organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o800-o801

1-(2-Hy­dr­oxy­eth­yl)-1′-methyl-4′-(naph­thal­en-1-yl)-1′′,2′′,3′′,4′′-tetra­hydro­di­spiro­[indoline-3,2′-pyrrolidine-3′,2′′-naphthalene]-2,1′′-dione

aDepartment of Physics, Kalasalingam University, Krishnankoil 626 126, India, bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: s_selvanayagam@rediffmail.com

(Received 13 February 2012; accepted 14 February 2012; online 24 February 2012)

In the title compound, C33H30N2O3, the pyrrolidine ring adopts an envelope conformation in which the H atom attached the an ortho-C atom deviates from the plane, whereas the cyclo­hexa­none ring in the tetra­hydro­naphthalene fused-ring system adopts a sofa conformation. The oxindoline ring system is almost perpendicular with respect to the mean plane of the pyrrolidine ring, with a dihedral angle of 89.0 (1)°. Five intra­molecular C—H⋯O close contacts are observed. In the crystal, mol­ecules associate via O—H⋯O hydrogen bonds, forming R22(14) dimers. In addition, there are weak C—H⋯π inter­actions.

Related literature

For general background to pyrrolidine derivatives, see: Sundar et al. (2011[Sundar, J. K., Rajesh, S. M., Sivamani, J., Perumal, S. & Natarajan, S. (2011). Chem. Cent. J. 5, 45.]); Crooks & Sommerville (1982[Crooks, P. A. & Sommerville, R. (1982). J. Pharm. Sci. 71, 291-294.]); Stylianakis et al. (2003[Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699-1703.]). For a related structure, see: Selvanayagam, Ravikumar et al. (2011[Selvanayagam, S., Ravikumar, K., Saravanan, P. & Raghunathan, R. (2011). Acta Cryst. E67, o751.]); Selvanayagam, Sridhar et al. (2011[Selvanayagam, S., Sridhar, B., Saravanan, P. & Raghunathan, R. (2011). Acta Cryst. E67, o1678-o1679.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C33H30N2O3

  • Mr = 502.59

  • Monoclinic, P 21 /c

  • a = 12.0236 (18) Å

  • b = 14.054 (2) Å

  • c = 15.950 (2) Å

  • β = 107.796 (2)°

  • V = 2566.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 292 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 29561 measured reflections

  • 6100 independent reflections

  • 4956 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.130

  • S = 1.02

  • 6100 reflections

  • 345 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯O1 0.93 2.54 3.198 (2) 128
C24—H24A⋯O2 0.97 2.42 3.098 (2) 127
C14—H14⋯O1 0.93 2.59 3.394 (2) 145
C2—H2⋯O1 0.98 2.21 2.764 (2) 115
C1—H1B⋯O2 0.97 2.40 3.020 (2) 121
O3—H3⋯O2i 0.82 2.03 2.830 (1) 164
C20—H20⋯Cg1ii 0.93 2.71 3.603 (2) 161
Symmetry codes: (i) -x, -y, -z; (ii) -x, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])'; software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Spiro-pyrrolidine ring system is a structural motif in many biologically important and pharmacologically relevant alkaloids. These derivatives are used as antimicrobial and antitumour agents (Sundar et al., 2011). These derivatives possess analgesic (Crooks & Sommerville, 1982) and anti-influenza virus (Stylianakis et al., 2003) activities. In view of these importance and continuation of our work on the crystal structure analyis of spiro-pyrrolidine derivatives, we have undertaken the crystal structure determination of the title compound, and the results are presented here.

The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1. The geometry of pyrrolidine, tetrahydro naphthalene and naphthyl group systems are comparable with the related reported structure (Selvanayagam, Ravikumar et al., 2011; Selvanayagam, Sridhar et al., 2011).

The sum of the angles at N1 of the pyrrolidine ring [335.5°] and N2 of the oxindole ring [359.7°] are in accordance with sp3 and sp2 hybridizations. The short contacts H1B···H7 (2.2 Å) and H2···H14 (1.9 Å) result in substantial widening of the C6—C7—C8 and C14—C15—C6 bond angles [121.8 (2)° and 123.7 (1)°, respectively].

Pyrrolidine ring adopts an envelope conformation, with puckering parameters q2 = 0.431 (1) Å and ϕ = 11.8 (1) °, and with atom C1 deviating 0.606 (1) Å from the least-squares plane passing through the remaining four atoms (N1/C2-C4) of that ring (Cremer & Pople, 1975). The cyclohexanone ring in the tetrahydro naphthaline ring system has a sofa conformation with the lowest asymmetry parameters of ΔC2(C3-C24) = 0.085 (1)° (Nardelli, 1983). The naphthalene ring system is oriented with a dihedral angles of 88.5 (1) and 41.8 (1)°, respectively with respect to the best plane of pyrrolidine ring and oxindole ring systems.

The molecular structure is influenced by an intramolecular C—H···O close contacts. Atom O1 acts as a trifurcated acceptor for three intramolecular C—H···O contacts. In the molecular packing, O—H···O hydrogen bonds involving atoms O3 and O2 link inversion-related molecules to form R22 (14) graph-set dimer (Fig. 2 and Table 1). In addition to this intermolecular C—H···π interactions are formed such that atom H20 is 2.71 Å from the centroid of the phenyl ring (C10-C15) at (-x,-y,1-z), with C20—H20··· centroid angle of 161° and C20···centroid distance of 3.603 (2) Å (Fig. 3).

Related literature top

For general background to pyrrolidine derivatives, see: Sundar et al. (2011); Crooks & Sommerville (1982); Stylianakis et al. (2003). For a related structure, see: Selvanayagam, Ravikumar et al. (2011); Selvanayagam, Sridhar et al. (2011). For ring-puckering parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

To a mixture of 1-(2-hydroxyethyl)indoline-2,3-dione (1mmol), sarcosine (1mmol) and 2-naphthalidene-1,2,3,4-tetrahydronaphthalene-1-one (1mmol) was added and heated under reflux in methanol (20ml) until the disappearance of the starting materials as evidenced by TLC. The solvent was removed under vacuo and the crude product was subjected to column chromatography using petroleum ether-ethyl acetate eluent. Single crystals were grown by slow evaporation from methanol.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H distances of 0.93-0.98 Å and O—H distance of 0.82 Å, and Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C or O) for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009)'; software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed down the b axis; H-bonds are shown as dashed lines forms a R22(14) dimers in unit cell. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted
[Figure 3] Fig. 3. Molecular packing of the title compound showing C—H···π interactions in unit cell. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted
1-(2-Hydroxyethyl)-1'-methyl-4'-(naphthalen-1-yl)-1'',2'',3'',4''- tetrahydrodispiro[indoline-3,2'-pyrrolidine-3',2''-naphthalene]- 2,1''-dione top
Crystal data top
C33H30N2O3F(000) = 1064
Mr = 502.59Dx = 1.301 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 18685 reflections
a = 12.0236 (18) Åθ = 2.2–27.8°
b = 14.054 (2) ŵ = 0.08 mm1
c = 15.950 (2) ÅT = 292 K
β = 107.796 (2)°Block, colourless
V = 2566.2 (7) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4956 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 28.0°, θmin = 1.8°
ω scansh = 1515
29561 measured reflectionsk = 1818
6100 independent reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0763P)2 + 0.3393P]
where P = (Fo2 + 2Fc2)/3
6100 reflections(Δ/σ)max < 0.001
345 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C33H30N2O3V = 2566.2 (7) Å3
Mr = 502.59Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0236 (18) ŵ = 0.08 mm1
b = 14.054 (2) ÅT = 292 K
c = 15.950 (2) Å0.22 × 0.20 × 0.18 mm
β = 107.796 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4956 reflections with I > 2σ(I)
29561 measured reflectionsRint = 0.021
6100 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.02Δρmax = 0.27 e Å3
6100 reflectionsΔρmin = 0.16 e Å3
345 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.10384 (8)0.22419 (7)0.19534 (6)0.0402 (2)
N20.00850 (9)0.00310 (7)0.19134 (7)0.0459 (2)
O10.30700 (9)0.24467 (6)0.39617 (6)0.0558 (2)
O20.11658 (9)0.03889 (7)0.10210 (6)0.0555 (2)
O30.19054 (11)0.03227 (8)0.03809 (7)0.0652 (3)
H30.16060.02060.00060.098*
C10.19263 (10)0.24133 (9)0.15200 (8)0.0434 (3)
H1A0.19270.30730.13410.052*
H1B0.18120.20070.10090.052*
C20.30466 (10)0.21616 (8)0.22418 (7)0.0399 (2)
H20.32340.27100.26400.048*
C30.26925 (9)0.13307 (7)0.27700 (7)0.0365 (2)
C40.13143 (10)0.13071 (8)0.23768 (7)0.0369 (2)
C50.01552 (11)0.23600 (10)0.13839 (9)0.0523 (3)
H5A0.02790.30100.11940.078*
H5B0.06890.21950.17020.078*
H5C0.02860.19530.08800.078*
C60.41155 (11)0.19724 (9)0.19625 (8)0.0449 (3)
C70.40481 (14)0.14455 (11)0.12339 (10)0.0597 (4)
H70.33240.12180.08940.072*
C80.50454 (17)0.12346 (14)0.09794 (12)0.0758 (5)
H80.49700.08910.04670.091*
C90.61114 (15)0.15324 (14)0.14808 (13)0.0746 (5)
H90.67670.13790.13150.090*
C100.62429 (12)0.20652 (11)0.22432 (11)0.0603 (4)
C110.73543 (14)0.23652 (14)0.27924 (15)0.0771 (5)
H110.80190.21930.26460.093*
C120.74729 (15)0.28936 (15)0.35201 (15)0.0834 (6)
H120.82120.30780.38700.100*
C130.65024 (15)0.31585 (13)0.37427 (13)0.0769 (5)
H130.65880.35370.42370.092*
C140.54088 (13)0.28741 (10)0.32481 (10)0.0588 (4)
H140.47660.30550.34190.071*
C150.52372 (11)0.23149 (9)0.24881 (9)0.0480 (3)
C160.30264 (10)0.16184 (8)0.37488 (7)0.0397 (2)
C170.32705 (10)0.08631 (9)0.44286 (7)0.0412 (3)
C180.35333 (11)0.11383 (10)0.53084 (8)0.0496 (3)
H180.35840.17810.54530.060*
C190.37171 (13)0.04706 (12)0.59598 (9)0.0601 (4)
H190.38960.06580.65450.072*
C200.36361 (13)0.04786 (12)0.57435 (10)0.0643 (4)
H200.37420.09340.61840.077*
C210.34002 (13)0.07620 (10)0.48835 (10)0.0574 (3)
H210.33630.14070.47490.069*
C220.32156 (10)0.00945 (9)0.42105 (8)0.0445 (3)
C230.29843 (12)0.03946 (8)0.32751 (9)0.0494 (3)
H23A0.21660.05600.30290.059*
H23B0.34420.09580.32560.059*
C240.32839 (11)0.03774 (8)0.27179 (8)0.0433 (3)
H24A0.30530.01680.21090.052*
H24B0.41240.04690.29070.052*
C250.06134 (10)0.10957 (8)0.29967 (7)0.0388 (2)
C260.05570 (11)0.15438 (9)0.37485 (8)0.0462 (3)
H260.09920.20900.39500.055*
C270.01597 (13)0.11681 (11)0.42021 (9)0.0578 (4)
H270.01980.14630.47150.069*
C280.08122 (13)0.03680 (13)0.39040 (10)0.0634 (4)
H280.12760.01210.42240.076*
C290.07937 (12)0.00782 (11)0.31387 (9)0.0574 (3)
H290.12480.06140.29290.069*
C300.00761 (10)0.03006 (8)0.26956 (8)0.0435 (3)
C310.08823 (10)0.05013 (8)0.16833 (8)0.0420 (3)
C320.05995 (13)0.07827 (10)0.13719 (10)0.0569 (3)
H32A0.06090.13300.17400.068*
H32B0.02300.09740.09360.068*
C330.18359 (13)0.04818 (11)0.09099 (10)0.0604 (4)
H33A0.22450.10030.05470.072*
H33B0.22270.03490.13470.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0400 (5)0.0397 (5)0.0409 (5)0.0025 (4)0.0125 (4)0.0074 (4)
N20.0489 (6)0.0408 (5)0.0435 (5)0.0068 (4)0.0073 (4)0.0023 (4)
O10.0814 (7)0.0387 (5)0.0462 (5)0.0043 (4)0.0181 (5)0.0082 (4)
O20.0625 (6)0.0640 (6)0.0414 (5)0.0040 (4)0.0178 (4)0.0132 (4)
O30.0724 (7)0.0672 (6)0.0546 (6)0.0100 (5)0.0171 (5)0.0018 (5)
C10.0446 (6)0.0444 (6)0.0425 (6)0.0008 (5)0.0152 (5)0.0075 (5)
C20.0406 (6)0.0385 (6)0.0409 (6)0.0016 (4)0.0131 (5)0.0007 (4)
C30.0405 (6)0.0340 (5)0.0346 (5)0.0005 (4)0.0106 (4)0.0017 (4)
C40.0413 (6)0.0353 (5)0.0341 (5)0.0008 (4)0.0113 (4)0.0003 (4)
C50.0432 (7)0.0575 (8)0.0532 (7)0.0032 (5)0.0103 (5)0.0145 (6)
C60.0449 (6)0.0457 (6)0.0461 (6)0.0018 (5)0.0170 (5)0.0061 (5)
C70.0603 (8)0.0694 (9)0.0528 (7)0.0048 (7)0.0223 (6)0.0030 (6)
C80.0860 (12)0.0850 (12)0.0696 (10)0.0159 (9)0.0435 (9)0.0009 (9)
C90.0644 (10)0.0850 (11)0.0888 (12)0.0199 (8)0.0447 (9)0.0227 (10)
C100.0489 (7)0.0606 (8)0.0762 (10)0.0076 (6)0.0264 (7)0.0291 (7)
C110.0430 (8)0.0840 (12)0.1049 (14)0.0056 (7)0.0236 (8)0.0441 (11)
C120.0495 (9)0.0860 (13)0.1007 (15)0.0155 (8)0.0022 (9)0.0262 (11)
C130.0629 (10)0.0701 (10)0.0830 (11)0.0189 (8)0.0007 (8)0.0044 (9)
C140.0500 (7)0.0546 (8)0.0660 (9)0.0086 (6)0.0090 (6)0.0026 (6)
C150.0430 (6)0.0447 (6)0.0568 (7)0.0013 (5)0.0159 (5)0.0167 (5)
C160.0415 (6)0.0378 (6)0.0387 (5)0.0004 (4)0.0104 (4)0.0034 (4)
C170.0386 (6)0.0454 (6)0.0377 (5)0.0024 (5)0.0088 (4)0.0012 (5)
C180.0482 (7)0.0594 (8)0.0405 (6)0.0038 (6)0.0125 (5)0.0024 (5)
C190.0564 (8)0.0838 (11)0.0390 (6)0.0105 (7)0.0133 (6)0.0085 (6)
C200.0606 (9)0.0761 (10)0.0555 (8)0.0123 (7)0.0167 (7)0.0265 (7)
C210.0583 (8)0.0502 (7)0.0614 (8)0.0060 (6)0.0149 (6)0.0141 (6)
C220.0409 (6)0.0430 (6)0.0469 (6)0.0035 (5)0.0093 (5)0.0056 (5)
C230.0580 (7)0.0339 (6)0.0504 (7)0.0049 (5)0.0080 (6)0.0015 (5)
C240.0481 (6)0.0388 (6)0.0409 (6)0.0058 (5)0.0104 (5)0.0050 (4)
C250.0412 (6)0.0378 (5)0.0373 (5)0.0030 (4)0.0119 (4)0.0058 (4)
C260.0499 (7)0.0474 (6)0.0417 (6)0.0076 (5)0.0147 (5)0.0030 (5)
C270.0603 (8)0.0749 (10)0.0432 (7)0.0141 (7)0.0234 (6)0.0107 (6)
C280.0541 (8)0.0854 (11)0.0550 (8)0.0013 (7)0.0229 (6)0.0247 (7)
C290.0529 (7)0.0608 (8)0.0564 (8)0.0097 (6)0.0134 (6)0.0168 (6)
C300.0434 (6)0.0431 (6)0.0414 (6)0.0001 (5)0.0092 (5)0.0085 (5)
C310.0429 (6)0.0414 (6)0.0386 (6)0.0001 (5)0.0079 (5)0.0026 (4)
C320.0621 (8)0.0406 (7)0.0592 (8)0.0100 (6)0.0053 (6)0.0056 (6)
C330.0583 (8)0.0640 (9)0.0517 (7)0.0152 (6)0.0063 (6)0.0021 (6)
Geometric parameters (Å, º) top
N1—C51.4545 (16)C12—H120.9300
N1—C11.4582 (15)C13—C141.370 (2)
N1—C41.4681 (14)C13—H130.9300
N2—C311.3522 (16)C14—C151.406 (2)
N2—C301.3996 (16)C14—H140.9300
N2—C321.4508 (16)C16—C171.4812 (16)
O1—C161.2091 (14)C17—C221.3865 (17)
O2—C311.2154 (15)C17—C181.3957 (16)
O3—C331.3979 (18)C18—C191.3669 (19)
O3—H30.8200C18—H180.9300
C1—C21.5222 (16)C19—C201.374 (2)
C1—H1A0.9700C19—H190.9300
C1—H1B0.9700C20—C211.372 (2)
C2—C61.5069 (17)C20—H200.9300
C2—C31.5729 (15)C21—C221.3914 (18)
C2—H20.9800C21—H210.9300
C3—C241.5308 (15)C22—C231.4926 (18)
C3—C161.5423 (15)C23—C241.5142 (18)
C3—C41.5828 (16)C23—H23A0.9700
C4—C251.5118 (15)C23—H23B0.9700
C4—C311.5572 (15)C24—H24A0.9700
C5—H5A0.9600C24—H24B0.9700
C5—H5B0.9600C25—C261.3743 (17)
C5—H5C0.9600C25—C301.3868 (17)
C6—C71.3593 (19)C26—C271.3876 (19)
C6—C151.4361 (18)C26—H260.9300
C7—C81.410 (2)C27—C281.370 (2)
C7—H70.9300C27—H270.9300
C8—C91.353 (3)C28—C291.378 (2)
C8—H80.9300C28—H280.9300
C9—C101.395 (3)C29—C301.3784 (18)
C9—H90.9300C29—H290.9300
C10—C111.420 (2)C32—C331.504 (2)
C10—C151.4236 (19)C32—H32A0.9700
C11—C121.348 (3)C32—H32B0.9700
C11—H110.9300C33—H33A0.9700
C12—C131.371 (3)C33—H33B0.9700
C5—N1—C1114.25 (9)O1—C16—C17120.16 (10)
C5—N1—C4115.50 (9)O1—C16—C3120.81 (10)
C1—N1—C4105.70 (9)C17—C16—C3119.02 (9)
C31—N2—C30111.13 (10)C22—C17—C18120.00 (11)
C31—N2—C32124.16 (11)C22—C17—C16121.90 (10)
C30—N2—C32124.42 (11)C18—C17—C16118.09 (11)
C33—O3—H3109.5C19—C18—C17120.55 (13)
N1—C1—C2102.12 (9)C19—C18—H18119.7
N1—C1—H1A111.3C17—C18—H18119.7
C2—C1—H1A111.3C18—C19—C20119.55 (13)
N1—C1—H1B111.3C18—C19—H19120.2
C2—C1—H1B111.3C20—C19—H19120.2
H1A—C1—H1B109.2C21—C20—C19120.66 (13)
C6—C2—C1117.06 (10)C21—C20—H20119.7
C6—C2—C3114.98 (9)C19—C20—H20119.7
C1—C2—C3104.82 (9)C20—C21—C22120.73 (14)
C6—C2—H2106.4C20—C21—H21119.6
C1—C2—H2106.4C22—C21—H21119.6
C3—C2—H2106.4C17—C22—C21118.48 (12)
C24—C3—C16107.63 (9)C17—C22—C23120.34 (11)
C24—C3—C2114.47 (9)C21—C22—C23121.17 (12)
C16—C3—C2108.55 (9)C22—C23—C24112.28 (10)
C24—C3—C4114.06 (9)C22—C23—H23A109.1
C16—C3—C4108.89 (9)C24—C23—H23A109.1
C2—C3—C4103.02 (8)C22—C23—H23B109.1
N1—C4—C25112.58 (9)C24—C23—H23B109.1
N1—C4—C31110.16 (9)H23A—C23—H23B107.9
C25—C4—C31100.96 (9)C23—C24—C3113.42 (10)
N1—C4—C3103.03 (8)C23—C24—H24A108.9
C25—C4—C3118.06 (9)C3—C24—H24A108.9
C31—C4—C3112.22 (9)C23—C24—H24B108.9
N1—C5—H5A109.5C3—C24—H24B108.9
N1—C5—H5B109.5H24A—C24—H24B107.7
H5A—C5—H5B109.5C26—C25—C30119.19 (11)
N1—C5—H5C109.5C26—C25—C4131.81 (11)
H5A—C5—H5C109.5C30—C25—C4109.00 (10)
H5B—C5—H5C109.5C25—C26—C27118.99 (13)
C7—C6—C15118.79 (12)C25—C26—H26120.5
C7—C6—C2121.02 (12)C27—C26—H26120.5
C15—C6—C2120.13 (11)C28—C27—C26120.81 (13)
C6—C7—C8121.79 (15)C28—C27—H27119.6
C6—C7—H7119.1C26—C27—H27119.6
C8—C7—H7119.1C27—C28—C29121.20 (13)
C9—C8—C7120.01 (16)C27—C28—H28119.4
C9—C8—H8120.0C29—C28—H28119.4
C7—C8—H8120.0C30—C29—C28117.41 (13)
C8—C9—C10121.04 (14)C30—C29—H29121.3
C8—C9—H9119.5C28—C29—H29121.3
C10—C9—H9119.5C29—C30—C25122.36 (12)
C9—C10—C11122.12 (15)C29—C30—N2127.39 (12)
C9—C10—C15119.47 (14)C25—C30—N2110.25 (10)
C11—C10—C15118.41 (17)O2—C31—N2125.07 (11)
C12—C11—C10121.79 (16)O2—C31—C4126.21 (11)
C12—C11—H11119.1N2—C31—C4108.64 (10)
C10—C11—H11119.1N2—C32—C33112.50 (12)
C11—C12—C13119.87 (16)N2—C32—H32A109.1
C11—C12—H12120.1C33—C32—H32A109.1
C13—C12—H12120.1N2—C32—H32B109.1
C12—C13—C14120.98 (19)C33—C32—H32B109.1
C12—C13—H13119.5H32A—C32—H32B107.8
C14—C13—H13119.5O3—C33—C32113.01 (12)
C13—C14—C15121.44 (16)O3—C33—H33A109.0
C13—C14—H14119.3C32—C33—H33A109.0
C15—C14—H14119.3O3—C33—H33B109.0
C14—C15—C10117.47 (13)C32—C33—H33B109.0
C14—C15—C6123.69 (12)H33A—C33—H33B107.8
C10—C15—C6118.82 (13)
C5—N1—C1—C2175.59 (10)O1—C16—C17—C22179.21 (12)
C4—N1—C1—C247.49 (11)C3—C16—C17—C220.48 (16)
N1—C1—C2—C6162.32 (10)O1—C16—C17—C180.81 (17)
N1—C1—C2—C333.58 (11)C3—C16—C17—C18177.92 (10)
C6—C2—C3—C2414.77 (14)C22—C17—C18—C191.21 (19)
C1—C2—C3—C24115.21 (10)C16—C17—C18—C19177.22 (12)
C6—C2—C3—C16105.48 (11)C17—C18—C19—C200.3 (2)
C1—C2—C3—C16124.54 (10)C18—C19—C20—C211.6 (2)
C6—C2—C3—C4139.17 (10)C19—C20—C21—C221.3 (2)
C1—C2—C3—C49.19 (11)C18—C17—C22—C211.49 (18)
C5—N1—C4—C2563.23 (13)C16—C17—C22—C21176.88 (11)
C1—N1—C4—C25169.41 (9)C18—C17—C22—C23177.44 (11)
C5—N1—C4—C3148.61 (13)C16—C17—C22—C234.19 (18)
C1—N1—C4—C3178.75 (11)C20—C21—C22—C170.3 (2)
C5—N1—C4—C3168.51 (10)C20—C21—C22—C23178.64 (13)
C1—N1—C4—C341.16 (10)C17—C22—C23—C2421.81 (17)
C24—C3—C4—N1142.90 (9)C21—C22—C23—C24157.09 (12)
C16—C3—C4—N196.87 (10)C22—C23—C24—C353.54 (14)
C2—C3—C4—N118.23 (10)C16—C3—C24—C2355.80 (13)
C24—C3—C4—C2592.34 (12)C2—C3—C24—C23176.56 (10)
C16—C3—C4—C2527.88 (13)C4—C3—C24—C2365.12 (13)
C2—C3—C4—C25142.98 (9)N1—C4—C25—C2661.43 (16)
C24—C3—C4—C3124.43 (13)C31—C4—C25—C26178.86 (12)
C16—C3—C4—C31144.66 (9)C3—C4—C25—C2658.47 (16)
C2—C3—C4—C31100.24 (10)N1—C4—C25—C30117.98 (10)
C1—C2—C6—C742.55 (17)C31—C4—C25—C300.55 (11)
C3—C2—C6—C781.16 (15)C3—C4—C25—C30122.12 (10)
C1—C2—C6—C15140.16 (12)C30—C25—C26—C272.18 (17)
C3—C2—C6—C1596.14 (13)C4—C25—C26—C27178.46 (12)
C15—C6—C7—C80.5 (2)C25—C26—C27—C280.6 (2)
C2—C6—C7—C8177.84 (14)C26—C27—C28—C291.2 (2)
C6—C7—C8—C92.2 (3)C27—C28—C29—C301.3 (2)
C7—C8—C9—C101.3 (3)C28—C29—C30—C250.3 (2)
C8—C9—C10—C11178.36 (16)C28—C29—C30—N2179.84 (13)
C8—C9—C10—C151.2 (2)C26—C25—C30—C292.08 (18)
C9—C10—C11—C12178.86 (16)C4—C25—C30—C29178.42 (11)
C15—C10—C11—C121.6 (2)C26—C25—C30—N2178.34 (10)
C10—C11—C12—C130.3 (3)C4—C25—C30—N21.16 (13)
C11—C12—C13—C141.7 (3)C31—N2—C30—C29178.19 (13)
C12—C13—C14—C151.1 (3)C32—N2—C30—C297.8 (2)
C13—C14—C15—C100.9 (2)C31—N2—C30—C251.36 (14)
C13—C14—C15—C6177.94 (14)C32—N2—C30—C25172.66 (11)
C9—C10—C15—C14178.30 (13)C30—N2—C31—O2177.80 (12)
C11—C10—C15—C142.11 (19)C32—N2—C31—O23.8 (2)
C9—C10—C15—C62.82 (19)C30—N2—C31—C40.96 (13)
C11—C10—C15—C6176.76 (12)C32—N2—C31—C4173.07 (11)
C7—C6—C15—C14179.24 (13)N1—C4—C31—O257.84 (15)
C2—C6—C15—C143.40 (18)C25—C4—C31—O2177.03 (12)
C7—C6—C15—C101.96 (18)C3—C4—C31—O256.34 (15)
C2—C6—C15—C10175.39 (11)N1—C4—C31—N2118.95 (10)
C24—C3—C16—O1151.83 (12)C25—C4—C31—N20.25 (11)
C2—C3—C16—O127.41 (15)C3—C4—C31—N2126.88 (10)
C4—C3—C16—O184.06 (13)C31—N2—C32—C33103.09 (15)
C24—C3—C16—C1729.45 (13)C30—N2—C32—C3370.17 (16)
C2—C3—C16—C17153.87 (10)N2—C32—C33—O357.18 (17)
C4—C3—C16—C1794.66 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C26—H26···O10.932.543.198 (2)128
C24—H24A···O20.972.423.098 (2)127
C14—H14···O10.932.593.394 (2)145
C2—H2···O10.982.212.764 (2)115
C1—H1B···O20.972.403.020 (2)121
O3—H3···O2i0.822.032.830 (1)164
C20—H20···Cg1ii0.932.713.603 (2)161
Symmetry codes: (i) x, y, z; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC33H30N2O3
Mr502.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)12.0236 (18), 14.054 (2), 15.950 (2)
β (°) 107.796 (2)
V3)2566.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
29561, 6100, 4956
Rint0.021
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.130, 1.02
No. of reflections6100
No. of parameters345
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.16

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009)', SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C26—H26···O10.932.543.198 (2)128
C24—H24A···O20.972.423.098 (2)127
C14—H14···O10.932.593.394 (2)145
C2—H2···O10.982.212.764 (2)115
C1—H1B···O20.972.403.020 (2)121
O3—H3···O2i0.822.032.830 (1)164
C20—H20···Cg1ii0.932.713.603 (2)161
Symmetry codes: (i) x, y, z; (ii) x, y, z+1.
 

Acknowledgements

SS acknowledges the Department of Science and Technology (DST), India, for providing computing facilities under the DST Fast Track Scheme. SS also thanks the Vice Chancellor and management of the Kalasalingam University, Krishnankoil, for their support and encouragement.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCrooks, P. A. & Sommerville, R. (1982). J. Pharm. Sci. 71, 291–294.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSelvanayagam, S., Ravikumar, K., Saravanan, P. & Raghunathan, R. (2011). Acta Cryst. E67, o751.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSelvanayagam, S., Sridhar, B., Saravanan, P. & Raghunathan, R. (2011). Acta Cryst. E67, o1678–o1679.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699–1703.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSundar, J. K., Rajesh, S. M., Sivamani, J., Perumal, S. & Natarajan, S. (2011). Chem. Cent. J. 5, 45.  Web of Science CSD CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o800-o801
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds