metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­tetra­kis­(4,4′-bi­pyridine dioxide-κO)terbium(III) octa­cyanidotungstate(V)

aSchool of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: aihuayuan@163.com

(Received 25 November 2011; accepted 5 February 2012; online 10 February 2012)

In the title compound, [Tb(C10H8N2O2)4(H2O)4][W(CN)8], both metal atoms are eight-coordinated. The TbIII ion displays a dodeca­hedral geometry, while the Wv ion exhibits a distorted square-anti­prismatic geometry. The Tb atoms are located on a special position of site symmetry -4, whereas the W atoms are located on a twofold rotation axis. The cations are linked by O—H⋯O hydrogen bonds. The title compound is isotypic with the corresponding and previously described Mo compound [Qian & Yuan (2011[Qian, S.-Y. & Yuan, A.-H. (2011). Acta Cryst. E67, m845.]). Acta Cryst. E67, m845].

Related literature

For general background to octa­cyano­metallate-based compounds, see: Sieklucka et al. (2011[Sieklucka, B., Podgajny, R., Korzeniak, T., Nowicka, B., Pinkowicz, D. & Kozieł, M. (2011). Eur. J. Inorg. Chem. pp. 305-326.]); Zhou et al. (2010[Zhou, H., Yuan, A. H., Qian, S. Y., Song, Y. & Diao, G. W. (2010). Inorg. Chem. 49, 5971-5976.]). For related structures, see: Qian & Yuan (2011[Qian, S.-Y. & Yuan, A.-H. (2011). Acta Cryst. E67, m845.]). For the preparation of the title compound, see: Bok et al. (1975[Bok, L. D. C., Leipoldt, J. G. & Basson, S. S. (1975). Z. Anorg. Allg. Chem. 415, 81-83.]).

[Scheme 1]

Experimental

Crystal data
  • [Tb(C10H8N2O2)4(H2O)4][W(CN)8]

  • Mr = 1375.73

  • Tetragonal, P 4/n

  • a = 17.9222 (7) Å

  • c = 7.8915 (6) Å

  • V = 2534.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.73 mm−1

  • T = 291 K

  • 0.26 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.444, Tmax = 0.522

  • 19073 measured reflections

  • 2498 independent reflections

  • 2299 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.014

  • wR(F2) = 0.037

  • S = 1.07

  • 2498 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O3i 0.87 1.81 2.6695 (18) 167
O1—H1A⋯O3ii 0.88 1.89 2.7415 (18) 165
Symmetry codes: (i) [y, -x+{\script{3\over 2}}, z-1]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In the past few years, a considerable effort on crystal engineering has been devoted to the design and construction of octacyanometallates [M(CN)8]3-/4- (M = Mo, W)-based magnets (Sieklucka et al., 2011). The combination of [M(CN)8]3- as a carrier of unpaired spin with transition- or lanthanide-metal cations has produced various dimensional molecular structures, and further displayed intriguing magnetic properties (Zhou et al., 2010). Recently, we have used [W(CN)8]3- as the building block to react with Tb3+ and 4,4'-bipyridine dioxide (4,4'-dpdo), obtaining a new ionic compound, [Tb(4,4'-dpdo)4(H2O)4][W(CN)8], which is isomorphous to [Tb(4,4'-dpdo)4(H2O)4][Mo(CN)8] reported previously by our group (Qian & Yuan, 2011).

In the structure, each Tb atom is located on a special position of site symmetry 4, whereas each Mo atom is located on a twofold rotation axis. The Wv exhibits a distorted square antiprism, while the TbIII center displays an eight-coordinated decahedron geometry with 2.386 Å of the mean Tb—O bond length. The average W—C and C—N distances are 2.174 and 1.158 Å, respectively, while the W—CN bond angles are nearly linear with a maximum deviation from linearity of 4.0°. The neighboring cations are linked through O—H···O hydrogen bonds, Table 1.

Related literature top

For general background to octacyanometallate-based compounds, see: Sieklucka et al. (2011); Zhou et al. (2010). For related structures, see: Qian et al. (2011). For the preparation of the title compound, see: Bok et al., (1975).

Experimental top

Single crystals of the title compound were prepared at room temperature in the dark by slow diffusion of a H2O solution (3 ml) containing Tb(NO3)3.6H2O (0.05 mmol) and 4,4'-dpdo (0.05 mmol) into a CH3CN solution (15 ml) of [HN(n-C4H9)3]3[W(CN)8].4H2O (0.05 mmol) (Bok et al., 1975). After two weeks, yellow block crystals were obtained.

Refinement top

All non-hydrogen atoms were refined with anisotropic thermal parameters. The H atoms of 4,4'-bpdo ligands were calculated at idealized positions with C—H = 0.93 Å and included in the refinement in a riding mode with U(H) set to 1.2 Ueq(C). The H atoms bound to oxygen atom from coordinated water molecule were located from difference maps and refined as riding with O—H = 0.85 Å and U(H) set to 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SMART (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound. Hydrogen atoms have been omitted for clarity and thermal ellipsoids are presented at the 30% probability level. Symmetry codes: (i) -x + 3/2, -y + 3/2, z; (ii) -y + 3/2, x, z; (iii) y, -x + 3/2, z; (iv) y - 1/2, -x + 1, -z + 1; (v) -y + 1, x + 1/2, -z + 1; (vi) -x + 1/2, -y + 3/2, z.
Tetraaquatetrakis(4,4'-bipyridine dioxide-κO)terbium(III) octacyanidotungstate(V) top
Crystal data top
[Tb(C10H8N2O2)4(H2O)4][W(CN)8]Dx = 1.802 Mg m3
Mr = 1375.73Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/nCell parameters from 9955 reflections
Hall symbol: -P 4aθ = 2.3–27.5°
a = 17.9222 (7) ŵ = 3.73 mm1
c = 7.8915 (6) ÅT = 291 K
V = 2534.8 (2) Å3Block, yellow
Z = 20.26 × 0.23 × 0.20 mm
F(000) = 1350
Data collection top
Bruker SMART APEX CCD
diffractometer
2498 independent reflections
Radiation source: fine-focus sealed tube2299 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2222
Tmin = 0.444, Tmax = 0.522k = 2222
19073 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.014Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.037H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0164P)2 + 1.703P]
where P = (Fo2 + 2Fc2)/3
2498 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Tb(C10H8N2O2)4(H2O)4][W(CN)8]Z = 2
Mr = 1375.73Mo Kα radiation
Tetragonal, P4/nµ = 3.73 mm1
a = 17.9222 (7) ÅT = 291 K
c = 7.8915 (6) Å0.26 × 0.23 × 0.20 mm
V = 2534.8 (2) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2498 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2299 reflections with I > 2σ(I)
Tmin = 0.444, Tmax = 0.522Rint = 0.032
19073 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0140 restraints
wR(F2) = 0.037H-atom parameters constrained
S = 1.07Δρmax = 0.30 e Å3
2498 reflectionsΔρmin = 0.64 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.75000.75000.24882 (2)0.01913 (5)
Tb10.25000.75000.50000.01051 (5)
O10.29389 (7)0.81662 (7)0.25409 (15)0.0171 (3)
H1B0.32870.80150.18480.021*
H1A0.26370.83940.18390.021*
N10.68065 (11)0.89541 (11)0.0386 (3)0.0393 (5)
C10.70418 (11)0.84317 (11)0.1061 (3)0.0284 (5)
O20.35045 (7)0.67744 (8)0.39890 (16)0.0239 (3)
N20.59625 (11)0.79552 (11)0.4621 (3)0.0374 (5)
C20.65117 (11)0.78032 (11)0.3929 (3)0.0278 (4)
O30.72018 (7)0.38740 (8)1.00441 (16)0.0212 (3)
N30.39907 (9)0.63844 (9)0.49170 (19)0.0194 (3)
C70.46983 (11)0.66305 (11)0.5066 (3)0.0248 (4)
H70.48430.70660.45150.030*
C60.52093 (11)0.62425 (11)0.6029 (3)0.0234 (4)
H60.56950.64200.61250.028*
C50.50060 (10)0.55836 (10)0.6866 (2)0.0171 (4)
C40.42720 (10)0.53429 (11)0.6643 (2)0.0200 (4)
H40.41140.49030.71570.024*
C30.37781 (11)0.57476 (11)0.5672 (2)0.0226 (4)
H30.32910.55780.55380.027*
C80.55622 (10)0.51442 (10)0.7837 (2)0.0158 (4)
C120.62818 (10)0.54238 (10)0.8120 (2)0.0194 (4)
H120.63990.59060.77740.023*
C110.68155 (10)0.49949 (10)0.8903 (2)0.0202 (4)
H110.72900.51890.90890.024*
N40.66553 (8)0.42914 (8)0.94064 (19)0.0163 (3)
C100.59602 (10)0.40097 (10)0.9223 (2)0.0178 (4)
H100.58540.35320.96130.021*
C90.54087 (10)0.44284 (10)0.8461 (2)0.0171 (4)
H90.49300.42340.83600.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.01293 (6)0.01293 (6)0.03153 (10)0.0000.0000.000
Tb10.01091 (6)0.01091 (6)0.00970 (8)0.0000.0000.000
O10.0165 (6)0.0216 (7)0.0134 (6)0.0015 (5)0.0022 (5)0.0030 (5)
N10.0269 (10)0.0294 (10)0.0617 (14)0.0036 (8)0.0126 (9)0.0106 (10)
C10.0180 (10)0.0236 (10)0.0435 (12)0.0035 (8)0.0054 (9)0.0016 (10)
O20.0219 (7)0.0334 (8)0.0165 (6)0.0156 (6)0.0023 (5)0.0007 (6)
N20.0276 (10)0.0317 (10)0.0528 (12)0.0001 (8)0.0092 (9)0.0084 (9)
C20.0233 (10)0.0178 (9)0.0422 (12)0.0016 (8)0.0001 (9)0.0039 (9)
O30.0184 (7)0.0235 (7)0.0217 (7)0.0064 (5)0.0021 (5)0.0064 (5)
N30.0183 (8)0.0235 (8)0.0163 (8)0.0101 (7)0.0004 (6)0.0014 (6)
C70.0223 (10)0.0201 (10)0.0322 (11)0.0039 (8)0.0008 (8)0.0060 (8)
C60.0164 (9)0.0200 (9)0.0337 (11)0.0009 (7)0.0031 (8)0.0037 (8)
C50.0190 (9)0.0165 (9)0.0159 (8)0.0048 (7)0.0009 (7)0.0032 (7)
C40.0186 (9)0.0199 (9)0.0216 (9)0.0009 (7)0.0002 (8)0.0014 (8)
C30.0171 (9)0.0268 (10)0.0238 (10)0.0021 (8)0.0004 (8)0.0016 (8)
C80.0170 (9)0.0166 (9)0.0137 (8)0.0032 (7)0.0022 (7)0.0039 (7)
C120.0218 (9)0.0144 (9)0.0220 (9)0.0014 (7)0.0017 (8)0.0015 (7)
C110.0182 (9)0.0201 (9)0.0222 (9)0.0031 (7)0.0024 (8)0.0019 (8)
N40.0167 (7)0.0188 (8)0.0133 (7)0.0048 (6)0.0001 (6)0.0008 (6)
C100.0202 (9)0.0163 (9)0.0169 (9)0.0004 (7)0.0037 (7)0.0008 (7)
C90.0164 (9)0.0180 (9)0.0170 (9)0.0005 (7)0.0027 (7)0.0013 (7)
Geometric parameters (Å, º) top
W1—C2i2.174 (2)N3—C31.343 (3)
W1—C2ii2.174 (2)N3—C71.348 (3)
W1—C2iii2.174 (2)C7—C61.378 (3)
W1—C22.174 (2)C7—H70.9300
W1—C1i2.175 (2)C6—C51.401 (3)
W1—C1ii2.175 (2)C6—H60.9300
W1—C12.175 (2)C5—C41.396 (3)
W1—C1iii2.175 (2)C5—C81.484 (3)
Tb1—O2iv2.3598 (13)C4—C31.377 (3)
Tb1—O2v2.3598 (13)C4—H40.9300
Tb1—O22.3598 (13)C3—H30.9300
Tb1—O2vi2.3598 (13)C8—C91.401 (3)
Tb1—O1vi2.4104 (12)C8—C121.402 (3)
Tb1—O1iv2.4104 (12)C12—C111.374 (3)
Tb1—O12.4104 (12)C12—H120.9300
Tb1—O1v2.4104 (12)C11—N41.353 (2)
O1—H1B0.8724C11—H110.9300
O1—H1A0.8755N4—C101.352 (2)
N1—C11.157 (3)C10—C91.379 (3)
O2—N31.336 (2)C10—H100.9300
N2—C21.158 (3)C9—H90.9300
O3—N41.3312 (19)
C2i—W1—C2ii74.13 (6)O2iv—Tb1—O1v72.77 (5)
C2i—W1—C2iii116.94 (12)O2v—Tb1—O1v75.63 (5)
C2ii—W1—C2iii74.13 (6)O2—Tb1—O1v146.09 (4)
C2i—W1—C274.13 (6)O2vi—Tb1—O1v73.41 (4)
C2ii—W1—C2116.94 (12)O1vi—Tb1—O1v130.40 (4)
C2iii—W1—C274.13 (6)O1iv—Tb1—O1v72.76 (6)
C2i—W1—C1i76.77 (8)O1—Tb1—O1v130.40 (4)
C2ii—W1—C1i143.32 (7)Tb1—O1—H1B125.7
C2iii—W1—C1i140.38 (7)Tb1—O1—H1A122.6
C2—W1—C1i74.90 (8)H1B—O1—H1A101.0
C2i—W1—C1ii74.90 (8)N1—C1—W1175.9 (2)
C2ii—W1—C1ii76.77 (8)N3—O2—Tb1126.92 (10)
C2iii—W1—C1ii143.32 (7)N2—C2—W1176.3 (2)
C2—W1—C1ii140.38 (7)O2—N3—C3120.20 (16)
C1i—W1—C1ii74.45 (6)O2—N3—C7119.38 (16)
C2i—W1—C1143.32 (7)C3—N3—C7120.42 (16)
C2ii—W1—C1140.38 (7)N3—C7—C6120.54 (18)
C2iii—W1—C174.90 (8)N3—C7—H7119.7
C2—W1—C176.77 (8)C6—C7—H7119.7
C1i—W1—C174.45 (6)C7—C6—C5120.81 (18)
C1ii—W1—C1117.63 (12)C7—C6—H6119.6
C2i—W1—C1iii140.38 (7)C5—C6—H6119.6
C2ii—W1—C1iii74.90 (8)C4—C5—C6116.52 (17)
C2iii—W1—C1iii76.77 (8)C4—C5—C8122.29 (17)
C2—W1—C1iii143.32 (7)C6—C5—C8121.07 (17)
C1i—W1—C1iii117.63 (12)C3—C4—C5120.87 (18)
C1ii—W1—C1iii74.45 (6)C3—C4—H4119.6
C1—W1—C1iii74.45 (6)C5—C4—H4119.6
O2iv—Tb1—O2v140.48 (6)N3—C3—C4120.81 (18)
O2iv—Tb1—O296.56 (2)N3—C3—H3119.6
O2v—Tb1—O296.56 (2)C4—C3—H3119.6
O2iv—Tb1—O2vi96.56 (2)C9—C8—C12116.87 (17)
O2v—Tb1—O2vi96.56 (2)C9—C8—C5122.38 (17)
O2—Tb1—O2vi140.48 (6)C12—C8—C5120.72 (17)
O2iv—Tb1—O1vi73.41 (4)C11—C12—C8120.82 (17)
O2v—Tb1—O1vi146.09 (4)C11—C12—H12119.6
O2—Tb1—O1vi72.77 (5)C8—C12—H12119.6
O2vi—Tb1—O1vi75.63 (5)N4—C11—C12120.38 (17)
O2iv—Tb1—O1iv75.63 (5)N4—C11—H11119.8
O2v—Tb1—O1iv72.77 (5)C12—C11—H11119.8
O2—Tb1—O1iv73.41 (4)O3—N4—C10120.56 (15)
O2vi—Tb1—O1iv146.09 (4)O3—N4—C11118.59 (15)
O1vi—Tb1—O1iv130.40 (4)C10—N4—C11120.83 (16)
O2iv—Tb1—O1146.09 (4)N4—C10—C9120.25 (17)
O2v—Tb1—O173.41 (4)N4—C10—H10119.9
O2—Tb1—O175.63 (5)C9—C10—H10119.9
O2vi—Tb1—O172.77 (5)C10—C9—C8120.71 (17)
O1vi—Tb1—O172.76 (6)C10—C9—H9119.6
O1iv—Tb1—O1130.40 (4)C8—C9—H9119.6
Symmetry codes: (i) y+3/2, x, z; (ii) x+3/2, y+3/2, z; (iii) y, x+3/2, z; (iv) y1/2, x+1, z+1; (v) y+1, x+1/2, z+1; (vi) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O3vii0.871.812.6695 (18)167
O1—H1A···O3viii0.881.892.7415 (18)165
Symmetry codes: (vii) y, x+3/2, z1; (viii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Tb(C10H8N2O2)4(H2O)4][W(CN)8]
Mr1375.73
Crystal system, space groupTetragonal, P4/n
Temperature (K)291
a, c (Å)17.9222 (7), 7.8915 (6)
V3)2534.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.73
Crystal size (mm)0.26 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.444, 0.522
No. of measured, independent and
observed [I > 2σ(I)] reflections
19073, 2498, 2299
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.037, 1.07
No. of reflections2498
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.64

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O3i0.871.812.6695 (18)166.8
O1—H1A···O3ii0.881.892.7415 (18)165.2
Symmetry codes: (i) y, x+3/2, z1; (ii) x1/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by the Project of Undergraduate Innovative Plan of Jiangsu University of Science and Technology, and the Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

First citationBok, L. D. C., Leipoldt, J. G. & Basson, S. S. (1975). Z. Anorg. Allg. Chem. 415, 81–83.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationQian, S.-Y. & Yuan, A.-H. (2011). Acta Cryst. E67, m845.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieklucka, B., Podgajny, R., Korzeniak, T., Nowicka, B., Pinkowicz, D. & Kozieł, M. (2011). Eur. J. Inorg. Chem. pp. 305–326.  Web of Science CrossRef Google Scholar
First citationZhou, H., Yuan, A. H., Qian, S. Y., Song, Y. & Diao, G. W. (2010). Inorg. Chem. 49, 5971–5976.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds