organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o917-o918

Ethyl 5-amino-3-(pyridin-4-yl)-1-(2,4,6-tri­chloro­phen­yl)-1H-pyrazole-4-carb­oxyl­ate di­methyl sulfoxide hemisolvate

aFaculty of Science, Chemistry Department, Islamic University of Gaza, Gaza Strip, Palestinian Territories, bInstitute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and cDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 22 February 2012; accepted 24 February 2012; online 29 February 2012)

The asymmetric unit of the title compound, C17H13Cl3N4O2·0.5C2H6OS, contains two almost identical mol­ecules and one dimethyl sulfoxide (DMSO-d6) solvent mol­ecule. The pyrazole ring forms dihedral angles of 54.6 (4) and 80.0 (4)° in one mol­ecule, and dihedral angles of 54.2 (4) and 81.2 (4)° in the other mol­ecule, with the directly attached pyridine and trichloro­phenyl rings, respectively. The dihedral angles of the pyridine and trichloro­phenyl rings are 51.2 (4) and 52.0 (4)°, respectively. The crystal packing is characterized by intra- and inter­molecular hydrogen bonds. The crystal is a nonmerohedral twin with a contribution of 0.488 (1) for the minor twin component. The terminal ethyl group of one mol­ecule and the S atom of DMSO are disordered over two sites.

Related literature

For pyridinyl-substituted five-membered heterocycles as p38α MAP kinase inhibitors, see: Abu Thaher et al. (2009[Abu Thaher, B., Koch, P., Schattel, V. & Laufer, S. (2009). J. Med. Chem. 52, 2613-2617.]); Peifer et al. (2006[Peifer, C., Wagner, G. & Laufer, S. (2006). Curr. Top. Med. Chem. 6, 113-149.]). For inhibitory activity and preparation of the title compound, see: Abu Thaher, Arnsmann et al. (2012[Abu Thaher, B., Arnsmann, M., Totzke, F., Ehlert, J. E., Kubbutat, M. H. G., Schächtele, C., Zimmermann, M. O., Koch, P., Boeckler, F. M. & Laufer, S. A. (2012). J. Med. Chem. 55, 961-965.]). For related structures, see: Abu Thaher, Koch et al. (2012a[Abu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012a). Acta Cryst. E68, o632.],b[Abu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012b). Acta Cryst. E68, o633.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13Cl3N4O2·0.5C2H6OS

  • Mr = 450.73

  • Monoclinic, P 21

  • a = 13.501 (2) Å

  • b = 10.3222 (15) Å

  • c = 14.889 (2) Å

  • β = 100.453 (5)°

  • V = 2040.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 173 K

  • 0.40 × 0.20 × 0.05 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2008b[Sheldrick, G. M. (2008b). TWINABS. University of Göttingen, Germany.]) Tmin = 0.818, Tmax = 0.974

  • 9562 measured reflections

  • 9562 independent reflections

  • 5575 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.133

  • S = 0.98

  • 9562 reflections

  • 526 parameters

  • 19 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4289 Friedel pairs

  • Flack parameter: 0.61 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N12A—H12A⋯O15A 0.88 2.34 2.767 (8) 110
N12A—H12A⋯O14Bi 0.88 2.10 2.957 (8) 164
N12A—H12B⋯N21Aii 0.94 2.15 2.906 (9) 137
N12B—H12C⋯O15B 0.88 2.13 2.778 (8) 130
N12B—H12C⋯O14Aiii 0.88 2.24 2.983 (8) 142
N12B—H12D⋯N21Bii 0.88 2.02 2.901 (9) 176
Symmetry codes: (i) x+1, y, z; (ii) x, y-1, z; (iii) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Pyridin-4-yl substituted five-membered heterocycles have been considered to be potential p38α MAP kinase inhibitors (Abu Thaher et al. 2009; Peifer et al. 2006). We showed that the regioisomeric switch from 3-(4-fluorophenyl)-4-(pyridin-4-yl)-1-(aryl)-1H-pyrazol-5-amine to 4-(4-fluorophenyl)-3-(pyridin-4-yl)-1-(aryl)-1H-pyrazol-5-amine completely changed the inhibitory profile from p38α MAP kinase to kinases releant in cancer (Abu Thaher, Arnsmann et al. 2012). Recently, we reported similar crystal structures (Abu Thaher, Koch et al. 2012a,b).

The asymmetric unit of the title compound contains two almost identical molecules and DMSO-d6 (Fig. 1). In molecule A the pyrazole ring forms dihedral angles of 54.6 (4)° and 80.0 (4)° with the directly attached pyridine and trichlorophenyl rings, respectively. In molecule B the pyrazole ring forms dihedral angels of 54.2 (4)° and 81.2 (4)° with the pyridine and trichlorophenyl rings, respectively. The dihedral angle of the pyridine and trichlorophenyl rings in molecules A and B are 51.1 (4)° and 52.0 (4)°, respectively.

The crystal packing (Fig. 2) shows that the amino function (N12) acts as a hydrogen bond donor forming an intramolecular hydrogen bond to the oxygen atom (O15) and two intermolecular hydrogen bonds to the nitrogen atom of the pyridine ring (N21) (A—A/B—B) and to the carbonyl oxygen atom (O14) of the ester moiety of two different molecules (A—B/B—A) resulting in a double chain along the b axis.

Related literature top

For pyridinyl-substituted five-membered heterocycles as p38α MAP kinase inhibitors, see: Abu Thaher et al. (2009); Peifer et al. (2006). For inhibitory activity and preparation of the title compound, see: Abu Thaher, Arnsmann et al. (2012). For related structures, see: Abu Thaher, Koch et al. (2012a,b).

Experimental top

4 mmol of N-(2,4,6-trichlorophenyl)-4-pyridinecarbohydrazonoyl chloride and 1.5 equiv. of ethyl cyanoacetate were dissolved in 20 ml dry ethanol and cooled to 273 K in an ice bath. 2.0 equiv. of sodium ethoxide solution (21% ethanol) was added dropwise and the reaction was stirred over night. The precipitate was filtered from the reaction mixture, washed with water and recrystallized from hot ethanol. Yield: 56%. Suitable crystals for X-ray were taken from the NMR-tube in DMSO-d6.

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom). Obtained crystals were twinned. Using the twin matrix -1 0 0, 0 - 1 0, -.4 0 1 with BSAF 0.488 (2) the structure refinement was successful. The solvent molecule and the ethyl group are disorderd with site occupation factors of 0.55 and 0.737 (6) for the major occupied site. The displacement ellipsoids of the atoms C17A, C17C and C2B were restrained to an isotropic behaviour with an effective esd of 0.01 for C17A and C17C and 0.005 for C2B.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the a-axis. Hydrogen bonding is shown with dashed lines. Molecule A coloured in black, B in red and DMSO in green.
Ethyl 5-amino-3-(pyridin-4-yl)-1-(2,4,6-trichlorophenyl)-1H-pyrazole-4- carboxylate dimethyl sulfoxide hemisolvate top
Crystal data top
C17H13Cl3N4O2·0.5C2H6OSF(000) = 924
Mr = 450.73Dx = 1.467 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ybCell parameters from 3021 reflections
a = 13.501 (2) Åθ = 2.2–23.0°
b = 10.3222 (15) ŵ = 0.53 mm1
c = 14.889 (2) ÅT = 173 K
β = 100.453 (5)°Plate, colourless
V = 2040.5 (5) Å30.40 × 0.20 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
9562 independent reflections
Radiation source: sealed tube5575 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
CCD scanθmax = 27.9°, θmin = 1.9°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2008b)
h = 1717
Tmin = 0.818, Tmax = 0.974k = 1313
9562 measured reflectionsl = 019
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0523P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
9562 reflectionsΔρmax = 0.39 e Å3
526 parametersΔρmin = 0.39 e Å3
19 restraintsAbsolute structure: Flack (1983), 4289 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.61 (10)
Crystal data top
C17H13Cl3N4O2·0.5C2H6OSV = 2040.5 (5) Å3
Mr = 450.73Z = 4
Monoclinic, P21Mo Kα radiation
a = 13.501 (2) ŵ = 0.53 mm1
b = 10.3222 (15) ÅT = 173 K
c = 14.889 (2) Å0.40 × 0.20 × 0.05 mm
β = 100.453 (5)°
Data collection top
Bruker APEXII
diffractometer
9562 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2008b)
5575 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 0.974Rint = 0.000
9562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.133Δρmax = 0.39 e Å3
S = 0.98Δρmin = 0.39 e Å3
9562 reflectionsAbsolute structure: Flack (1983), 4289 Friedel pairs
526 parametersAbsolute structure parameter: 0.61 (10)
19 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl1A0.57064 (17)0.5279 (2)0.01572 (14)0.0392 (6)
Cl2A0.24394 (15)0.23473 (19)0.01947 (15)0.0345 (5)
Cl3A0.36624 (16)0.57334 (18)0.29128 (14)0.0359 (6)
C1A0.4591 (6)0.5412 (6)0.1481 (5)0.0198 (18)
C2A0.4709 (6)0.4823 (8)0.0664 (5)0.0243 (18)
C3A0.4067 (6)0.3860 (7)0.0270 (5)0.0253 (19)
H3A0.41690.34360.02720.030*
C4A0.3279 (5)0.3533 (7)0.0685 (5)0.0211 (18)
C5A0.3104 (6)0.4107 (7)0.1489 (5)0.0230 (19)
H5A0.25400.38740.17540.028*
C6A0.3784 (6)0.5025 (7)0.1882 (5)0.024 (2)
N7A0.5286 (5)0.6360 (6)0.1898 (4)0.0204 (16)
C8A0.6213 (6)0.6166 (7)0.2412 (5)0.0212 (18)
C9A0.6617 (6)0.7376 (7)0.2642 (5)0.0214 (18)
C10A0.5858 (6)0.8265 (7)0.2234 (5)0.0213 (18)
N11A0.5045 (5)0.7670 (5)0.1782 (4)0.0253 (17)
N12A0.6581 (5)0.4979 (6)0.2602 (5)0.0293 (18)
H12A0.71700.47570.29240.044*
H12B0.60590.44390.23070.044*
C13A0.7543 (6)0.7689 (7)0.3268 (5)0.0219 (18)
O14A0.7867 (4)0.8752 (5)0.3480 (4)0.0295 (13)
O15A0.8009 (4)0.6589 (5)0.3602 (3)0.0332 (14)
C16A0.8971 (6)0.6727 (8)0.4209 (6)0.040 (2)
H16A0.93390.74810.40210.048*0.55
H16B0.93850.59420.41760.048*0.55
H16E0.91450.76560.42890.048*0.45
H16F0.95030.62950.39390.048*0.45
C17A0.8798 (15)0.6913 (19)0.5162 (13)0.058 (5)0.55
H17A0.94460.70110.55750.087*0.55
H17B0.84420.61590.53460.087*0.55
H17C0.83900.76930.51900.087*0.55
C17C0.892 (2)0.614 (2)0.5099 (16)0.061 (7)0.45
H17G0.95760.62480.55070.091*0.45
H17H0.87650.52200.50190.091*0.45
H17I0.83990.65750.53660.091*0.45
C18A0.5858 (6)0.9701 (8)0.2227 (5)0.026 (2)
C19A0.6629 (6)1.0401 (7)0.1920 (5)0.0244 (19)
H19A0.71860.99790.17390.029*
C20A0.6530 (7)1.1752 (8)0.1895 (5)0.027 (2)
H20A0.70331.22390.16740.033*
N21A0.5786 (6)1.2395 (6)0.2158 (4)0.0310 (18)
C22A0.5073 (7)1.1693 (8)0.2450 (6)0.035 (2)
H22A0.45301.21370.26410.043*
C23A0.5086 (6)1.0385 (8)0.2487 (6)0.030 (2)
H23A0.45560.99350.26950.036*
Cl1B0.06420 (16)0.0303 (2)0.01822 (15)0.0411 (6)
Cl2B0.26316 (15)0.26448 (18)0.01878 (15)0.0345 (5)
Cl3B0.25295 (17)0.0682 (2)0.29378 (16)0.0446 (7)
C1B0.0994 (6)0.0406 (7)0.1511 (5)0.0200 (18)
C2B0.0545 (5)0.0170 (7)0.0693 (5)0.0222 (18)
C3B0.1029 (6)0.1110 (7)0.0272 (5)0.026 (2)
H3B0.07130.15020.02840.031*
C4B0.2012 (6)0.1465 (7)0.0700 (5)0.0231 (19)
C5B0.2481 (6)0.0938 (7)0.1505 (5)0.026 (2)
H5B0.31390.12010.17830.031*
C6B0.1961 (6)0.0005 (7)0.1902 (5)0.023 (2)
N7B0.0500 (5)0.1350 (6)0.1943 (4)0.0226 (16)
C8B0.0235 (6)0.1154 (7)0.2442 (5)0.0234 (19)
C9B0.0555 (5)0.2384 (7)0.2654 (5)0.0194 (18)
C10B0.0031 (5)0.3242 (7)0.2249 (5)0.0183 (18)
N11B0.0673 (4)0.2660 (5)0.1808 (4)0.0218 (16)
N12B0.0504 (5)0.0043 (6)0.2651 (4)0.0339 (19)
H12C0.09590.00240.30070.051*
H12D0.03450.08450.25250.051*
C13B0.1254 (5)0.2666 (7)0.3257 (5)0.0211 (18)
O14B0.1505 (4)0.3747 (4)0.3467 (3)0.0260 (13)
O15B0.1612 (4)0.1577 (4)0.3584 (3)0.0269 (12)
C16B0.2347 (6)0.1699 (8)0.4178 (5)0.030 (2)
H16C0.28280.09670.40680.036*
H16D0.27320.25130.40360.036*
C17B0.1852 (7)0.1706 (12)0.5147 (6)0.070 (3)
H17D0.14730.08990.52890.105*
H17E0.23630.17780.55350.105*
H17F0.13900.24450.52600.105*
C18B0.0028 (6)0.4676 (7)0.2232 (5)0.019 (2)
C19B0.0840 (6)0.5390 (8)0.1929 (5)0.0244 (19)
H19B0.14670.49620.17420.029*
C20B0.0789 (7)0.6697 (8)0.1900 (5)0.036 (2)
H20B0.13920.71620.16850.044*
N21B0.0062 (6)0.7378 (7)0.2158 (4)0.0343 (18)
C22B0.0891 (7)0.6710 (7)0.2461 (5)0.026 (2)
H22B0.15030.71650.26590.031*
C23B0.0897 (6)0.5364 (7)0.2499 (5)0.0227 (19)
H23B0.15100.49190.27120.027*
S10.5410 (2)0.3311 (3)0.5460 (2)0.0470 (10)0.737 (6)
S1A0.5038 (7)0.3249 (8)0.4509 (6)0.052 (3)0.263 (6)
O4L0.5551 (5)0.1999 (6)0.5035 (5)0.082 (2)
C2L0.5902 (7)0.4454 (8)0.4825 (7)0.071 (3)
H2LA0.58290.53270.50660.106*0.737 (6)
H2LB0.55470.44090.41890.106*0.737 (6)
H2LC0.66190.42640.48500.106*0.737 (6)
H2LD0.64820.42980.45260.106*0.263 (6)
H2LE0.61220.44380.54900.106*0.263 (6)
H2LF0.56090.53040.46380.106*0.263 (6)
C3L0.4116 (6)0.3696 (9)0.5097 (7)0.071 (3)
H3LA0.37310.28970.49440.106*0.737 (6)
H3LB0.40390.42570.45580.106*0.737 (6)
H3LC0.38650.41470.55900.106*0.737 (6)
H3LD0.36580.29650.51210.106*0.263 (6)
H3LE0.37380.44300.47880.106*0.263 (6)
H3LF0.44230.39500.57200.106*0.263 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0387 (13)0.0396 (13)0.0439 (14)0.0159 (12)0.0199 (12)0.0048 (10)
Cl2A0.0275 (12)0.0305 (12)0.0457 (14)0.0121 (10)0.0072 (11)0.0151 (10)
Cl3A0.0334 (14)0.0387 (12)0.0377 (13)0.0066 (10)0.0120 (11)0.0170 (9)
C1A0.019 (5)0.010 (4)0.027 (5)0.004 (4)0.006 (4)0.003 (3)
C2A0.024 (5)0.019 (4)0.032 (4)0.002 (4)0.009 (4)0.008 (3)
C3A0.027 (5)0.022 (4)0.029 (5)0.002 (4)0.009 (4)0.001 (3)
C4A0.013 (4)0.014 (4)0.037 (5)0.001 (3)0.006 (4)0.004 (4)
C5A0.018 (5)0.022 (4)0.030 (5)0.006 (4)0.007 (4)0.000 (3)
C6A0.022 (5)0.022 (5)0.029 (5)0.003 (4)0.006 (4)0.004 (4)
N7A0.020 (4)0.011 (4)0.030 (4)0.005 (3)0.003 (3)0.002 (3)
C8A0.016 (5)0.025 (4)0.026 (5)0.005 (4)0.009 (4)0.004 (4)
C9A0.021 (5)0.017 (4)0.025 (4)0.007 (4)0.003 (4)0.002 (3)
C10A0.024 (5)0.013 (4)0.027 (4)0.006 (4)0.006 (4)0.005 (3)
N11A0.025 (4)0.009 (3)0.041 (4)0.001 (3)0.001 (3)0.002 (3)
N12A0.014 (4)0.013 (4)0.056 (5)0.007 (3)0.005 (4)0.003 (3)
C13A0.021 (5)0.027 (5)0.018 (4)0.001 (4)0.004 (4)0.001 (3)
O14A0.023 (3)0.019 (3)0.044 (4)0.010 (3)0.001 (3)0.004 (3)
O15A0.025 (3)0.023 (3)0.045 (3)0.002 (3)0.011 (3)0.002 (3)
C16A0.018 (5)0.042 (5)0.056 (6)0.006 (4)0.005 (4)0.004 (5)
C17A0.053 (9)0.068 (9)0.051 (9)0.009 (7)0.006 (7)0.005 (7)
C17C0.063 (10)0.068 (10)0.050 (9)0.009 (8)0.007 (8)0.008 (8)
C18A0.027 (6)0.018 (4)0.029 (5)0.000 (4)0.005 (4)0.002 (4)
C19A0.021 (5)0.020 (4)0.032 (5)0.008 (4)0.005 (4)0.005 (4)
C20A0.030 (6)0.024 (5)0.024 (5)0.012 (4)0.007 (4)0.007 (4)
N21A0.033 (5)0.016 (4)0.039 (5)0.000 (4)0.007 (4)0.004 (3)
C22A0.027 (6)0.021 (5)0.054 (6)0.005 (4)0.005 (5)0.005 (4)
C23A0.025 (6)0.021 (5)0.043 (6)0.000 (4)0.004 (4)0.006 (4)
Cl1B0.0287 (12)0.0421 (14)0.0483 (14)0.0136 (12)0.0044 (12)0.0069 (11)
Cl2B0.0289 (12)0.0296 (12)0.0467 (14)0.0048 (11)0.0115 (11)0.0152 (10)
Cl3B0.0312 (14)0.0560 (15)0.0439 (15)0.0066 (11)0.0003 (11)0.0287 (11)
C1B0.012 (4)0.018 (4)0.032 (5)0.006 (3)0.007 (4)0.001 (3)
C2B0.016 (4)0.021 (3)0.030 (4)0.010 (3)0.004 (3)0.002 (3)
C3B0.028 (5)0.022 (4)0.031 (5)0.003 (4)0.013 (4)0.003 (3)
C4B0.031 (5)0.012 (4)0.031 (5)0.005 (4)0.018 (4)0.001 (3)
C5B0.021 (5)0.030 (5)0.027 (5)0.003 (4)0.007 (4)0.005 (3)
C6B0.032 (6)0.014 (4)0.022 (5)0.010 (4)0.004 (4)0.012 (3)
N7B0.023 (4)0.009 (3)0.040 (4)0.007 (3)0.017 (3)0.004 (3)
C8B0.026 (5)0.018 (4)0.029 (5)0.003 (4)0.012 (4)0.000 (4)
C9B0.009 (4)0.016 (4)0.034 (5)0.009 (3)0.005 (4)0.002 (4)
C10B0.014 (5)0.012 (4)0.027 (5)0.005 (4)0.001 (4)0.005 (3)
N11B0.022 (4)0.011 (3)0.033 (4)0.006 (3)0.007 (3)0.004 (3)
N12B0.044 (5)0.015 (4)0.049 (5)0.001 (3)0.025 (4)0.003 (3)
C13B0.016 (5)0.017 (4)0.029 (5)0.006 (3)0.001 (4)0.003 (3)
O14B0.025 (3)0.017 (3)0.038 (3)0.003 (2)0.012 (3)0.001 (2)
O15B0.029 (3)0.016 (3)0.040 (3)0.001 (2)0.019 (3)0.004 (2)
C16B0.027 (5)0.028 (4)0.042 (5)0.003 (4)0.025 (4)0.005 (4)
C17B0.044 (6)0.121 (10)0.052 (7)0.009 (6)0.024 (5)0.005 (7)
C18B0.025 (6)0.015 (4)0.019 (5)0.003 (4)0.008 (4)0.003 (3)
C19B0.028 (5)0.023 (4)0.023 (5)0.004 (4)0.009 (4)0.001 (4)
C20B0.047 (7)0.022 (5)0.039 (6)0.013 (5)0.002 (5)0.005 (4)
N21B0.047 (5)0.026 (4)0.035 (5)0.001 (4)0.019 (4)0.001 (3)
C22B0.029 (5)0.019 (4)0.032 (5)0.004 (4)0.009 (4)0.011 (4)
C23B0.024 (5)0.010 (4)0.038 (5)0.004 (4)0.016 (4)0.001 (4)
S10.059 (2)0.0423 (18)0.043 (2)0.0101 (15)0.0180 (17)0.0031 (14)
S1A0.060 (6)0.043 (5)0.057 (7)0.005 (4)0.025 (5)0.008 (4)
O4L0.083 (5)0.039 (4)0.140 (7)0.005 (4)0.066 (5)0.004 (4)
C2L0.067 (7)0.037 (5)0.114 (9)0.012 (5)0.031 (7)0.005 (5)
C3L0.060 (6)0.072 (7)0.093 (8)0.016 (6)0.049 (6)0.009 (6)
Geometric parameters (Å, º) top
Cl1A—C2A1.724 (7)C3B—C4B1.412 (11)
Cl2A—C4A1.736 (7)C3B—H3B0.9500
Cl3A—C6A1.735 (8)C4B—C5B1.363 (9)
C1A—C6A1.393 (10)C5B—C6B1.386 (10)
C1A—C2A1.395 (10)C5B—H5B0.9500
C1A—N7A1.419 (9)N7B—C8B1.358 (9)
C2A—C3A1.378 (10)N7B—N11B1.394 (7)
C3A—C4A1.365 (10)C8B—N12B1.340 (9)
C3A—H3A0.9500C8B—C9B1.396 (9)
C4A—C5A1.394 (9)C9B—C10B1.394 (9)
C5A—C6A1.373 (10)C9B—C13B1.445 (9)
C5A—H5A0.9500C10B—N11B1.324 (8)
N7A—C8A1.357 (9)C10B—C18B1.480 (10)
N7A—N11A1.394 (8)N12B—H12C0.8816
C8A—N12A1.333 (9)N12B—H12D0.8840
C8A—C9A1.381 (10)C13B—O14B1.223 (7)
C9A—C10A1.426 (10)C13B—O15B1.349 (8)
C9A—C13A1.454 (10)O15B—C16B1.450 (8)
C10A—N11A1.330 (9)C16B—C17B1.475 (10)
C10A—C18A1.482 (11)C16B—H16C0.9900
N12A—H12A0.8811C16B—H16D0.9900
N12A—H12B0.9422C17B—H17D0.9800
C13A—O14A1.203 (8)C17B—H17E0.9800
C13A—O15A1.349 (8)C17B—H17F0.9800
O15A—C16A1.448 (9)C18B—C23B1.368 (10)
C16A—C17C1.47 (2)C18B—C19B1.389 (10)
C16A—C17A1.49 (2)C19B—C20B1.352 (11)
C16A—H16A0.9900C19B—H19B0.9500
C16A—H16B0.9900C20B—N21B1.342 (10)
C16A—H16E0.9900C20B—H20B0.9500
C16A—H16F0.9900N21B—C22B1.321 (9)
C17A—H17A0.9800C22B—C23B1.390 (10)
C17A—H17B0.9800C22B—H22B0.9500
C17A—H17C0.9800C23B—H23B0.9500
C17C—H17G0.9800S1—O4L1.521 (7)
C17C—H17H0.9800S1—C2L1.720 (10)
C17C—H17I0.9800S1—C3L1.777 (9)
C18A—C23A1.372 (11)S1—H2LE1.5047
C18A—C19A1.409 (10)S1A—O4L1.600 (11)
C19A—C20A1.400 (11)S1A—C3L1.711 (12)
C19A—H19A0.9500S1A—C2L1.711 (12)
C20A—N21A1.321 (10)S1A—H2LB1.5006
C20A—H20A0.9500C2L—H2LA0.9813
N21A—C22A1.339 (10)C2L—H2LB0.9814
C22A—C23A1.352 (11)C2L—H2LC0.9814
C22A—H22A0.9500C2L—H2LD0.9818
C23A—H23A0.9500C2L—H2LE0.9815
Cl1B—C2B1.715 (7)C2L—H2LF0.9813
Cl2B—C4B1.730 (7)C3L—H3LA0.9800
Cl3B—C6B1.744 (7)C3L—H3LB0.9800
C1B—C2B1.392 (10)C3L—H3LC0.9800
C1B—C6B1.395 (10)C3L—H3LD0.9800
C1B—N7B1.401 (9)C3L—H3LE0.9800
C2B—C3B1.382 (9)C3L—H3LF0.9800
C6A—C1A—C2A118.1 (7)C8B—N7B—N11B112.4 (6)
C6A—C1A—N7A121.2 (7)C8B—N7B—C1B127.1 (6)
C2A—C1A—N7A120.7 (7)N11B—N7B—C1B120.2 (6)
C3A—C2A—C1A121.5 (7)N12B—C8B—N7B121.3 (7)
C3A—C2A—Cl1A119.5 (6)N12B—C8B—C9B132.7 (8)
C1A—C2A—Cl1A119.0 (6)N7B—C8B—C9B106.0 (6)
C4A—C3A—C2A117.9 (7)C10B—C9B—C8B104.9 (6)
C4A—C3A—H3A121.0C10B—C9B—C13B128.8 (7)
C2A—C3A—H3A121.1C8B—C9B—C13B126.0 (7)
C3A—C4A—C5A123.4 (7)N11B—C10B—C9B113.6 (6)
C3A—C4A—Cl2A119.1 (6)N11B—C10B—C18B116.4 (7)
C5A—C4A—Cl2A117.4 (6)C9B—C10B—C18B130.0 (7)
C6A—C5A—C4A117.0 (7)C10B—N11B—N7B103.1 (6)
C6A—C5A—H5A121.5C8B—N12B—H12C111.5
C4A—C5A—H5A121.5C8B—N12B—H12D136.8
C5A—C6A—C1A122.0 (7)H12C—N12B—H12D111.7
C5A—C6A—Cl3A120.3 (6)O14B—C13B—O15B122.3 (7)
C1A—C6A—Cl3A117.7 (6)O14B—C13B—C9B125.8 (7)
C8A—N7A—N11A112.6 (6)O15B—C13B—C9B112.0 (6)
C8A—N7A—C1A127.8 (6)C13B—O15B—C16B118.5 (6)
N11A—N7A—C1A119.6 (6)O15B—C16B—C17B111.0 (6)
N12A—C8A—N7A121.7 (7)O15B—C16B—H16C109.4
N12A—C8A—C9A131.5 (8)C17B—C16B—H16C109.4
N7A—C8A—C9A106.8 (6)O15B—C16B—H16D109.4
C8A—C9A—C10A104.8 (7)C17B—C16B—H16D109.4
C8A—C9A—C13A128.0 (7)H16C—C16B—H16D108.0
C10A—C9A—C13A126.7 (7)C16B—C17B—H17D109.5
N11A—C10A—C9A112.5 (7)C16B—C17B—H17E109.5
N11A—C10A—C18A117.3 (7)H17D—C17B—H17E109.5
C9A—C10A—C18A130.2 (7)C16B—C17B—H17F109.5
C10A—N11A—N7A103.4 (6)H17D—C17B—H17F109.5
C8A—N12A—H12A128.3H17E—C17B—H17F109.5
C8A—N12A—H12B103.1C23B—C18B—C19B116.6 (7)
H12A—N12A—H12B128.6C23B—C18B—C10B121.0 (7)
O14A—C13A—O15A123.3 (7)C19B—C18B—C10B122.4 (7)
O14A—C13A—C9A126.9 (7)C20B—C19B—C18B119.7 (8)
O15A—C13A—C9A109.8 (6)C20B—C19B—H19B120.2
C13A—O15A—C16A116.9 (6)C18B—C19B—H19B120.2
O15A—C16A—C17C110.0 (12)N21B—C20B—C19B124.0 (8)
O15A—C16A—C17A109.2 (10)N21B—C20B—H20B118.0
O15A—C16A—H16A109.8C19B—C20B—H20B118.0
C17A—C16A—H16A109.8C22B—N21B—C20B116.9 (7)
O15A—C16A—H16B109.8N21B—C22B—C23B122.2 (8)
C17A—C16A—H16B109.8N21B—C22B—H22B118.9
H16A—C16A—H16B108.3C23B—C22B—H22B118.9
O15A—C16A—H16E109.7C18B—C23B—C22B120.6 (7)
C17C—C16A—H16E109.7C18B—C23B—H23B119.7
O15A—C16A—H16F109.7C22B—C23B—H23B119.7
C17C—C16A—H16F109.7O4L—S1—C2L107.0 (4)
H16E—C16A—H16F108.2O4L—S1—C3L105.3 (5)
C16A—C17A—H17A109.5C2L—S1—C3L97.8 (5)
C16A—C17A—H17B109.5O4L—S1—H2LE125.0
H17A—C17A—H17B109.5C3L—S1—H2LE115.1
C16A—C17A—H17C109.5O4L—S1A—C3L104.9 (6)
H17A—C17A—H17C109.5O4L—S1A—C2L103.9 (6)
H17B—C17A—H17C109.5C3L—S1A—C2L100.8 (7)
C16A—C17C—H17G109.5O4L—S1A—H2LB128.1
C16A—C17C—H17H109.5C3L—S1A—H2LB111.4
H17G—C17C—H17H109.5S1A—C2L—H2LA131.2
C16A—C17C—H17I109.5S1—C2L—H2LA110.7
H17G—C17C—H17I109.5S1—C2L—H2LB109.1
H17H—C17C—H17I109.5H2LA—C2L—H2LB109.5
C23A—C18A—C19A118.1 (7)S1A—C2L—H2LC118.9
C23A—C18A—C10A120.8 (8)S1—C2L—H2LC108.6
C19A—C18A—C10A121.0 (8)H2LA—C2L—H2LC109.5
C20A—C19A—C18A116.6 (8)H2LB—C2L—H2LC109.4
C20A—C19A—H19A121.7S1A—C2L—H2LD108.4
C18A—C19A—H19A121.7S1—C2L—H2LD123.8
N21A—C20A—C19A124.5 (8)H2LA—C2L—H2LD117.3
N21A—C20A—H20A117.8S1A—C2L—H2LE109.3
C19A—C20A—H20A117.8H2LB—C2L—H2LE168.0
C20A—N21A—C22A117.0 (7)H2LD—C2L—H2LE109.5
N21A—C22A—C23A123.3 (8)S1A—C2L—H2LF110.7
N21A—C22A—H22A118.4S1—C2L—H2LF126.4
C23A—C22A—H22A118.4H2LC—C2L—H2LF122.3
C22A—C23A—C18A120.5 (8)H2LD—C2L—H2LF109.5
C22A—C23A—H23A119.7H2LE—C2L—H2LF109.5
C18A—C23A—H23A119.7S1—C3L—H3LA109.5
C2B—C1B—C6B117.4 (7)S1—C3L—H3LB109.5
C2B—C1B—N7B122.0 (7)H3LA—C3L—H3LB109.5
C6B—C1B—N7B120.5 (7)S1A—C3L—H3LC153.4
C3B—C2B—C1B122.0 (7)S1—C3L—H3LC109.5
C3B—C2B—Cl1B118.7 (6)H3LA—C3L—H3LC109.5
C1B—C2B—Cl1B119.3 (6)H3LB—C3L—H3LC109.5
C2B—C3B—C4B117.5 (7)S1A—C3L—H3LD109.5
C2B—C3B—H3B121.3S1—C3L—H3LD114.1
C4B—C3B—H3B121.3H3LB—C3L—H3LD120.7
C5B—C4B—C3B122.8 (7)S1A—C3L—H3LE109.5
C5B—C4B—Cl2B118.9 (6)S1—C3L—H3LE135.6
C3B—C4B—Cl2B118.3 (6)H3LA—C3L—H3LE109.4
C4B—C5B—C6B117.5 (7)H3LD—C3L—H3LE109.5
C4B—C5B—H5B121.2S1A—C3L—H3LF109.5
C6B—C5B—H5B121.2H3LA—C3L—H3LF124.1
C5B—C6B—C1B122.8 (7)H3LB—C3L—H3LF125.5
C5B—C6B—Cl3B118.9 (6)H3LD—C3L—H3LF109.5
C1B—C6B—Cl3B118.3 (6)H3LE—C3L—H3LF109.5
C6A—C1A—C2A—C3A1.8 (11)C2B—C3B—C4B—C5B1.1 (11)
N7A—C1A—C2A—C3A177.1 (7)C2B—C3B—C4B—Cl2B179.8 (5)
C6A—C1A—C2A—Cl1A179.6 (5)C3B—C4B—C5B—C6B0.8 (12)
N7A—C1A—C2A—Cl1A0.7 (10)Cl2B—C4B—C5B—C6B179.4 (6)
C1A—C2A—C3A—C4A2.9 (11)C4B—C5B—C6B—C1B0.1 (12)
Cl1A—C2A—C3A—C4A179.3 (6)C4B—C5B—C6B—Cl3B179.4 (6)
C2A—C3A—C4A—C5A1.2 (12)C2B—C1B—C6B—C5B0.6 (11)
C2A—C3A—C4A—Cl2A178.7 (5)N7B—C1B—C6B—C5B179.8 (7)
C3A—C4A—C5A—C6A1.5 (12)C2B—C1B—C6B—Cl3B178.9 (6)
Cl2A—C4A—C5A—C6A178.7 (6)N7B—C1B—C6B—Cl3B0.3 (10)
C4A—C5A—C6A—C1A2.6 (11)C2B—C1B—N7B—C8B77.2 (10)
C4A—C5A—C6A—Cl3A176.8 (6)C6B—C1B—N7B—C8B101.9 (9)
C2A—C1A—C6A—C5A1.0 (11)C2B—C1B—N7B—N11B96.2 (8)
N7A—C1A—C6A—C5A179.9 (7)C6B—C1B—N7B—N11B84.7 (9)
C2A—C1A—C6A—Cl3A178.4 (6)N11B—N7B—C8B—N12B179.4 (7)
N7A—C1A—C6A—Cl3A0.5 (10)C1B—N7B—C8B—N12B6.7 (12)
C6A—C1A—N7A—C8A99.6 (9)N11B—N7B—C8B—C9B0.6 (9)
C2A—C1A—N7A—C8A79.3 (10)C1B—N7B—C8B—C9B174.4 (7)
C6A—C1A—N7A—N11A81.7 (9)N12B—C8B—C9B—C10B178.8 (9)
C2A—C1A—N7A—N11A99.4 (8)N7B—C8B—C9B—C10B0.2 (8)
N11A—N7A—C8A—N12A179.9 (7)N12B—C8B—C9B—C13B5.5 (14)
C1A—N7A—C8A—N12A1.3 (12)N7B—C8B—C9B—C13B173.1 (7)
N11A—N7A—C8A—C9A0.6 (9)C8B—C9B—C10B—N11B0.3 (8)
C1A—N7A—C8A—C9A178.2 (7)C13B—C9B—C10B—N11B173.3 (7)
N12A—C8A—C9A—C10A179.8 (8)C8B—C9B—C10B—C18B179.4 (7)
N7A—C8A—C9A—C10A0.4 (8)C13B—C9B—C10B—C18B7.6 (12)
N12A—C8A—C9A—C13A8.1 (14)C9B—C10B—N11B—N7B0.6 (8)
N7A—C8A—C9A—C13A172.5 (7)C18B—C10B—N11B—N7B179.8 (6)
C8A—C9A—C10A—N11A0.1 (9)C8B—N7B—N11B—C10B0.7 (8)
C13A—C9A—C10A—N11A172.3 (7)C1B—N7B—N11B—C10B175.1 (6)
C8A—C9A—C10A—C18A178.8 (8)C10B—C9B—C13B—O14B5.5 (12)
C13A—C9A—C10A—C18A9.0 (13)C8B—C9B—C13B—O14B177.2 (8)
C9A—C10A—N11A—N7A0.3 (8)C10B—C9B—C13B—O15B174.0 (7)
C18A—C10A—N11A—N7A178.6 (6)C8B—C9B—C13B—O15B2.3 (10)
C8A—N7A—N11A—C10A0.5 (8)O14B—C13B—O15B—C16B2.3 (10)
C1A—N7A—N11A—C10A178.4 (6)C9B—C13B—O15B—C16B178.2 (6)
C8A—C9A—C13A—O14A177.7 (8)C13B—O15B—C16B—C17B93.4 (9)
C10A—C9A—C13A—O14A7.2 (13)N11B—C10B—C18B—C23B53.7 (10)
C8A—C9A—C13A—O15A1.7 (11)C9B—C10B—C18B—C23B127.2 (9)
C10A—C9A—C13A—O15A172.2 (7)N11B—C10B—C18B—C19B124.8 (8)
O14A—C13A—O15A—C16A3.2 (11)C9B—C10B—C18B—C19B54.3 (11)
C9A—C13A—O15A—C16A177.4 (6)C23B—C18B—C19B—C20B0.8 (12)
C13A—O15A—C16A—C17C120.8 (13)C10B—C18B—C19B—C20B177.8 (7)
C13A—O15A—C16A—C17A86.6 (11)C18B—C19B—C20B—N21B0.5 (13)
N11A—C10A—C18A—C23A53.4 (10)C19B—C20B—N21B—C22B0.4 (12)
C9A—C10A—C18A—C23A128.0 (10)C20B—N21B—C22B—C23B1.2 (11)
N11A—C10A—C18A—C19A124.0 (8)C19B—C18B—C23B—C22B0.1 (11)
C9A—C10A—C18A—C19A54.6 (11)C10B—C18B—C23B—C22B178.5 (6)
C23A—C18A—C19A—C20A0.8 (12)N21B—C22B—C23B—C18B1.0 (12)
C10A—C18A—C19A—C20A176.7 (6)C2L—S1—O4L—S1A52.1 (5)
C18A—C19A—C20A—N21A1.7 (12)C3L—S1—O4L—S1A51.3 (5)
C19A—C20A—N21A—C22A1.4 (11)C3L—S1A—O4L—S154.0 (5)
C20A—N21A—C22A—C23A0.2 (12)C2L—S1A—O4L—S151.3 (5)
N21A—C22A—C23A—C18A0.6 (13)O4L—S1A—C2L—S147.9 (5)
C19A—C18A—C23A—C22A0.2 (13)C3L—S1A—C2L—S160.5 (5)
C10A—C18A—C23A—C22A177.7 (7)O4L—S1—C2L—S1A52.5 (5)
C6B—C1B—C2B—C3B0.2 (11)C3L—S1—C2L—S1A56.2 (6)
N7B—C1B—C2B—C3B179.4 (7)O4L—S1A—C3L—S149.0 (5)
C6B—C1B—C2B—Cl1B179.8 (6)C2L—S1A—C3L—S158.7 (5)
N7B—C1B—C2B—Cl1B1.1 (10)O4L—S1—C3L—S1A52.7 (5)
C1B—C2B—C3B—C4B0.6 (11)C2L—S1—C3L—S1A57.5 (6)
Cl1B—C2B—C3B—C4B179.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12A—H12A···O15A0.882.342.767 (8)110
N12A—H12A···O14Bi0.882.102.957 (8)164
N12A—H12B···N21Aii0.942.152.906 (9)137
N12B—H12C···O15B0.882.132.778 (8)130
N12B—H12C···O14Aiii0.882.242.983 (8)142
N12B—H12D···N21Bii0.882.022.901 (9)176
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC17H13Cl3N4O2·0.5C2H6OS
Mr450.73
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)13.501 (2), 10.3222 (15), 14.889 (2)
β (°) 100.453 (5)
V3)2040.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.40 × 0.20 × 0.05
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(TWINABS; Sheldrick, 2008b)
Tmin, Tmax0.818, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
9562, 9562, 5575
Rint0.000
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.133, 0.98
No. of reflections9562
No. of parameters526
No. of restraints19
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.39
Absolute structureFlack (1983), 4289 Friedel pairs
Absolute structure parameter0.61 (10)

Computer programs: APEX2 (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008a), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12A—H12A···O15A0.882.342.767 (8)110
N12A—H12A···O14Bi0.882.102.957 (8)164
N12A—H12B···N21Aii0.942.152.906 (9)137
N12B—H12C···O15B0.882.132.778 (8)130
N12B—H12C···O14Aiii0.882.242.983 (8)142
N12B—H12D···N21Bii0.882.022.901 (9)176
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x1, y1, z.
 

Acknowledgements

BAT thanks the Alexander von Humboldt Foundation for funding.

References

First citationAbu Thaher, B., Arnsmann, M., Totzke, F., Ehlert, J. E., Kubbutat, M. H. G., Schächtele, C., Zimmermann, M. O., Koch, P., Boeckler, F. M. & Laufer, S. A. (2012). J. Med. Chem. 55, 961–965.  Web of Science CAS PubMed Google Scholar
First citationAbu Thaher, B., Koch, P., Schattel, V. & Laufer, S. (2009). J. Med. Chem. 52, 2613–2617.  Web of Science PubMed CAS Google Scholar
First citationAbu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012a). Acta Cryst. E68, o632.  CSD CrossRef IUCr Journals Google Scholar
First citationAbu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012b). Acta Cryst. E68, o633.  CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPeifer, C., Wagner, G. & Laufer, S. (2006). Curr. Top. Med. Chem. 6, 113–149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008a). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008b). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o917-o918
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds