organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o860-o861

N2-(7-Bromo-9-butyl-9H-carbazol-2-yl)-9,9-di­ethyl-N2,N7,N7-tri­phenyl-9H-fluorene-2,7-di­amine

aOrganic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 20 February 2012; accepted 22 February 2012; online 29 February 2012)

In the title mol­ecule, C51H46BrN3, the central fluorene residue is planar (r.m.s. deviation = 0.0203 Å), as is the carbazole system (r.m.s. deviation = 0.0154 Å), and these groups are almost orthogonal [dihedral angle = 79.72 (3)°]. The three-dimensional architecture is consolidated by C—H⋯π inter­actions. The butyl substituent is disordered with two sites resolved for the terminal propyl atoms; the major component had a site-occupancy factor of 0.686 (3).

Related literature

For the use of carbazole and fluorene derivatives as hole-transporting and emitting materials in organic light-emitting diodes and as sensitizers in dye-sensitized solar cells, see: Thomas et al. (2001[Thomas, K. R. J., Lin, J. T., Tao, Y.-T. & Ko, C.-W. (2001). J. Am. Chem. Soc. 123, 9404—9411.], 2004[Thomas, K. R. J., Lin, J. T., Tao, Y.-T. & Chuan, C.-H. (2004). Chem. Mater. 16, 5437-5444.]); Baheti et al. (2009[Baheti, A., Tyagi, P., Thomas, K. R. J., Hsu, Y. C. & Lin, J. T. (2009). J. Phys. Chem. C, 113, 8541—8547.], 2011[Baheti, A., Singh, P., Lee, C.-P., Thomas, K. R. J. & Ho, K.-C. (2011). J. Org. Chem. 76, 4910—4920.]). For related structures, see: Low et al. (2005[Low, P. J., Paterson, M. A. J., Yufit, D. S., Howard, J. A. K., Cherryman, J. C., Tackley, D. R., Brooke, R. & Brown, B. (2005). J. Mater. Chem. 15, 2304-2315.]); Chen et al. (2009[Chen, L., Cheng, W., Song, G.-L. & Zhu, H.-J. (2009). Acta Cryst. E65, o574.]); Gagnon & Laliberté (2008[Gagnon, E. & Laliberté, D. (2008). Acta Cryst. E64, o2147.]).

[Scheme 1]

Experimental

Crystal data
  • C51H46BrN3

  • Mr = 780.82

  • Monoclinic, P 21 /n

  • a = 8.6585 (2) Å

  • b = 10.6744 (2) Å

  • c = 43.6607 (6) Å

  • β = 92.114 (2)°

  • V = 4032.56 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.68 mm−1

  • T = 100 K

  • 0.22 × 0.18 × 0.14 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.836, Tmax = 1.000

  • 17423 measured reflections

  • 8220 independent reflections

  • 7219 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 1.05

  • 8220 reflections

  • 506 parameters

  • 28 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1–Cg3 are the centroids of the C13–C18, C7–C12 and C36⋯C41 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cg1i 0.95 2.67 3.444 (3) 139
C20—H20⋯Cg2ii 0.95 2.85 3.579 (2) 135
C44—H44⋯Cg3iii 0.95 2.99 3.836 (3) 149
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z+1; (iii) [x+{\script{3\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Carbazole (Thomas et al., 2001; Thomas et al., 2004) and fluorene (Baheti et al., 2009; Baheti et al., 2011) derivatives have been widely used as hole-transporting and emitting materials in organic light-emitting diodes and as sensitizers in dye-sensitized solar cells. The title compound, N2-(7-bromo-9-butyl-9H-carbazol-2-yl)-9,9-diethyl-N2,N7,N7-triphenyl-9H-fluorene-2,7-diamine (I), was synthesized as an intermediate in the synthetic sequence for the development of donor-acceptor compounds suitable for application as sensitizers in dye-sensitized solar cells.. Herein, the crystal structure determination of (I) is described. Related structures are known, i.e. 9,9-diethyl-N2,N2,N7,N7-tetraphenyl-9H-fluorene-2,7-diamine (Low et al., 2005), 9-butyl-9H-carbazole (Chen et al., 2009) and 2,7-dibromo-9-octyl-9H-carbazole (Gagnon & Laliberté, 2008).

In (I), Fig. 1, the 13 non-hydrogen atoms of the central fluorene residue are co-planar (r.m.s. deviation = 0.0203 Å). Similarly, the 13 non-hydrogen atoms of the carbazole system forms a plane (r.m.s. deviation = 0.0154 Å). The dihedral angle between the fluorene and carbazole fused ring systems is 79.72 (3)°, indicating an almost orthogonal relationship. The fluorene system forms dihedral angles of 88.22 (6) and 58.51 (7)° with the C1–C6 and C7–C12 N1-amine-phenyl rings, respectively; the dihedral angle between these phenyl rings is 64.45 (8) °. At the N2-amine side of the molecule, the dihedral angles formed between the fluorene and carbazole fused ring systems with the N2-bound phenyl ring are 62.96 (6) and 71.53 (6)°, respectively. With respect to the five-membered ring in the fluorene residue, the ethyl substituents are virtually perpendicular as seen in the values of the C17–C25–C26–C27 and C17–C25–C28–C29 torsion angles of 54.4 (3) and -60.6 (3)°, respectively. Finally, the major component of the disordered n-butyl chain adopts an extended trans conformation with the C48–C49–C50–C51 torsion angle being 173.2 (3)°; the equivalent value for the minor component is 179.8 (8)°.

Molecules are consolidated in the three-dimensional architecture by C—H···π interactions, Fig. 2 and Table 1.

Related literature top

For the use of carbazole and fluorene derivatives as hole-transporting and emitting materials in organic light-emitting diodes and as sensitizers in dye-sensitized solar cells, see: Thomas et al. (2001, 2004); Baheti et al. (2009, 2011). For related structures, see: Low et al. (2005); Chen et al. (2009); Gagnon & Laliberté (2008).

Experimental top

A mixture of 9,9-diethyl-N2,N2,N7-triphenyl-9H-fluorene-2,7-diamine, 2,7-dibromo-9-butyl-9H-carbazole, bis(diphenylphosphino)ferrocene, sodium tert-butoxide, and toluene (20 ml) was heated at 353 K for 36 h. The resultant solution was poured into water and extracted with dichloromethane. After drying over anhydrous sodium sulfate the combined dichloromethane extract was evaporated to yield a crude product. It was purified by column chromatography on silica gel using 4:1 mixture of hexanes and dichloromethane. White solid. Yield 66%; M.pt. 413–415 K. Re-crystallization was by slow evaporation of a solution of (I) from a 1:1 mixture of hexanes and dichloromethane. 1H NMR (500 MHz, CDCl3) δ 0.39 (t, J = 7.5 Hz, 6 H), 0.85–0.88 (m, 3 H), 1.29 (dd, J = 15.5 Hz, 7.5 Hz, 2 H), 1.71 (t, J = 7.5 Hz, 2 H), 1.81 (dd, J = 14.5 Hz, 7.5 Hz, 4 H), 4.06 (t, J = 7.0 Hz, 2 H), 6.98 (m, 5 H), 7.07–7.14 (m, 8 H), 7.17 (d, J = 8.5 Hz, 2 H), 7.23–7.25 (m, 3 H), 7.26–7.30 (m, 4 H), 7.46 (d, J = 1.0 Hz, 1 H), 7.49–7.52 (m, 2 H), 7.82 (d, J = 8.5 Hz, 1 H), 7.87 (d, J = 8.5 Hz, 1 H); 13C NMR (125.77 MHz, CDCl3) δ 151.32, 151.25, 148.45, 148.11, 147.02, 146.82, 146.58, 141.76, 141.71, 136.69, 136.66, 129.16, 123.87, 122.38, 122.06, 121.98, 120.83, 120.76, 119.80, 119.58, 119.45, 118.27, 117.74, 116.91, 111.58, 104.15, 56.09, 42.82, 32.59, 30.95, 20.45, 13.81, 8.63. HRMS calcd. for C51H46BrN3 [M + H] m/z 780.2948 found 780.2945.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The terminal propyl group of the butyl substituent was found to be disordered. Two sites were resolved and from fractional refinement (common anisotropic displacement parameters for pairs of atoms, and with 1,2- and 1,3- C—C distance constraints = 1.50±0.01 and 2.35±0.01 Å, respectively). The major component had a site occupancy factor = 0.686 (3).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Only the major component of the disordered n-butyl group is shown for reasons of clarity.
[Figure 2] Fig. 2. A view in projection down the b axis of the unit-cell contents of (I). The C—H···π interactions are shown as purple dashed lines.
N2-(7-Bromo-9-butyl-9H-carbazol-2-yl)-9,9-diethyl- N2,N7,N7-triphenyl-9H-fluorene-2,7-diamine top
Crystal data top
C51H46BrN3F(000) = 1632
Mr = 780.82Dx = 1.286 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 7520 reflections
a = 8.6585 (2) Åθ = 3.0–76.8°
b = 10.6744 (2) ŵ = 1.68 mm1
c = 43.6607 (6) ÅT = 100 K
β = 92.114 (2)°Wedge, colourless
V = 4032.56 (13) Å30.22 × 0.18 × 0.14 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
8220 independent reflections
Radiation source: SuperNova (Cu) X-ray Source7219 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.4041 pixels mm-1θmax = 75.0°, θmin = 4.1°
ω scanh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1313
Tmin = 0.836, Tmax = 1.000l = 5423
17423 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0457P)2 + 2.7341P]
where P = (Fo2 + 2Fc2)/3
8220 reflections(Δ/σ)max < 0.001
506 parametersΔρmax = 0.39 e Å3
28 restraintsΔρmin = 0.66 e Å3
Crystal data top
C51H46BrN3V = 4032.56 (13) Å3
Mr = 780.82Z = 4
Monoclinic, P21/nCu Kα radiation
a = 8.6585 (2) ŵ = 1.68 mm1
b = 10.6744 (2) ÅT = 100 K
c = 43.6607 (6) Å0.22 × 0.18 × 0.14 mm
β = 92.114 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
8220 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
7219 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 1.000Rint = 0.025
17423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04428 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.05Δρmax = 0.39 e Å3
8220 reflectionsΔρmin = 0.66 e Å3
506 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.49451 (3)0.07445 (3)0.162449 (5)0.04399 (10)
N10.0180 (3)0.1837 (2)0.52239 (4)0.0408 (5)
N20.4685 (3)0.59397 (17)0.35350 (4)0.0359 (4)
N30.3902 (2)0.40069 (17)0.25166 (4)0.0314 (4)
C10.0477 (3)0.1430 (2)0.55124 (5)0.0382 (5)
C20.0076 (4)0.1870 (3)0.57881 (5)0.0465 (6)
H20.09170.24410.57880.056*
C30.0613 (4)0.1465 (3)0.60610 (6)0.0568 (8)
H30.02460.17670.62500.068*
C40.1818 (4)0.0636 (3)0.60631 (6)0.0605 (8)
H40.22920.03720.62520.073*
C50.2344 (4)0.0182 (3)0.57888 (7)0.0578 (8)
H50.31660.04080.57890.069*
C60.1670 (3)0.0588 (3)0.55128 (6)0.0463 (6)
H60.20360.02810.53240.056*
C70.1775 (3)0.1817 (2)0.51665 (5)0.0387 (5)
C80.2718 (3)0.1027 (2)0.53283 (6)0.0434 (6)
H80.22750.04930.54820.052*
C90.4296 (3)0.1006 (2)0.52690 (6)0.0464 (6)
H90.49240.04740.53870.056*
C100.4982 (3)0.1748 (2)0.50412 (6)0.0442 (6)
H100.60640.17160.49980.053*
C110.4046 (3)0.2534 (2)0.48794 (5)0.0424 (6)
H110.44930.30510.47230.051*
C120.2482 (3)0.2583 (2)0.49409 (5)0.0405 (6)
H120.18670.31460.48290.049*
C130.0785 (3)0.2533 (2)0.50293 (5)0.0377 (5)
C140.1720 (3)0.3484 (2)0.51471 (5)0.0402 (6)
H140.17750.36250.53620.048*
C150.2576 (3)0.4233 (2)0.49566 (5)0.0388 (5)
H150.32350.48690.50400.047*
C160.2453 (3)0.4037 (2)0.46407 (5)0.0359 (5)
C170.1538 (3)0.3060 (2)0.45225 (5)0.0344 (5)
C180.0723 (3)0.2289 (2)0.47129 (5)0.0376 (5)
H180.01330.16070.46320.045*
C190.3147 (3)0.4699 (2)0.43853 (5)0.0340 (5)
C200.4145 (3)0.5718 (2)0.43754 (5)0.0366 (5)
H200.44730.61310.45590.044*
C210.4658 (3)0.6129 (2)0.40948 (5)0.0365 (5)
H210.53580.68140.40880.044*
C220.4151 (3)0.5542 (2)0.38222 (5)0.0338 (5)
C230.3134 (3)0.4527 (2)0.38326 (5)0.0336 (5)
H230.27890.41240.36480.040*
C240.2632 (3)0.4112 (2)0.41116 (5)0.0331 (5)
C250.1528 (3)0.3044 (2)0.41730 (5)0.0342 (5)
C260.0112 (3)0.3300 (2)0.40369 (5)0.0387 (5)
H26A0.00620.33410.38110.046*
H26B0.07840.25840.40870.046*
C270.0858 (3)0.4496 (3)0.41489 (6)0.0447 (6)
H27A0.18980.45770.40550.067*
H27B0.02310.52190.40920.067*
H27C0.09260.44650.43720.067*
C280.2109 (3)0.1793 (2)0.40461 (5)0.0380 (5)
H28A0.14180.11140.41120.046*
H28B0.20390.18250.38190.046*
C290.3755 (3)0.1469 (2)0.41470 (5)0.0437 (6)
H29A0.40370.06580.40600.066*
H29B0.38360.14220.43710.066*
H29C0.44570.21180.40750.066*
C300.4771 (3)0.7215 (2)0.34542 (5)0.0335 (5)
C310.3800 (3)0.8101 (2)0.35774 (5)0.0412 (6)
H310.30560.78570.37200.049*
C320.3923 (4)0.9345 (2)0.34904 (6)0.0542 (8)
H320.32600.99510.35760.065*
C330.4991 (4)0.9723 (3)0.32808 (7)0.0582 (9)
H330.50661.05790.32230.070*
C340.5945 (4)0.8839 (3)0.31569 (6)0.0533 (7)
H340.66730.90840.30110.064*
C350.5848 (3)0.7599 (2)0.32438 (6)0.0422 (6)
H350.65230.70000.31590.051*
C360.4962 (3)0.5007 (2)0.33102 (5)0.0320 (5)
C370.6019 (3)0.4045 (2)0.33790 (5)0.0339 (5)
H370.65170.40120.35760.041*
C380.6348 (3)0.3145 (2)0.31642 (5)0.0317 (5)
H380.70630.24930.32130.038*
C390.5614 (3)0.3203 (2)0.28737 (5)0.0286 (4)
C400.4525 (3)0.4151 (2)0.28119 (5)0.0303 (4)
C410.4176 (3)0.5065 (2)0.30272 (5)0.0319 (5)
H410.34330.57000.29820.038*
C420.5683 (3)0.2456 (2)0.25990 (5)0.0290 (4)
C430.6524 (3)0.1410 (2)0.25159 (5)0.0327 (5)
H430.72520.10470.26580.039*
C440.6302 (3)0.0897 (2)0.22258 (5)0.0349 (5)
H440.68730.01830.21670.042*
C450.5223 (3)0.1448 (2)0.20215 (5)0.0333 (5)
C460.4356 (3)0.2488 (2)0.20915 (5)0.0324 (5)
H460.36300.28440.19480.039*
C470.4605 (3)0.2990 (2)0.23854 (5)0.0296 (4)
C480.2643 (3)0.4762 (2)0.23805 (5)0.0357 (5)
H48A0.18430.48770.25340.043*0.314 (3)
H48B0.21640.42960.22050.043*0.314 (3)
H48C0.20730.51530.25480.043*0.686 (3)
H48D0.19160.41960.22680.043*0.686 (3)
C490.3146 (5)0.6037 (3)0.22698 (8)0.0396 (9)0.686 (3)
H49A0.22150.65290.22090.048*0.686 (3)
H49B0.36820.64820.24420.048*0.686 (3)
C500.4191 (4)0.5989 (3)0.20061 (8)0.0440 (8)0.686 (3)
H50A0.37150.54670.18410.053*0.686 (3)
H50B0.51850.55980.20720.053*0.686 (3)
C510.4481 (6)0.7292 (4)0.18859 (11)0.0651 (12)0.686 (3)
H51A0.50680.72380.16990.098*0.686 (3)
H51B0.50730.77740.20410.098*0.686 (3)
H51C0.34910.77090.18400.098*0.686 (3)
C49'0.3129 (14)0.5782 (7)0.21644 (15)0.0396 (9)0.314 (3)
H49C0.37160.54110.19960.048*0.314 (3)
H49D0.22030.62010.20730.048*0.314 (3)
C50'0.4112 (10)0.6717 (6)0.23341 (16)0.0440 (8)0.314 (3)
H50C0.50410.63020.24260.053*0.314 (3)
H50D0.35270.70950.25010.053*0.314 (3)
C51'0.4580 (12)0.7712 (9)0.2113 (2)0.0651 (12)0.314 (3)
H51D0.54790.74250.20030.098*0.314 (3)
H51E0.48460.84800.22270.098*0.314 (3)
H51F0.37220.78810.19670.098*0.314 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.06625 (19)0.03919 (15)0.02643 (13)0.00117 (12)0.00057 (11)0.01037 (10)
N10.0573 (13)0.0421 (11)0.0232 (9)0.0003 (10)0.0030 (8)0.0076 (8)
N20.0606 (13)0.0275 (9)0.0198 (8)0.0020 (9)0.0055 (8)0.0026 (7)
N30.0445 (11)0.0285 (9)0.0210 (8)0.0051 (8)0.0021 (7)0.0025 (7)
C10.0570 (15)0.0344 (12)0.0233 (10)0.0016 (11)0.0011 (10)0.0044 (9)
C20.0700 (18)0.0409 (14)0.0289 (12)0.0007 (13)0.0047 (11)0.0014 (10)
C30.085 (2)0.0601 (18)0.0251 (12)0.0110 (17)0.0002 (13)0.0028 (12)
C40.070 (2)0.077 (2)0.0333 (14)0.0104 (17)0.0117 (13)0.0186 (14)
C50.0559 (18)0.0627 (19)0.0546 (17)0.0045 (15)0.0016 (13)0.0244 (15)
C60.0633 (17)0.0413 (14)0.0348 (13)0.0030 (12)0.0070 (11)0.0087 (11)
C70.0594 (16)0.0329 (12)0.0236 (10)0.0002 (11)0.0009 (10)0.0001 (9)
C80.0607 (16)0.0392 (13)0.0301 (12)0.0017 (12)0.0020 (11)0.0076 (10)
C90.0627 (17)0.0377 (13)0.0387 (13)0.0076 (12)0.0006 (12)0.0059 (11)
C100.0542 (15)0.0390 (13)0.0388 (13)0.0032 (12)0.0057 (11)0.0003 (11)
C110.0643 (17)0.0335 (12)0.0291 (11)0.0027 (11)0.0023 (11)0.0013 (10)
C120.0603 (16)0.0341 (12)0.0272 (11)0.0014 (11)0.0045 (10)0.0025 (9)
C130.0556 (15)0.0337 (12)0.0241 (10)0.0020 (11)0.0031 (10)0.0037 (9)
C140.0666 (17)0.0349 (12)0.0192 (10)0.0017 (11)0.0010 (10)0.0007 (9)
C150.0651 (16)0.0307 (11)0.0206 (10)0.0011 (11)0.0007 (10)0.0007 (9)
C160.0582 (15)0.0293 (11)0.0200 (10)0.0024 (10)0.0005 (9)0.0008 (8)
C170.0522 (14)0.0300 (11)0.0209 (10)0.0015 (10)0.0002 (9)0.0001 (8)
C180.0567 (15)0.0321 (11)0.0240 (10)0.0001 (11)0.0012 (10)0.0015 (9)
C190.0539 (14)0.0304 (11)0.0175 (9)0.0010 (10)0.0016 (9)0.0011 (8)
C200.0575 (15)0.0328 (11)0.0192 (10)0.0004 (10)0.0048 (9)0.0042 (8)
C210.0541 (15)0.0317 (11)0.0236 (10)0.0035 (10)0.0019 (9)0.0016 (9)
C220.0527 (14)0.0306 (11)0.0181 (9)0.0021 (10)0.0006 (9)0.0004 (8)
C230.0522 (14)0.0305 (11)0.0178 (9)0.0006 (10)0.0018 (9)0.0018 (8)
C240.0505 (13)0.0280 (10)0.0205 (10)0.0019 (10)0.0025 (9)0.0011 (8)
C250.0535 (14)0.0308 (11)0.0182 (9)0.0005 (10)0.0002 (9)0.0007 (8)
C260.0551 (15)0.0364 (12)0.0245 (10)0.0053 (11)0.0005 (10)0.0005 (9)
C270.0602 (17)0.0451 (14)0.0287 (11)0.0053 (12)0.0006 (11)0.0005 (10)
C280.0615 (16)0.0302 (11)0.0222 (10)0.0011 (11)0.0016 (10)0.0017 (9)
C290.0675 (17)0.0350 (12)0.0281 (11)0.0063 (12)0.0026 (11)0.0010 (10)
C300.0505 (14)0.0293 (11)0.0204 (9)0.0023 (10)0.0057 (9)0.0019 (8)
C310.0609 (16)0.0378 (13)0.0242 (10)0.0063 (11)0.0082 (10)0.0058 (9)
C320.090 (2)0.0337 (13)0.0366 (13)0.0144 (14)0.0268 (14)0.0116 (11)
C330.096 (2)0.0302 (13)0.0458 (15)0.0121 (14)0.0347 (16)0.0079 (12)
C340.073 (2)0.0442 (15)0.0415 (14)0.0211 (14)0.0112 (13)0.0096 (12)
C350.0546 (15)0.0377 (13)0.0339 (12)0.0064 (11)0.0023 (11)0.0001 (10)
C360.0491 (13)0.0268 (10)0.0204 (9)0.0036 (9)0.0044 (9)0.0012 (8)
C370.0488 (13)0.0319 (11)0.0208 (9)0.0027 (10)0.0016 (9)0.0012 (8)
C380.0407 (12)0.0289 (11)0.0255 (10)0.0005 (9)0.0002 (9)0.0024 (8)
C390.0377 (11)0.0250 (10)0.0232 (10)0.0021 (8)0.0017 (8)0.0001 (8)
C400.0427 (12)0.0274 (10)0.0208 (9)0.0010 (9)0.0001 (8)0.0002 (8)
C410.0446 (13)0.0280 (10)0.0232 (10)0.0029 (9)0.0019 (9)0.0006 (8)
C420.0377 (12)0.0265 (10)0.0227 (9)0.0024 (9)0.0018 (8)0.0005 (8)
C430.0390 (12)0.0297 (11)0.0294 (10)0.0025 (9)0.0004 (9)0.0009 (9)
C440.0428 (13)0.0302 (11)0.0318 (11)0.0028 (10)0.0052 (9)0.0035 (9)
C450.0442 (13)0.0316 (11)0.0241 (10)0.0042 (10)0.0029 (9)0.0047 (9)
C460.0437 (13)0.0310 (11)0.0224 (10)0.0012 (9)0.0019 (9)0.0013 (8)
C470.0386 (12)0.0258 (10)0.0244 (10)0.0011 (9)0.0017 (8)0.0013 (8)
C480.0439 (13)0.0350 (12)0.0280 (10)0.0063 (10)0.0025 (9)0.0009 (9)
C490.0516 (17)0.039 (2)0.028 (2)0.0061 (16)0.005 (2)0.0007 (17)
C500.0476 (19)0.0464 (19)0.0376 (17)0.0027 (15)0.0033 (14)0.0048 (15)
C510.068 (3)0.068 (3)0.059 (2)0.008 (2)0.002 (2)0.020 (2)
C49'0.0516 (17)0.039 (2)0.028 (2)0.0061 (16)0.005 (2)0.0007 (17)
C50'0.0476 (19)0.0464 (19)0.0376 (17)0.0027 (15)0.0033 (14)0.0048 (15)
C51'0.068 (3)0.068 (3)0.059 (2)0.008 (2)0.002 (2)0.020 (2)
Geometric parameters (Å, º) top
Br1—C451.896 (2)C28—C291.516 (4)
N1—C71.395 (3)C28—H28A0.9900
N1—C131.423 (3)C28—H28B0.9900
N1—C11.430 (3)C29—H29A0.9800
N2—C301.409 (3)C29—H29B0.9800
N2—C221.417 (3)C29—H29C0.9800
N2—C361.425 (3)C30—C311.387 (3)
N3—C471.379 (3)C30—C351.394 (4)
N3—C401.387 (3)C31—C321.386 (4)
N3—C481.464 (3)C31—H310.9500
C1—C61.369 (4)C32—C331.385 (5)
C1—C21.393 (3)C32—H320.9500
C2—C31.382 (4)C33—C341.378 (5)
C2—H20.9500C33—H330.9500
C3—C41.368 (5)C34—C351.380 (4)
C3—H30.9500C34—H340.9500
C4—C51.384 (5)C35—H350.9500
C4—H40.9500C36—C411.390 (3)
C5—C61.389 (4)C36—C371.401 (3)
C5—H50.9500C37—C381.380 (3)
C6—H60.9500C37—H370.9500
C7—C81.386 (4)C38—C391.399 (3)
C7—C121.404 (3)C38—H380.9500
C8—C91.381 (4)C39—C401.403 (3)
C8—H80.9500C39—C421.443 (3)
C9—C101.388 (4)C40—C411.395 (3)
C9—H90.9500C41—H410.9500
C10—C111.379 (4)C42—C431.388 (3)
C10—H100.9500C42—C471.415 (3)
C11—C121.372 (4)C43—C441.387 (3)
C11—H110.9500C43—H430.9500
C12—H120.9500C44—C451.397 (3)
C13—C141.385 (4)C44—H440.9500
C13—C181.405 (3)C45—C461.381 (3)
C14—C151.388 (3)C46—C471.400 (3)
C14—H140.9500C46—H460.9500
C15—C161.395 (3)C48—C49'1.511 (5)
C15—H150.9500C48—C491.514 (3)
C16—C171.397 (3)C48—H48A0.9900
C16—C191.467 (3)C48—H48B0.9900
C17—C181.382 (3)C48—H48C0.9900
C17—C251.526 (3)C48—H48D0.9900
C18—H180.9500C49—C501.491 (4)
C19—C201.391 (3)C49—H49A0.9900
C19—C241.407 (3)C49—H49B0.9900
C20—C211.390 (3)C50—C511.511 (4)
C20—H200.9500C50—H50A0.9900
C21—C221.402 (3)C50—H50B0.9900
C21—H210.9500C51—H51A0.9800
C22—C231.398 (3)C51—H51B0.9800
C23—C241.381 (3)C51—H51C0.9800
C23—H230.9500C49'—C50'1.491 (5)
C24—C251.518 (3)C49'—H49C0.9900
C25—C281.538 (3)C49'—H49D0.9900
C25—C261.543 (3)C50'—C51'1.500 (5)
C26—C271.520 (4)C50'—H50C0.9900
C26—H26A0.9900C50'—H50D0.9900
C26—H26B0.9900C51'—H51D0.9800
C27—H27A0.9800C51'—H51E0.9800
C27—H27B0.9800C51'—H51F0.9800
C27—H27C0.9800
C7—N1—C13120.01 (19)H29B—C29—H29C109.5
C7—N1—C1120.8 (2)C31—C30—C35119.0 (2)
C13—N1—C1117.5 (2)C31—C30—N2121.6 (2)
C30—N2—C22122.21 (19)C35—C30—N2119.4 (2)
C30—N2—C36119.42 (18)C32—C31—C30119.6 (3)
C22—N2—C36117.94 (18)C32—C31—H31120.2
C47—N3—C40108.14 (18)C30—C31—H31120.2
C47—N3—C48126.71 (18)C33—C32—C31121.3 (3)
C40—N3—C48125.02 (18)C33—C32—H32119.3
C6—C1—C2120.2 (2)C31—C32—H32119.3
C6—C1—N1118.4 (2)C34—C33—C32119.0 (3)
C2—C1—N1121.3 (2)C34—C33—H33120.5
C3—C2—C1119.2 (3)C32—C33—H33120.5
C3—C2—H2120.4C33—C34—C35120.4 (3)
C1—C2—H2120.4C33—C34—H34119.8
C4—C3—C2120.9 (3)C35—C34—H34119.8
C4—C3—H3119.6C34—C35—C30120.8 (3)
C2—C3—H3119.6C34—C35—H35119.6
C3—C4—C5119.7 (3)C30—C35—H35119.6
C3—C4—H4120.1C41—C36—C37121.2 (2)
C5—C4—H4120.1C41—C36—N2119.5 (2)
C4—C5—C6120.0 (3)C37—C36—N2119.35 (19)
C4—C5—H5120.0C38—C37—C36121.0 (2)
C6—C5—H5120.0C38—C37—H37119.5
C1—C6—C5119.9 (3)C36—C37—H37119.5
C1—C6—H6120.0C37—C38—C39119.1 (2)
C5—C6—H6120.0C37—C38—H38120.4
C8—C7—N1121.1 (2)C39—C38—H38120.4
C8—C7—C12117.5 (2)C38—C39—C40119.1 (2)
N1—C7—C12121.4 (2)C38—C39—C42134.2 (2)
C9—C8—C7120.8 (2)C40—C39—C42106.67 (18)
C9—C8—H8119.6N3—C40—C41128.1 (2)
C7—C8—H8119.6N3—C40—C39109.50 (18)
C8—C9—C10121.3 (3)C41—C40—C39122.36 (19)
C8—C9—H9119.3C36—C41—C40117.2 (2)
C10—C9—H9119.3C36—C41—H41121.4
C11—C10—C9118.1 (3)C40—C41—H41121.4
C11—C10—H10121.0C43—C42—C47119.45 (19)
C9—C10—H10121.0C43—C42—C39134.4 (2)
C12—C11—C10121.1 (2)C47—C42—C39106.18 (19)
C12—C11—H11119.4C44—C43—C42120.0 (2)
C10—C11—H11119.4C44—C43—H43120.0
C11—C12—C7121.1 (2)C42—C43—H43120.0
C11—C12—H12119.4C43—C44—C45118.9 (2)
C7—C12—H12119.4C43—C44—H44120.5
C14—C13—C18120.1 (2)C45—C44—H44120.5
C14—C13—N1120.6 (2)C46—C45—C44123.6 (2)
C18—C13—N1119.2 (2)C46—C45—Br1117.97 (17)
C13—C14—C15121.1 (2)C44—C45—Br1118.43 (17)
C13—C14—H14119.4C45—C46—C47116.3 (2)
C15—C14—H14119.4C45—C46—H46121.8
C14—C15—C16118.9 (2)C47—C46—H46121.8
C14—C15—H15120.6N3—C47—C46128.8 (2)
C16—C15—H15120.6N3—C47—C42109.50 (18)
C15—C16—C17119.9 (2)C46—C47—C42121.7 (2)
C15—C16—C19131.3 (2)N3—C48—C49'115.4 (5)
C17—C16—C19108.72 (19)N3—C48—C49113.9 (3)
C18—C17—C16121.2 (2)N3—C48—H48A108.8
C18—C17—C25127.6 (2)C49'—C48—H48A123.5
C16—C17—C25111.1 (2)C49—C48—H48A108.8
C17—C18—C13118.6 (2)N3—C48—H48B108.8
C17—C18—H18120.7C49'—C48—H48B89.9
C13—C18—H18120.7C49—C48—H48B108.8
C20—C19—C24120.0 (2)H48A—C48—H48B107.7
C20—C19—C16132.3 (2)N3—C48—H48C108.4
C24—C19—C16107.8 (2)C49'—C48—H48C108.4
C21—C20—C19119.6 (2)C49—C48—H48C90.8
C21—C20—H20120.2H48B—C48—H48C125.2
C19—C20—H20120.2N3—C48—H48D108.4
C20—C21—C22120.5 (2)C49'—C48—H48D108.4
C20—C21—H21119.8C49—C48—H48D125.1
C22—C21—H21119.8H48A—C48—H48D88.0
C23—C22—C21119.8 (2)H48C—C48—H48D107.5
C23—C22—N2119.17 (19)C50—C49—C48113.9 (3)
C21—C22—N2121.0 (2)C50—C49—H49A108.8
C24—C23—C22119.7 (2)C48—C49—H49A108.8
C24—C23—H23120.1C50—C49—H49B108.8
C22—C23—H23120.1C48—C49—H49B108.8
C23—C24—C19120.4 (2)H49A—C49—H49B107.7
C23—C24—C25128.1 (2)C49—C50—C51110.5 (3)
C19—C24—C25111.48 (19)C49—C50—H50A109.6
C24—C25—C17100.81 (18)C51—C50—H50A109.6
C24—C25—C28111.8 (2)C49—C50—H50B109.6
C17—C25—C28112.35 (18)C51—C50—H50B109.6
C24—C25—C26112.07 (19)H50A—C50—H50B108.1
C17—C25—C26110.7 (2)C50—C51—H51A109.5
C28—C25—C26108.90 (19)C50—C51—H51B109.5
C27—C26—C25114.9 (2)H51A—C51—H51B109.5
C27—C26—H26A108.5C50—C51—H51C109.5
C25—C26—H26A108.5H51A—C51—H51C109.5
C27—C26—H26B108.5H51B—C51—H51C109.5
C25—C26—H26B108.5C50'—C49'—C48109.8 (5)
H26A—C26—H26B107.5C50'—C49'—H49C109.7
C26—C27—H27A109.5C48—C49'—H49C109.7
C26—C27—H27B109.5C50'—C49'—H49D109.7
H27A—C27—H27B109.5C48—C49'—H49D109.7
C26—C27—H27C109.5H49C—C49'—H49D108.2
H27A—C27—H27C109.5C49'—C50'—C51'108.5 (5)
H27B—C27—H27C109.5C49'—C50'—H50C110.0
C29—C28—C25114.20 (19)C51'—C50'—H50C110.0
C29—C28—H28A108.7C49'—C50'—H50D110.0
C25—C28—H28A108.7C51'—C50'—H50D110.0
C29—C28—H28B108.7H50C—C50'—H50D108.4
C25—C28—H28B108.7C50'—C51'—H51D109.5
H28A—C28—H28B107.6C50'—C51'—H51E109.5
C28—C29—H29A109.5H51D—C51'—H51E109.5
C28—C29—H29B109.5C50'—C51'—H51F109.5
H29A—C29—H29B109.5H51D—C51'—H51F109.5
C28—C29—H29C109.5H51E—C51'—H51F109.5
H29A—C29—H29C109.5
C7—N1—C1—C6130.2 (3)C18—C17—C25—C2660.7 (3)
C13—N1—C1—C664.6 (3)C16—C17—C25—C26116.1 (2)
C7—N1—C1—C249.5 (4)C24—C25—C26—C2757.3 (3)
C13—N1—C1—C2115.7 (3)C17—C25—C26—C2754.4 (3)
C6—C1—C2—C31.3 (4)C28—C25—C26—C27178.4 (2)
N1—C1—C2—C3178.9 (3)C24—C25—C28—C2952.0 (3)
C1—C2—C3—C40.5 (5)C17—C25—C28—C2960.6 (3)
C2—C3—C4—C50.8 (5)C26—C25—C28—C29176.4 (2)
C3—C4—C5—C61.3 (5)C22—N2—C30—C3127.5 (3)
C2—C1—C6—C50.8 (4)C36—N2—C30—C31144.8 (2)
N1—C1—C6—C5179.4 (3)C22—N2—C30—C35153.0 (2)
C4—C5—C6—C10.5 (5)C36—N2—C30—C3534.7 (3)
C13—N1—C7—C8171.9 (2)C35—C30—C31—C320.3 (3)
C1—N1—C7—C823.3 (4)N2—C30—C31—C32179.8 (2)
C13—N1—C7—C127.4 (3)C30—C31—C32—C330.4 (4)
C1—N1—C7—C12157.5 (2)C31—C32—C33—C340.2 (4)
N1—C7—C8—C9179.6 (2)C32—C33—C34—C350.9 (4)
C12—C7—C8—C90.3 (4)C33—C34—C35—C301.0 (4)
C7—C8—C9—C101.7 (4)C31—C30—C35—C340.5 (4)
C8—C9—C10—C111.6 (4)N2—C30—C35—C34179.1 (2)
C9—C10—C11—C120.1 (4)C30—N2—C36—C4150.9 (3)
C10—C11—C12—C71.3 (4)C22—N2—C36—C41121.7 (2)
C8—C7—C12—C111.2 (4)C30—N2—C36—C37129.3 (2)
N1—C7—C12—C11178.1 (2)C22—N2—C36—C3758.1 (3)
C7—N1—C13—C14121.1 (3)C41—C36—C37—C382.0 (4)
C1—N1—C13—C1444.3 (3)N2—C36—C37—C38178.2 (2)
C7—N1—C13—C1855.7 (3)C36—C37—C38—C390.3 (3)
C1—N1—C13—C18139.0 (2)C37—C38—C39—C402.1 (3)
C18—C13—C14—C151.8 (4)C37—C38—C39—C42179.2 (2)
N1—C13—C14—C15175.0 (2)C47—N3—C40—C41179.1 (2)
C13—C14—C15—C161.7 (4)C48—N3—C40—C414.8 (4)
C14—C15—C16—C173.0 (4)C47—N3—C40—C391.2 (3)
C14—C15—C16—C19177.0 (3)C48—N3—C40—C39174.9 (2)
C15—C16—C17—C181.0 (4)C38—C39—C40—N3177.8 (2)
C19—C16—C17—C18179.0 (2)C42—C39—C40—N31.2 (2)
C15—C16—C17—C25178.1 (2)C38—C39—C40—C411.9 (3)
C19—C16—C17—C251.9 (3)C42—C39—C40—C41179.1 (2)
C16—C17—C18—C132.4 (4)C37—C36—C41—C402.1 (3)
C25—C17—C18—C13174.2 (2)N2—C36—C41—C40178.1 (2)
C14—C13—C18—C173.7 (4)N3—C40—C41—C36179.8 (2)
N1—C13—C18—C17173.1 (2)C39—C40—C41—C360.2 (3)
C15—C16—C19—C200.4 (5)C38—C39—C42—C431.6 (5)
C17—C16—C19—C20179.5 (3)C40—C39—C42—C43179.7 (2)
C15—C16—C19—C24179.8 (3)C38—C39—C42—C47178.0 (2)
C17—C16—C19—C240.2 (3)C40—C39—C42—C470.7 (2)
C24—C19—C20—C211.7 (4)C47—C42—C43—C440.1 (3)
C16—C19—C20—C21178.0 (3)C39—C42—C43—C44179.5 (2)
C19—C20—C21—C221.4 (4)C42—C43—C44—C450.1 (3)
C20—C21—C22—C230.6 (4)C43—C44—C45—C460.2 (4)
C20—C21—C22—N2179.0 (2)C43—C44—C45—Br1179.46 (18)
C30—N2—C22—C23136.5 (2)C44—C45—C46—C470.0 (4)
C36—N2—C22—C2335.9 (3)Br1—C45—C46—C47179.32 (17)
C30—N2—C22—C2145.1 (4)C40—N3—C47—C46179.9 (2)
C36—N2—C22—C21142.5 (2)C48—N3—C47—C464.0 (4)
C21—C22—C23—C240.1 (4)C40—N3—C47—C420.7 (3)
N2—C22—C23—C24178.6 (2)C48—N3—C47—C42175.3 (2)
C22—C23—C24—C190.4 (4)C45—C46—C47—N3179.5 (2)
C22—C23—C24—C25179.4 (2)C45—C46—C47—C420.2 (3)
C20—C19—C24—C231.2 (4)C43—C42—C47—N3179.7 (2)
C16—C19—C24—C23178.6 (2)C39—C42—C47—N30.0 (2)
C20—C19—C24—C25178.7 (2)C43—C42—C47—C460.3 (3)
C16—C19—C24—C251.6 (3)C39—C42—C47—C46179.4 (2)
C23—C24—C25—C17177.6 (2)C47—N3—C48—C49'83.2 (4)
C19—C24—C25—C172.5 (3)C40—N3—C48—C49'101.4 (4)
C23—C24—C25—C2858.1 (3)C47—N3—C48—C49105.5 (3)
C19—C24—C25—C28122.1 (2)C40—N3—C48—C4979.0 (3)
C23—C24—C25—C2664.5 (3)N3—C48—C49—C5066.4 (4)
C19—C24—C25—C26115.3 (2)C49'—C48—C49—C5032.5 (15)
C18—C17—C25—C24179.5 (2)C48—C49—C50—C51173.2 (3)
C16—C17—C25—C242.6 (3)N3—C48—C49'—C50'63.3 (9)
C18—C17—C25—C2861.3 (3)C49—C48—C49'—C50'27.2 (11)
C16—C17—C25—C28121.8 (2)C48—C49'—C50'—C51'179.8 (8)
Hydrogen-bond geometry (Å, º) top
Cg1–Cg3 are the centroids of the C13–C18, C7–C12 and C36···C41 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg1i0.952.673.444 (3)139
C20—H20···Cg2ii0.952.853.579 (2)135
C44—H44···Cg3iii0.952.993.836 (3)149
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1; (iii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC51H46BrN3
Mr780.82
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.6585 (2), 10.6744 (2), 43.6607 (6)
β (°) 92.114 (2)
V3)4032.56 (13)
Z4
Radiation typeCu Kα
µ (mm1)1.68
Crystal size (mm)0.22 × 0.18 × 0.14
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.836, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17423, 8220, 7219
Rint0.025
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 1.05
No. of reflections8220
No. of parameters506
No. of restraints28
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.66

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1–Cg3 are the centroids of the C13–C18, C7–C12 and C36···C41 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg1i0.952.673.444 (3)139
C20—H20···Cg2ii0.952.853.579 (2)135
C44—H44···Cg3iii0.952.993.836 (3)149
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1; (iii) x+3/2, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: krjt8fcy@iitr.ernet.in.

Acknowledgements

KRJT is thankful to Department of Science and Technology, New Delhi, India, for financial support (ref. No. DST/TSG/ME/2010/27). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBaheti, A., Singh, P., Lee, C.-P., Thomas, K. R. J. & Ho, K.-C. (2011). J. Org. Chem. 76, 4910—4920.  Web of Science CrossRef Google Scholar
First citationBaheti, A., Tyagi, P., Thomas, K. R. J., Hsu, Y. C. & Lin, J. T. (2009). J. Phys. Chem. C, 113, 8541—8547.  Web of Science CrossRef Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, L., Cheng, W., Song, G.-L. & Zhu, H.-J. (2009). Acta Cryst. E65, o574.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGagnon, E. & Laliberté, D. (2008). Acta Cryst. E64, o2147.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLow, P. J., Paterson, M. A. J., Yufit, D. S., Howard, J. A. K., Cherryman, J. C., Tackley, D. R., Brooke, R. & Brown, B. (2005). J. Mater. Chem. 15, 2304–2315.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, K. R. J., Lin, J. T., Tao, Y.-T. & Chuan, C.-H. (2004). Chem. Mater. 16, 5437–5444.  CAS Google Scholar
First citationThomas, K. R. J., Lin, J. T., Tao, Y.-T. & Ko, C.-W. (2001). J. Am. Chem. Soc. 123, 9404—9411.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o860-o861
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds