organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-2-(4-Bromo­benzyl­­idene)-2,3-di­hydro-1H-inden-1-one

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 13 February 2012; accepted 14 February 2012; online 17 February 2012)

The title indan-1-one derivative, C16H11BrO, is planar, the r.m.s. deviation for all 18 non-H atoms being 0.071 Å. The configuration about the C=C bond [1.337 (5) Å] is E. In the crystal, supra­molecular layers in the ab plane are formed by C—H⋯O inter­actions, involving the bifurcated carbonyl O atom, as well as C—H⋯π inter­actions. The studied crystal was an inversion twin.

Related literature

For the activity of related species for the treatment of Chagas disease, see: Vera-DiVaio et al. (2009[Vera-DiVaio, M. A. F., Freitas, A. C. C., Castro, F. H. C., de Albuquerque, S., Cabral, L. M., Rodrigues, C. R., Albuquerque, M. G., Martins, R. C. A., Henriques, M. G. M. O. & Dias, L. R. S. (2009). Bioorg. Med. Chem. 17, 295-302.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11BrO

  • Mr = 299.16

  • Monoclinic, P n

  • a = 6.1359 (5) Å

  • b = 4.7512 (4) Å

  • c = 21.310 (3) Å

  • β = 96.195 (9)°

  • V = 617.61 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.31 mm−1

  • T = 100 K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.798, Tmax = 1.000

  • 5083 measured reflections

  • 2705 independent reflections

  • 2455 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.068

  • S = 0.99

  • 2705 reflections

  • 164 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1288 Friedel pairs

  • Flack parameter: 0.343 (10)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1b⋯O1i 0.99 2.35 3.220 (5) 146
C15—H15⋯O1ii 0.95 2.54 3.171 (5) 124
C1—H1ACg1iii 0.99 2.61 3.479 (4) 147
Symmetry codes: (i) x+1, y, z; (ii) x+1, y-1, z; (iii) x, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The motivation for the investigation of the title compound, 2-(4-bromobenzylidene)indan-1-one (I), is its relationship to some active compounds developed for the treatment of Chagas disease (Vera-DiVaio et al., 2009).

The molecule of (I), Fig. 1, is planar with a r.m.s. deviation for all 18 non-hydrogen atoms = 0.071 Å. The maximum deviations are found for the Br1 [-0.195 (1) Å] and C16 [-0.096 (3) Å] atoms. The configuration about the C9C10 bond [1.337 (5) Å] is E.

In the crystal packing, C—H···O interactions involving the bifurcated carbonyl-O atom as well as C—H···π interactions link molecules into layers in the ab plane, Fig. 2 and Table 1. The layers stack along the c axis with no specific interactions between them, Fig. 2.

Related literature top

For the activity of related species for the treatment of Chagas disease, see: Vera-DiVaio et al. (2009).

Experimental top

A solution of the 4-bromobenzaldehyde (1.8 g, 0.01 mol) in ethanol (20 ml) was added to a stirred solution of 1-indanone (1.3 g, 0.01 mol) in ethanolic KOH (20%, 20 ml), and stirring was maintained at room temperature for 6 h. The reaction mixture was then poured onto water (200 ml) and set aside overnight. The precipitated solid product was collected by filtration, washed with water, dried and recrystallized from its ethanol solution as blocks; M.pt: 453–455 K.

Refinement top

H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The structure was refined as a racemic twin; the Flack parameter (Flack, 1983) was explicitly refined to 0.343 (10) indicating the fractional contribution of the minor twin component. Owing to poor agreement, the (3 1 6) and (3 0 5) reflections were omitted from the final cycles of refinement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular layer in (I). The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents of (I). The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.
(2E)-2-(4-Bromobenzylidene)-2,3-dihydro-1H-inden-1-one top
Crystal data top
C16H11BrOF(000) = 300
Mr = 299.16Dx = 1.609 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 2365 reflections
a = 6.1359 (5) Åθ = 2.9–27.5°
b = 4.7512 (4) ŵ = 3.31 mm1
c = 21.310 (3) ÅT = 100 K
β = 96.195 (9)°Prism, orange
V = 617.61 (11) Å30.20 × 0.10 × 0.05 mm
Z = 2
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2705 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2455 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.4°
ω scanh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 66
Tmin = 0.798, Tmax = 1.000l = 2727
5083 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0265P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
2705 reflectionsΔρmax = 0.70 e Å3
164 parametersΔρmin = 0.35 e Å3
2 restraintsAbsolute structure: Flack (1983), 1288 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.343 (10)
Crystal data top
C16H11BrOV = 617.61 (11) Å3
Mr = 299.16Z = 2
Monoclinic, PnMo Kα radiation
a = 6.1359 (5) ŵ = 3.31 mm1
b = 4.7512 (4) ÅT = 100 K
c = 21.310 (3) Å0.20 × 0.10 × 0.05 mm
β = 96.195 (9)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2705 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2455 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 1.000Rint = 0.039
5083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.068Δρmax = 0.70 e Å3
S = 0.99Δρmin = 0.35 e Å3
2705 reflectionsAbsolute structure: Flack (1983), 1288 Friedel pairs
164 parametersAbsolute structure parameter: 0.343 (10)
2 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.50001 (3)0.38435 (6)0.489989 (19)0.02212 (10)
O10.1668 (4)1.6578 (5)0.71975 (12)0.0216 (6)
C10.3820 (7)1.3644 (7)0.74899 (19)0.0166 (9)
H1A0.41441.17440.76670.020*
H1B0.49931.41960.72300.020*
C20.3597 (7)1.5761 (7)0.80064 (19)0.0161 (9)
C30.5184 (7)1.6540 (7)0.84972 (18)0.0194 (8)
H30.65961.56950.85410.023*
C40.4630 (7)1.8602 (7)0.89226 (18)0.0235 (9)
H40.56771.91450.92620.028*
C50.2575 (7)1.9869 (8)0.88561 (19)0.0219 (9)
H50.22472.12830.91470.026*
C60.0998 (7)1.9098 (8)0.83714 (17)0.0198 (8)
H60.04121.99470.83280.024*
C70.1545 (6)1.7034 (7)0.79481 (17)0.0166 (8)
C80.0200 (7)1.5875 (8)0.73932 (19)0.0162 (9)
C90.1582 (6)1.3722 (7)0.71053 (19)0.0137 (8)
C100.0759 (6)1.2291 (7)0.65939 (17)0.0155 (8)
H100.07271.26940.64490.019*
C110.1822 (6)1.0181 (7)0.62235 (17)0.0147 (8)
C120.0596 (6)0.9077 (7)0.56840 (17)0.0184 (8)
H120.08770.96700.55810.022*
C130.1497 (6)0.7144 (8)0.53015 (17)0.0197 (9)
H130.06520.64040.49390.024*
C140.3645 (6)0.6305 (7)0.54539 (17)0.0168 (8)
C150.4890 (6)0.7281 (8)0.59864 (18)0.0184 (8)
H150.63550.66520.60880.022*
C160.3964 (6)0.9197 (7)0.63707 (17)0.0177 (8)
H160.48030.98560.67420.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02551 (18)0.02170 (16)0.01955 (16)0.0011 (2)0.00433 (13)0.0025 (2)
O10.0155 (14)0.0269 (14)0.0218 (14)0.0010 (11)0.0003 (12)0.0013 (11)
C10.020 (2)0.017 (2)0.0131 (19)0.0002 (16)0.0018 (18)0.0031 (15)
C20.022 (2)0.0155 (18)0.0107 (19)0.0047 (16)0.0006 (18)0.0059 (16)
C30.0197 (19)0.0189 (18)0.0184 (19)0.0011 (16)0.0036 (16)0.0032 (16)
C40.032 (2)0.022 (2)0.0157 (19)0.0059 (17)0.0009 (17)0.0035 (16)
C50.029 (2)0.0162 (19)0.021 (2)0.0011 (17)0.0057 (18)0.0020 (17)
C60.022 (2)0.021 (2)0.018 (2)0.0028 (17)0.0079 (16)0.0013 (16)
C70.020 (2)0.0139 (17)0.0160 (18)0.0033 (15)0.0024 (16)0.0027 (15)
C80.018 (2)0.018 (2)0.0130 (19)0.0058 (17)0.0037 (18)0.0039 (16)
C90.0134 (18)0.0120 (19)0.016 (2)0.0036 (14)0.0034 (17)0.0046 (15)
C100.0146 (18)0.0200 (19)0.0122 (17)0.0016 (15)0.0025 (15)0.0032 (16)
C110.019 (2)0.0118 (17)0.0138 (19)0.0043 (15)0.0035 (16)0.0034 (15)
C120.0180 (19)0.0155 (18)0.0215 (19)0.0006 (15)0.0010 (16)0.0050 (16)
C130.020 (2)0.0188 (19)0.0187 (19)0.0022 (15)0.0054 (17)0.0021 (15)
C140.023 (2)0.0132 (17)0.0157 (18)0.0038 (15)0.0068 (16)0.0025 (14)
C150.0158 (19)0.0207 (18)0.0187 (18)0.0008 (15)0.0022 (16)0.0051 (16)
C160.020 (2)0.0183 (19)0.0149 (18)0.0040 (16)0.0012 (15)0.0013 (16)
Geometric parameters (Å, º) top
Br1—C141.914 (4)C7—C81.474 (5)
O1—C81.223 (5)C8—C91.501 (5)
C1—C21.508 (5)C9—C101.337 (5)
C1—C91.522 (5)C10—C111.471 (5)
C1—H1A0.9900C10—H100.9500
C1—H1B0.9900C11—C161.398 (5)
C2—C71.390 (5)C11—C121.406 (5)
C2—C31.400 (5)C12—C131.382 (5)
C3—C41.401 (5)C12—H120.9500
C3—H30.9500C13—C141.382 (5)
C4—C51.391 (6)C13—H130.9500
C4—H40.9500C14—C151.378 (5)
C5—C61.386 (5)C15—C161.387 (5)
C5—H50.9500C15—H150.9500
C6—C71.398 (5)C16—H160.9500
C6—H60.9500
C2—C1—C9103.2 (3)C7—C8—C9106.9 (3)
C2—C1—H1A111.1C10—C9—C8119.9 (4)
C9—C1—H1A111.1C10—C9—C1131.8 (4)
C2—C1—H1B111.1C8—C9—C1108.3 (3)
C9—C1—H1B111.1C9—C10—C11129.3 (3)
H1A—C1—H1B109.1C9—C10—H10115.3
C7—C2—C3120.1 (4)C11—C10—H10115.3
C7—C2—C1112.2 (3)C16—C11—C12117.8 (3)
C3—C2—C1127.7 (4)C16—C11—C10124.6 (3)
C2—C3—C4118.1 (4)C12—C11—C10117.6 (3)
C2—C3—H3121.0C13—C12—C11121.2 (4)
C4—C3—H3121.0C13—C12—H12119.4
C5—C4—C3121.2 (4)C11—C12—H12119.4
C5—C4—H4119.4C14—C13—C12119.0 (3)
C3—C4—H4119.4C14—C13—H13120.5
C6—C5—C4120.9 (4)C12—C13—H13120.5
C6—C5—H5119.5C15—C14—C13121.8 (3)
C4—C5—H5119.5C15—C14—Br1118.3 (3)
C5—C6—C7118.0 (4)C13—C14—Br1119.9 (3)
C5—C6—H6121.0C14—C15—C16118.8 (3)
C7—C6—H6121.0C14—C15—H15120.6
C2—C7—C6121.7 (3)C16—C15—H15120.6
C2—C7—C8109.4 (3)C15—C16—C11121.5 (3)
C6—C7—C8128.8 (4)C15—C16—H16119.3
O1—C8—C7126.5 (4)C11—C16—H16119.3
O1—C8—C9126.6 (4)
C9—C1—C2—C71.2 (4)O1—C8—C9—C1177.3 (4)
C9—C1—C2—C3179.9 (4)C7—C8—C9—C11.2 (4)
C7—C2—C3—C40.4 (5)C2—C1—C9—C10178.9 (4)
C1—C2—C3—C4179.0 (4)C2—C1—C9—C81.5 (4)
C2—C3—C4—C50.8 (5)C8—C9—C10—C11177.7 (4)
C3—C4—C5—C61.0 (6)C1—C9—C10—C111.9 (7)
C4—C5—C6—C70.7 (6)C9—C10—C11—C162.8 (6)
C3—C2—C7—C60.2 (6)C9—C10—C11—C12177.2 (4)
C1—C2—C7—C6178.9 (3)C16—C11—C12—C131.8 (5)
C3—C2—C7—C8179.3 (3)C10—C11—C12—C13178.2 (3)
C1—C2—C7—C80.5 (5)C11—C12—C13—C140.3 (5)
C5—C6—C7—C20.3 (5)C12—C13—C14—C151.9 (5)
C5—C6—C7—C8179.0 (4)C12—C13—C14—Br1175.5 (3)
C2—C7—C8—O1178.1 (4)C13—C14—C15—C161.3 (5)
C6—C7—C8—O11.3 (7)Br1—C14—C15—C16176.2 (3)
C2—C7—C8—C90.4 (4)C14—C15—C16—C111.0 (5)
C6—C7—C8—C9179.9 (4)C12—C11—C16—C152.5 (5)
O1—C8—C9—C102.3 (6)C10—C11—C16—C15177.5 (3)
C7—C8—C9—C10179.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1b···O1i0.992.353.220 (5)146
C15—H15···O1ii0.952.543.171 (5)124
C1—H1A···Cg1iii0.992.613.479 (4)147
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H11BrO
Mr299.16
Crystal system, space groupMonoclinic, Pn
Temperature (K)100
a, b, c (Å)6.1359 (5), 4.7512 (4), 21.310 (3)
β (°) 96.195 (9)
V3)617.61 (11)
Z2
Radiation typeMo Kα
µ (mm1)3.31
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.798, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5083, 2705, 2455
Rint0.039
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.068, 0.99
No. of reflections2705
No. of parameters164
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.35
Absolute structureFlack (1983), 1288 Friedel pairs
Absolute structure parameter0.343 (10)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1b···O1i0.992.353.220 (5)146
C15—H15···O1ii0.952.543.171 (5)124
C1—H1A···Cg1iii0.992.613.479 (4)147
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z; (iii) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department of King Abdulaziz University for providing research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVera-DiVaio, M. A. F., Freitas, A. C. C., Castro, F. H. C., de Albuquerque, S., Cabral, L. M., Rodrigues, C. R., Albuquerque, M. G., Martins, R. C. A., Henriques, M. G. M. O. & Dias, L. R. S. (2009). Bioorg. Med. Chem. 17, 295–302.  Web of Science PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds