.1 (5)
C3A—C4A—C5A111.7 (5)C3—C4—C5111.4 (4)
C3A—C4A—H4A1109.3C3—C4—H4A109.4
C5A—C4A—H4A1109.3C5—C4—H4A109.4
C3A—C4A—H4A2109.3C3—C4—H4B109.4
C5A—C4A—H4A2109.3C5—C4—H4B109.4
H4A1—C4A—H4A2107.9H4A—C4—H4B108.0
C6A—C5A—C4A110.9 (4)C6—C5—C4112.1 (4)
C6A—C5A—H5A1109.5C6—C5—H5A109.2
C4A—C5A—H5A1109.5C4—C5—H5A109.2
C6A—C5A—H5A2109.5C6—C5—H5B109.2
C4A—C5A—H5A2109.5C4—C5—H5B109.2
H5A1—C5A—H5A2108.0H5A—C5—H5B107.9
C7A—C6A—C5A128.0 (5)C7—C6—C5127.7 (6)
C7A—C6A—H6A116.0C7—C6—H6116.2
C5A—C6A—H6A116.0C5—C6—H6116.2
C6A—C7A—C8A121.4 (5)C6—C7—C15125.9 (5)
C6A—C7A—C15A125.9 (5)C6—C7—C8121.0 (5)
C8A—C7A—C15A112.5 (5)C15—C7—C8112.8 (5)
O1A—C8A—C7A111.1 (5)O1—C8—C7111.3 (5)
O1A—C8A—C9A111.6 (4)O1—C8—C9110.4 (4)
C7A—C8A—C9A109.3 (4)C7—C8—C9110.7 (4)
O1A—C8A—H8A108.3O1—C8—H8108.1
C7A—C8A—H8A108.3C7—C8—H8108.1
C9A—C8A—H8A108.3C9—C8—H8108.1
C10A—C9A—C8A114.5 (4)C8—C9—C10114.4 (5)
C10A—C9A—H9A1108.6C8—C9—H9A108.7
C8A—C9A—H9A1108.6C10—C9—H9A108.7
C10A—C9A—H9A2108.6C8—C9—H9B108.7
C8A—C9A—H9A2108.6C10—C9—H9B108.7
H9A1—C9A—H9A2107.6H9A—C9—H9B107.6
C11A—C10A—C9A115.2 (4)C11—C10—C9113.0 (4)
C11A—C10A—C1A103.1 (3)C11—C10—C1103.8 (4)
C9A—C10A—C1A116.3 (4)C9—C10—C1116.8 (4)
C11A—C10A—H10A107.3C11—C10—H10107.6
C9A—C10A—H10A107.3C9—C10—H10107.6
C1A—C10A—H10A107.3C1—C10—H10107.6
C12A—C11A—C13A110.7 (4)C12—C11—C13111.0 (4)
C12A—C11A—C10A103.9 (4)C12—C11—C10104.5 (3)
C13A—C11A—C10A115.9 (4)C13—C11—C10113.3 (4)
C12A—C11A—H11A108.7C12—C11—H11109.3
C13A—C11A—H11A108.7C13—C11—H11109.3
C10A—C11A—H11A108.7C10—C11—H11109.3
O3A—C12A—O2A120.3 (4)O3—C12—O2121.2 (4)
O3A—C12A—C11A128.6 (4)O3—C12—C11127.5 (4)
O2A—C12A—C11A111.1 (4)O2—C12—C11111.3 (4)
N2A—C13A—C11A112.3 (4)N1—C13—C11112.5 (4)
N2A—C13A—H13A109.1N1—C13—H131109.1
C11A—C13A—H13A109.1C11—C13—H131109.1
N2A—C13A—H13B109.1N1—C13—H132109.1
C11A—C13A—H13B109.1C11—C13—H132109.1
H13A—C13A—H13B107.9H131—C13—H132107.8
C3A—C14A—H14A109.5C3—C14—H14D109.5
C3A—C14A—H14B109.5C3—C14—H14E109.5
H14A—C14A—H14B109.5H14D—C14—H14E109.5
C3A—C14A—H14C109.5C3—C14—H14F109.5
H14A—C14A—H14C109.5H14D—C14—H14F109.5
H14B—C14A—H14C109.5H14E—C14—H14F109.5
C7A—C15A—H15A109.5C7—C15—H15D109.5
C7A—C15A—H15B109.5C7—C15—H15E109.5
H15A—C15A—H15B109.5H15D—C15—H15E109.5
C7A—C15A—H15C109.5C7—C15—H15F109.5
H15A—C15A—H15C109.5H15D—C15—H15F109.5
H15B—C15A—H15C109.5H15E—C15—H15F109.5
N2A—C16A—C17A110.7 (4)N1—C16—C17110.7 (4)
N2A—C16A—H16A109.5N1—C16—H16C109.5
C17A—C16A—H16A109.5C17—C16—H16C109.5
N2A—C16A—H16B109.5N1—C16—H16D109.5
C17A—C16A—H16B109.5C17—C16—H16D109.5
H16A—C16A—H16B108.1H16C—C16—H16D108.1
N1A—C17A—C16A110.1 (4)N2—C17—C16109.9 (4)
N1A—C17A—H17A109.6N2—C17—H17C109.7
C16A—C17A—H17A109.6C16—C17—H17C109.7
N1A—C17A—H17B109.6N2—C17—H17D109.7
C16A—C17A—H17B109.6C16—C17—H17D109.7
H17A—C17A—H17B108.2H17C—C17—H17D108.2
N1A—C18A—C19A110.6 (4)N2—C18—C19110.1 (4)
N1A—C18A—H18A109.5N2—C18—H18C109.6
C19A—C18A—H18A109.5C19—C18—H18C109.6
N1A—C18A—H18B109.5N2—C18—H18D109.6
C19A—C18A—H18B109.5C19—C18—H18D109.6
H18A—C18A—H18B108.1H18C—C18—H18D108.2
N2A—C19A—C18A109.9 (4)N1—C19—C18111.0 (4)
N2A—C19A—H19A109.7N1—C19—H19C109.4
C18A—C19A—H19A109.7C18—C19—H19C109.4
N2A—C19A—H19B109.7N1—C19—H19D109.4
C18A—C19A—H19B109.7C18—C19—H19D109.4
H19A—C19A—H19B108.2H19C—C19—H19D108.0
C21A—C20A—C25A116.1 (4)C25—C20—C21116.9 (4)
C21A—C20A—N1A124.3 (4)C25—C20—N2120.2 (4)
C25A—C20A—N1A119.5 (4)C21—C20—N2122.8 (4)
C20A—C21A—C22A121.4 (5)C20—C21—C22120.9 (5)
C20A—C21A—H21A119.3C20—C21—H21119.5
C22A—C21A—H21A119.3C22—C21—H21119.5
C23A—C22A—C21A121.1 (5)C23—C22—C21120.1 (5)
C23A—C22A—H22A119.4C23—C22—H22120.0
C21A—C22A—H22A119.4C21—C22—H22120.0
C22A—C23A—C24A119.0 (4)C22—C23—C24120.1 (4)
C22A—C23A—H23A120.5C22—C23—H23119.9
C24A—C23A—H23A120.5C24—C23—H23119.9
C25A—C24A—C23A119.1 (5)C23—C24—C25118.8 (5)
C25A—C24A—H24A120.5C23—C24—H24120.6
C23A—C24A—H24A120.5C25—C24—H24120.6
F2—C25A—C24A117.7 (5)F1—C25—C20119.5 (4)
F2—C25A—C20A119.0 (4)F1—C25—C24117.4 (5)
C24A—C25A—C20A123.2 (5)C20—C25—C24123.1 (5)
C8A—O1A—H1A1109.5C8—O1—H1B109.5
C12A—O2A—C1A110.9 (3)C12—O2—C1110.9 (3)
C2A—O4A—C3A61.0 (3)C2—O4—C361.3 (3)
C20A—N1A—C17A115.4 (4)C19—N1—C16107.3 (3)
C20A—N1A—C18A114.6 (4)C19—N1—C13111.3 (4)
C17A—N1A—C18A110.2 (3)C16—N1—C13109.8 (4)
C19A—N2A—C13A112.4 (4)C20—N2—C18115.7 (4)
C19A—N2A—C16A107.7 (3)C20—N2—C17114.3 (4)
C13A—N2A—C16A110.0 (4)C18—N2—C17111.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N10.822.192.979 (6)163
O1A—H1A1···N2A0.822.082.882 (6)164
C1—H1···O3i0.982.473.035 (7)116
C13—H131···O3ii0.972.513.394 (7)152
C10—H10···O10.982.362.861 (6)111
C10A—H10A···O1A0.982.362.860 (6)111
C13A—H13A···O3Aiii0.972.573.391 (6)143
C11A—H11A···O3Aiv0.982.603.338 (6)132
C15—H15F···O1v0.962.423.375 (7)171
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+1; (iii) x+2, y1/2, z; (iv) x+2, y+1/2, z; (v) x+2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC25H33FN2O4
Mr444.53
Crystal system, space groupMonoclinic, P21
Temperature (K)180
a, b, c (Å)14.583 (2), 6.3366 (17), 24.697 (3)
β (°) 93.598 (14)
V3)2277.7 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.56 × 0.36 × 0.1
Data collection
DiffractometerAgilent Xcalibur Eos Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.789, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
24656, 5052, 4582
Rint0.066
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.197, 1.12
No. of reflections5050
No. of parameters583
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.37

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick,2008), SHELXL97 (Sheldrick,2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N10.822.192.979 (6)163
O1A—H1A1···N2A0.822.082.882 (6)164
C1—H1···O3i0.982.473.035 (7)116
C13—H131···O3ii0.972.513.394 (7)152
C10—H10···O10.982.362.861 (6)111
C10A—H10A···O1A0.982.362.860 (6)111
C13A—H13A···O3Aiii0.972.573.391 (6)143
C11A—H11A···O3Aiv0.982.603.338 (6)132
C15—H15F···O1v0.962.423.375 (7)171
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+1; (iii) x+2, y1/2, z; (iv) x+2, y+1/2, z; (v) x+2, y+1/2, z+1.
 

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationCastaneda-Acosta, J., Pentes, H. G., Fronczek, F. R. & Fischer, N. H. (1997). J. Chem. Crystallogr. 27, 635–639.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83–91.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNeelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNeukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503–1510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157-162.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o741-o742
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds