organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1H-Benzimidazol-1-yl)methanol

aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 16 January 2012; accepted 31 January 2012; online 4 February 2012)

In the title compound, C8H8N2O, the N—CH2 and CH2—O bond lengths can be correlated to the manifestation of an anomeric effect in the N—CH2—O moiety. In the crystal, inter­molecular O—H⋯N hydrogen bonds link the mol­ecules into zigzag chains, with graph-set motif C(6), parallel to [001]. These chains are further linked into sheets by weak nonclassical C—H⋯O hydrogen bonds.

Related literature

For a related structure, see: Shi et al. (2011[Shi, T., Jin, S., Zhu, J., Liu, Y. J. & Shi, C. C. (2011). Acta Cryst. E67, o2943.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For chemical background on the synthesis and uses of the title compound, see: Milata et al. (2001[Milata, V., Kada, R., Zalibera, Ľ. & Belicová, A. (2001). Boll. Chim. Farm. 140, 215-220.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8N2O

  • Mr = 148.2

  • Monoclinic, P 21 /c

  • a = 13.3181 (10) Å

  • b = 4.2677 (3) Å

  • c = 12.4795 (10) Å

  • β = 95.143 (6)°

  • V = 706.45 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.78 mm−1

  • T = 120 K

  • 0.41 × 0.30 × 0.23 mm

Data collection
  • Agilent Xcalibur diffractometer with an Atlas (Gemini Ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.744, Tmax = 1

  • 4736 measured reflections

  • 1248 independent reflections

  • 1086 reflections with I > 3σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.78

  • 1248 reflections

  • 103 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N2i 0.894 (19) 1.85 (2) 2.7355 (16) 173.8 (17)
C1—H1⋯O1ii 0.96 2.41 3.2887 (17) 152
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Benzimidazole derivatives are compounds that have received much attention because of their applications in several areas. Although the synthesis of title compound had been reported in the literature (Milata et al., 2001), we have developed an alternative route to prepare this compound starting from the synthetically available benzoaminal 6H,13H-5:12,7:14-dimethanedibenzo[d,i][1,3,6,8]tetraazecine (DMDBTA).

In the title compound, C8H8N2O, (Fig.1) the benzimidazole ring is essentially planar, with a maximum deviation for N1 of 0.0089 (12)Å from the least-squares plane defined by the nine constituent atoms. The sum of bond angles around this nitrogen atom was 359.90 (11)°, which is consistent with the planarization of the heterocyclic ring. The distances within the benzimidazole ring of the title compound are very similar to those found in bis(1H-benzimidazol-1-yl)methane monohydrate (Shi et al., 2011). However, the observed N—CH2 bond length [N1—C8, 1.4638 (17) Å] is longer in relation to the mentioned mean value observed in related structure [N—CH2, 1.452 (4) Å] (Shi et al., 2011). Moreover, the CH2—O bonds in the residue tend to be shorter than the normal values by 0.033 Å (Allen et al., 1987). This fact can be correlated to the manifestation of an anomeric effect in N—CH2—O moiety, but it operates in the opposite direction.In the crystal structure, intermolecular O—H···N hydrogen bonds link the molecules into zigzag chains with graph-set motif C(6) parallel to [001], (Bernstein et al., 1995) (Fig. 2). These chains are further linked into sheet by weak non-classical C—H···O hydrogen bonds between H atom of the benzimidazole ring and the O atom of a neighbouring molecule.

Related literature top

For a related structure, see: Shi et al. (2011). For bond-length data, see: Allen et al. (1987). For chemical background on the synthesis and uses of the title compound, see: Milata et al. (2001). For graph-set analysis, see: Bernstein et al. (1995).

Experimental top

A solution of 6H,13H-5:12,7:14-dimethanedibenzo[d,i][1,3,6,8] tetraazecine (DMDBTA) (0.25 mmol) and p-nitrophenol (0.5 mmol) in propan-2-ol (15 ml) was placed in a round-bottomed flask equipped with a water-cooled condenser. The reaction mixture was heated at 347 K for 3 h. giving a white precipitate which was filtered off, and the mother liquor was then concentrated by a rotary evaporator to give an oil accompanied by precipitates, which was removed by filtration. Single crystal of the precipitate (title compound), suitable for X-ray crystallography, was grown by slow evaporation from water:propan-2-ol solution at room temperature after several days. Melting point 407 K.

The NMR spectra were acquired at room temperature on a Bruker AMX 400 Avance spectrometer. 1H NMR (δ, 400 MHz, CDCl3): 5.60, 6.78, 7.23, 7.29, 7.66, 8.28. 13C NMR (δ, 100 MHz, CDCl3): 67.8, 111.4, 119.8, 122.3, 122.9, 133.7, 144.1, 144.8.

Refinement top

The hydroxyl hydrogen atom was found in difference Fourier maps and its coordinates were refined freely. All other H atoms atoms were positioned geometrically and treated as riding on their parent atoms. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2×Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of the title molecule. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of the molecules of the title compound view along the b axis. Dashed lines indicate the intermolecular hydrogen bonds.
(1H-Benzimidazol-1-yl)methanol top
Crystal data top
C8H8N2OF(000) = 312
Mr = 148.2Dx = 1.393 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 2690 reflections
a = 13.3181 (10) Åθ = 3.3–66.8°
b = 4.2677 (3) ŵ = 0.78 mm1
c = 12.4795 (10) ÅT = 120 K
β = 95.143 (6)°Block, colourless
V = 706.45 (9) Å30.41 × 0.30 × 0.23 mm
Z = 4
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
1248 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1086 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.3784 pixels mm-1θmax = 67.1°, θmin = 3.3°
rotation method data acquisition using ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 55
Tmin = 0.744, Tmax = 1l = 1414
4736 measured reflections
Refinement top
Refinement on F229 constraints
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
S = 1.78(Δ/σ)max = 0.002
1248 reflectionsΔρmax = 0.18 e Å3
103 parametersΔρmin = 0.22 e Å3
0 restraints
Crystal data top
C8H8N2OV = 706.45 (9) Å3
Mr = 148.2Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.3181 (10) ŵ = 0.78 mm1
b = 4.2677 (3) ÅT = 120 K
c = 12.4795 (10) Å0.41 × 0.30 × 0.23 mm
β = 95.143 (6)°
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
1248 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1086 reflections with I > 3σ(I)
Tmin = 0.744, Tmax = 1Rint = 0.032
4736 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.78Δρmax = 0.18 e Å3
1248 reflectionsΔρmin = 0.22 e Å3
103 parameters
Special details top

Experimental. CrysAlisPro (Agilent , 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.93101 (7)0.3994 (2)0.86004 (8)0.0311 (3)
N10.83140 (8)0.4446 (3)0.69371 (9)0.0247 (3)
N20.81868 (9)0.2744 (3)0.52326 (9)0.0291 (4)
C10.86934 (10)0.4481 (3)0.59626 (11)0.0277 (4)
C20.74835 (9)0.2487 (3)0.68347 (10)0.0243 (4)
C30.68095 (10)0.1551 (3)0.75625 (11)0.0268 (4)
C40.60448 (10)0.0444 (3)0.71773 (11)0.0289 (4)
C50.59534 (10)0.1479 (3)0.61064 (12)0.0308 (4)
C60.66286 (10)0.0572 (3)0.53902 (11)0.0296 (4)
C70.74087 (9)0.1443 (3)0.57631 (10)0.0255 (4)
C80.87514 (9)0.6034 (3)0.79091 (10)0.0271 (4)
H10.9279030.5669070.5820340.0333*
H30.6873180.2257350.8295770.0322*
H40.5563640.1140710.7654310.0347*
H50.5407780.2850480.5866270.037*
H60.6564430.130250.4659630.0356*
H8a0.917530.771860.7711570.0325*
H8b0.8222740.6957330.8278350.0325*
H1o0.8905 (14)0.341 (4)0.9098 (15)0.0373*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0258 (5)0.0439 (6)0.0239 (5)0.0053 (4)0.0035 (4)0.0043 (4)
N10.0236 (6)0.0287 (6)0.0218 (6)0.0009 (4)0.0024 (4)0.0001 (4)
N20.0285 (6)0.0358 (7)0.0235 (6)0.0006 (4)0.0053 (4)0.0005 (5)
C10.0253 (7)0.0338 (8)0.0248 (7)0.0016 (5)0.0056 (5)0.0012 (5)
C20.0235 (6)0.0249 (7)0.0244 (7)0.0038 (5)0.0017 (5)0.0013 (5)
C30.0272 (7)0.0287 (7)0.0250 (7)0.0048 (5)0.0052 (5)0.0014 (5)
C40.0252 (7)0.0297 (7)0.0327 (8)0.0028 (5)0.0070 (6)0.0055 (5)
C50.0261 (7)0.0300 (7)0.0355 (8)0.0017 (5)0.0014 (6)0.0024 (6)
C60.0323 (7)0.0305 (7)0.0255 (7)0.0005 (5)0.0008 (6)0.0002 (5)
C70.0254 (7)0.0267 (7)0.0243 (7)0.0030 (5)0.0029 (5)0.0008 (5)
C80.0268 (7)0.0309 (7)0.0234 (7)0.0002 (5)0.0015 (5)0.0010 (5)
Geometric parameters (Å, º) top
O1—C81.3932 (16)C3—C41.3804 (18)
O1—H1o0.894 (19)C3—H30.96
N1—C11.3581 (18)C4—C51.402 (2)
N1—C21.3834 (16)C4—H40.96
N1—C81.4638 (17)C5—C61.379 (2)
N2—C11.3133 (17)C5—H50.96
N2—C71.3941 (18)C6—C71.3961 (18)
C1—H10.96C6—H60.96
C2—C31.3916 (19)C8—H8a0.96
C2—C71.4045 (18)C8—H8b0.96
C8—O1—H1o106.4 (11)C5—C4—H4119.1913
C1—N1—C2106.41 (11)C4—C5—C6121.57 (12)
C1—N1—C8125.77 (11)C4—C5—H5119.2139
C2—N1—C8127.72 (11)C6—C5—H5119.2142
C1—N2—C7104.65 (11)C5—C6—C7117.76 (13)
N1—C1—N2113.94 (12)C5—C6—H6121.1194
N1—C1—H1123.0293C7—C6—H6121.1187
N2—C1—H1123.0296N2—C7—C2109.49 (11)
N1—C2—C3132.10 (12)N2—C7—C6130.52 (12)
N1—C2—C7105.52 (11)C2—C7—C6119.99 (12)
C3—C2—C7122.38 (11)O1—C8—N1112.01 (11)
C2—C3—C4116.66 (12)O1—C8—H8a109.4718
C2—C3—H3121.6681O1—C8—H8b109.4708
C4—C3—H3121.6689N1—C8—H8a109.4717
C3—C4—C5121.62 (13)N1—C8—H8b109.4709
C3—C4—H4119.1906H8a—C8—H8b106.8062
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N2i0.894 (19)1.85 (2)2.7355 (16)173.8 (17)
C1—H1···O1ii0.962.413.2887 (17)152
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H8N2O
Mr148.2
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)13.3181 (10), 4.2677 (3), 12.4795 (10)
β (°) 95.143 (6)
V3)706.45 (9)
Z4
Radiation typeCu Kα
µ (mm1)0.78
Crystal size (mm)0.41 × 0.30 × 0.23
Data collection
DiffractometerAgilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.744, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
4736, 1248, 1086
Rint0.032
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.78
No. of reflections1248
No. of parameters103
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.22

Computer programs: CrysAlis PRO (Agilent, 2010), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N2i0.894 (19)1.85 (2)2.7355 (16)173.8 (17)
C1—H1···O1ii0.962.413.2887 (17)151.49
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y+1/2, z+3/2.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationMilata, V., Kada, R., Zalibera, Ľ. & Belicová, A. (2001). Boll. Chim. Farm. 140, 215–220.  PubMed CAS Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.  Google Scholar
First citationShi, T., Jin, S., Zhu, J., Liu, Y. J. & Shi, C. C. (2011). Acta Cryst. E67, o2943.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds