metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[penta­aqua­(μ4-pyridine-2,4,6-tri­carboxyl­ato)(μ3-pyridine-2,4,6-tri­carboxyl­ato)disamarium(III)] mono­hydrate]

aCrystal Engineering Division, Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: zhuhonglin1@nbu.edu.cn

(Received 10 January 2012; accepted 19 January 2012; online 10 February 2012)

The asymmetric unit of the title compound, {[Sm2(C8H2NO6)2(H2O)5]·H2O}n, contains two independent SmIII ions, two pyridine-2,4,6-tricarboxyl­ate (ptc) ligands, five aqua ligands and one lattice water mol­ecule. One SmIII ion is nine-coordinated by one N and five O atoms from the three ptc ligands and three aqua ligands in a distorted monocapped square antiprismatic geometry, and the other is eight-coordinated by one N and five O atoms from three ptc ligands and two aqua ligands in a 4,4′-bicapped trigonal anti­prismatic geometry. The ptc ligands brigde the SmIII ions into a three-dimensional polymeric framework. Extensive O—H⋯O hydrogen bonding is observed in the crystal structure.

Related literature

For related compounds, see: Gao et al. (2006[Gao, H.-L., Yi, L., Ding, B., Wang, H.-S., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2006). Inorg. Chem. 45, 481-483.]); Ghosh & Bharadwaj (2005[Ghosh, S. K. & Bharadwaj, P. K. (2005). Eur. J. Inorg. Chem. pp. 4886-4889.]); Li et al. (2008[Li, C.-J., Peng, M.-X., Leng, J.-D., Yang, M.-M., Lin, Z.-J. & Tong, M.-L. (2008). CrystEngComm, 10, 1645-1652.]); Wang et al. (2007[Wang, H.-S., Zhao, B., Zhai, B., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Cryst. Growth Des. 7, 1851-1857.]).

[Scheme 1]

Experimental

Crystal data
  • [Sm2(C8H2NO6)2(H2O)5]·H2O

  • Mr = 825.01

  • Monoclinic, P 21 /n

  • a = 18.426 (4) Å

  • b = 6.9082 (14) Å

  • c = 18.583 (4) Å

  • β = 111.98 (3)°

  • V = 2193.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.40 mm−1

  • T = 293 K

  • 0.43 × 0.28 × 0.21 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.177, Tmax = 0.321

  • 20300 measured reflections

  • 4963 independent reflections

  • 4776 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.041

  • S = 1.19

  • 4963 reflections

  • 344 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O14i 0.82 1.87 2.686 (3) 172
O7—H7B⋯O2ii 0.86 1.80 2.645 (3) 165
O8—H8A⋯O12iii 0.89 1.83 2.727 (3) 177
O8—H8B⋯O9iv 0.87 2.38 2.831 (3) 113
O9—H9A⋯O6i 0.87 1.84 2.698 (3) 171
O9—H9B⋯O5i 0.93 2.55 3.052 (3) 114
O16—H16A⋯O4i 0.82 2.31 3.075 (3) 157
O16—H16B⋯O15v 0.79 1.97 2.747 (3) 171
O17—H17A⋯O18vi 0.84 1.86 2.697 (3) 176
O17—H17B⋯O5vii 0.80 1.96 2.731 (3) 162
O18—H18A⋯O14viii 0.85 2.06 2.905 (3) 174
O18—H18B⋯O13 0.82 1.93 2.736 (3) 168
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) x, y+1, z; (v) -x+1, -y, -z+2; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (viii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, research of lanthanide pyridine-2,4,6-tricarboxylate coordination polymers has been of great interest in the fields of molecule adsorption, host-guest interaction and luminescence materials (Gao et al., 2006; Li et al., 2008; Wang et al., 2007;) etc. The compound {[Pr(H2O)2(ptc)].2H2O} reported by Ghosh et al. (2005) represents an example of three-dimensional MOF, which could potentially be utilized as an adsorption material. In this contribution, we report the structure of the title compound.

The asymmetric unit of title compound contains two SmIII ions (Sm1, Sm2), two ptc ligands (denoted as ptc1 and ptc2 ligands, which contain N1 and N2 atoms, respectively) (H3ptc = pyridine-2,4,6-tricarboxylate), five aqua ligands and one lattice water molecule as illustrated in Fig. 1. The Sm1 and Sm2 are respectively 9- and 8-coordinated with the ligating atoms occupying the corners of distorted monocapped square anti-prism and 4,4'-bicapped trigonal anti-prism, respectively. The bond distances about the Sm1 and Sm2 atoms fall in the regions 2.406-2.587 Å and 2.359-2.529 Å, the corresponding bond angles are in the regions 50.9-147.8° and 63.3-159.7°, respectively.

Each ptc1 ligand links four SmIII centers with the 4-carboxylate bonded to two metal ions in syn-syn bridging fashion and the 2-carboxylate coordinated to two metal ions in anti-syn bridging fashion, while each ptc2 ligand connects three SmIII centers with the 4-carboxylate chelating one metal ion and the 2-carboxylate bridging two metal ions in anti-anti bridging fashions.

Both ptc1 and ptc2 ligands coordinate Sm1 atoms to form a linear [Sm(ptc)2] metallo-ligand, which, in turn, bridges the Sm2 atoms to generate one-dimensional ribbon-like chains with rectangular and 8-membered rhombic rings alternating (Fig. 2). Within the rectangular ring, the two adjacent ptc1 and ptc2 ligands orientate approximately parallelly to each other with a dihedral angle of 7.4° and the mean interplanar distance of 3.33 Å suggests significant intrachain π···π stacking interactions. The resulting one-dimensional chains donate carboxylate O atoms (O1 and O10) to coordinate with Sm atoms from two neighboring chains to construct a three-dimensional framework (Fig. 3).

Related literature top

For related compounds, see: Gao et al. (2006); Ghosh & Bharadwaj (2005); Li et al. (2008); Wang et al. (2007).

Experimental top

All chemicals were obtained from commerical sources and were used as obtained. A mixture of SmCl3.nH2O (0.60 mmol), pyridine-2,4,6-tricarboxylic acid (0.0537 g, 0.25 mmol), Malonic acid (0.0261 g, 0.25 mmol), NaOH (1 ml, 1 M) and H2O (20 ml) was sealed into a 23 ml Teflon-lined stainless autoclave, which was heated up to 180°C, at which temperature the reactor was held for 3 days, and then cooled to room temperature. A mixture of brownish deposit and a small amount of colourless block-liked crystals were obtained.

Refinement top

H atoms bonded to C atoms were palced in geometrically calculated position, and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O–H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the crystal structure showing the atomic numbering and 45% probability dispalcement ellipsoids [symmetry codes: (i) 1/2-x, -1/2+y, 1/2-z; (ii) x, y, 1+z; (iii) 1-x, 1-y, 1-z; (iv) 1/2-x, -1/2+y, 3/2-z].
[Figure 2] Fig. 2. The one-dimensional chain with the rectangular and 8-membered rhombic rings.
[Figure 3] Fig. 3. The three-dimensional metal-organic framework in the title compound.
Poly[[pentaaqua(µ4-pyridine-2,4,6-tricarboxylato)(µ3-pyridine-2,4,6- tricarboxylato)disamarium(III)] monohydrate] top
Crystal data top
[Sm2(C8H2NO6)2(H2O)5]·H2OF(000) = 1576
Mr = 825.01Dx = 2.498 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 19369 reflections
a = 18.426 (4) Åθ = 3.2–27.5°
b = 6.9082 (14) ŵ = 5.40 mm1
c = 18.583 (4) ÅT = 293 K
β = 111.98 (3)°Block, colorless
V = 2193.6 (8) Å30.43 × 0.28 × 0.21 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4963 independent reflections
Radiation source: fine-focus sealed tube4776 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 2323
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 88
Tmin = 0.177, Tmax = 0.321l = 2422
20300 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.0066P)2 + 3.5019P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.002
4963 reflectionsΔρmax = 0.69 e Å3
344 parametersΔρmin = 0.84 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00244 (6)
Crystal data top
[Sm2(C8H2NO6)2(H2O)5]·H2OV = 2193.6 (8) Å3
Mr = 825.01Z = 4
Monoclinic, P21/nMo Kα radiation
a = 18.426 (4) ŵ = 5.40 mm1
b = 6.9082 (14) ÅT = 293 K
c = 18.583 (4) Å0.43 × 0.28 × 0.21 mm
β = 111.98 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4963 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4776 reflections with I > 2σ(I)
Tmin = 0.177, Tmax = 0.321Rint = 0.035
20300 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.041H-atom parameters constrained
S = 1.19Δρmax = 0.69 e Å3
4963 reflectionsΔρmin = 0.84 e Å3
344 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.373309 (7)0.222784 (18)0.378119 (7)0.01049 (4)
Sm20.374965 (8)0.250031 (17)0.896720 (7)0.01111 (5)
N10.42996 (13)0.3322 (3)0.27802 (12)0.0125 (4)
C10.38355 (15)0.4105 (3)0.21147 (15)0.0127 (5)
C20.40694 (15)0.4323 (3)0.14877 (15)0.0139 (5)
H2A0.37350.48610.10230.017*
C30.48176 (15)0.3710 (3)0.15774 (15)0.0125 (5)
C40.53246 (15)0.3029 (4)0.22948 (15)0.0136 (5)
H4A0.58400.27070.23770.016*
C50.50357 (15)0.2846 (3)0.28859 (15)0.0119 (5)
C60.30319 (15)0.4640 (4)0.20964 (15)0.0145 (5)
O10.26044 (11)0.5719 (3)0.15807 (11)0.0185 (4)
O20.28618 (11)0.3912 (3)0.26427 (11)0.0206 (4)
C70.50797 (15)0.3719 (3)0.08959 (14)0.0124 (5)
O30.45938 (12)0.3160 (3)0.02671 (11)0.0219 (4)
O40.57737 (11)0.4236 (3)0.10278 (11)0.0172 (4)
C80.55086 (16)0.2082 (4)0.36836 (16)0.0146 (5)
O50.62134 (12)0.1852 (3)0.38807 (12)0.0278 (5)
O60.51110 (11)0.1716 (3)0.41069 (11)0.0183 (4)
O70.36682 (12)0.0503 (3)0.29113 (11)0.0220 (4)
H7B0.31780.07430.26540.026*
H7A0.38690.05020.25850.026*
O80.40849 (13)0.5640 (3)0.39790 (13)0.0267 (5)
H8A0.45630.61350.42180.032*
H8B0.36820.59860.40830.032*
O90.37653 (13)0.0753 (3)0.45208 (12)0.0232 (4)
H9A0.41590.09920.49460.028*
H9B0.33630.11660.46720.028*
N20.38147 (13)0.2822 (3)0.76366 (13)0.0126 (4)
C90.31935 (15)0.3494 (3)0.70511 (15)0.0136 (5)
C100.31717 (16)0.3588 (4)0.62931 (15)0.0164 (5)
H10A0.27260.40170.58880.020*
C110.38335 (16)0.3023 (4)0.61614 (15)0.0144 (5)
C120.44856 (17)0.2360 (3)0.67751 (16)0.0142 (5)
H12A0.49380.20040.66990.017*
C130.44461 (16)0.2242 (3)0.75073 (16)0.0135 (5)
C140.25231 (16)0.4146 (4)0.72805 (15)0.0148 (5)
O100.19320 (12)0.4815 (3)0.67583 (11)0.0210 (4)
O110.26175 (12)0.3950 (3)0.79795 (11)0.0232 (4)
C150.38312 (17)0.3038 (4)0.53467 (15)0.0157 (5)
O120.44658 (13)0.2832 (3)0.52504 (12)0.0221 (4)
O130.31898 (12)0.3173 (3)0.47848 (11)0.0212 (4)
C160.50960 (15)0.1461 (3)0.82233 (15)0.0134 (5)
O140.57112 (12)0.0880 (3)0.81788 (11)0.0206 (4)
O150.49458 (12)0.1467 (3)0.88390 (11)0.0198 (4)
O160.39568 (13)0.0498 (3)0.97353 (11)0.0244 (4)
H16B0.42510.06761.01620.029*
H16A0.38980.15640.95300.029*
O170.28096 (12)0.3100 (3)0.95460 (13)0.0283 (5)
H17B0.23580.31320.92610.034*
H17A0.28060.24650.99290.034*
O180.21204 (15)0.6072 (3)0.41898 (14)0.0374 (6)
H18B0.23890.51060.43670.045*
H18A0.16880.55500.39080.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.00985 (8)0.01369 (7)0.00821 (7)0.00008 (4)0.00368 (6)0.00015 (4)
Sm20.00839 (8)0.01720 (7)0.00731 (7)0.00064 (4)0.00243 (6)0.00005 (4)
N10.0109 (11)0.0167 (10)0.0101 (10)0.0002 (8)0.0040 (9)0.0003 (8)
C10.0095 (12)0.0143 (11)0.0133 (12)0.0001 (9)0.0032 (10)0.0017 (9)
C20.0132 (13)0.0169 (11)0.0101 (12)0.0002 (9)0.0026 (10)0.0028 (9)
C30.0128 (13)0.0136 (11)0.0118 (12)0.0032 (9)0.0055 (10)0.0006 (9)
C40.0108 (13)0.0162 (11)0.0144 (13)0.0015 (9)0.0055 (11)0.0011 (10)
C50.0115 (13)0.0128 (10)0.0111 (12)0.0005 (9)0.0041 (11)0.0002 (9)
C60.0113 (13)0.0184 (12)0.0133 (12)0.0010 (9)0.0042 (10)0.0015 (10)
O10.0137 (10)0.0243 (9)0.0164 (10)0.0060 (7)0.0045 (8)0.0061 (8)
O20.0128 (10)0.0339 (10)0.0171 (10)0.0053 (8)0.0079 (8)0.0105 (8)
C70.0137 (13)0.0127 (10)0.0105 (12)0.0009 (9)0.0044 (10)0.0024 (9)
O30.0208 (11)0.0313 (10)0.0112 (10)0.0046 (8)0.0031 (9)0.0038 (8)
O40.0150 (10)0.0224 (9)0.0158 (9)0.0015 (7)0.0077 (8)0.0010 (7)
C80.0127 (13)0.0158 (11)0.0140 (13)0.0001 (9)0.0036 (11)0.0002 (10)
O50.0108 (11)0.0466 (13)0.0235 (12)0.0054 (9)0.0035 (9)0.0103 (10)
O60.0137 (10)0.0295 (10)0.0121 (9)0.0051 (8)0.0053 (8)0.0073 (8)
O70.0143 (10)0.0353 (11)0.0188 (10)0.0037 (8)0.0090 (9)0.0115 (9)
O80.0268 (12)0.0190 (9)0.0329 (12)0.0045 (8)0.0098 (10)0.0050 (8)
O90.0273 (12)0.0248 (10)0.0169 (10)0.0035 (8)0.0074 (9)0.0062 (8)
N20.0114 (11)0.0163 (9)0.0095 (11)0.0000 (8)0.0033 (9)0.0004 (8)
C90.0136 (13)0.0157 (11)0.0113 (12)0.0018 (9)0.0044 (10)0.0009 (9)
C100.0168 (14)0.0197 (12)0.0111 (13)0.0039 (10)0.0034 (11)0.0030 (10)
C110.0173 (14)0.0152 (11)0.0114 (13)0.0001 (9)0.0062 (11)0.0017 (10)
C120.0137 (14)0.0169 (12)0.0128 (13)0.0007 (9)0.0058 (12)0.0007 (9)
C130.0131 (14)0.0140 (11)0.0133 (13)0.0002 (9)0.0049 (11)0.0013 (9)
C140.0139 (13)0.0171 (11)0.0126 (12)0.0028 (9)0.0039 (10)0.0006 (10)
O100.0170 (11)0.0284 (10)0.0149 (10)0.0110 (8)0.0029 (8)0.0043 (8)
O110.0167 (11)0.0417 (12)0.0124 (10)0.0096 (9)0.0067 (9)0.0040 (8)
C150.0216 (14)0.0164 (11)0.0105 (13)0.0019 (10)0.0076 (11)0.0003 (10)
O120.0175 (11)0.0370 (11)0.0136 (10)0.0003 (8)0.0077 (9)0.0027 (8)
O130.0180 (11)0.0347 (11)0.0099 (9)0.0068 (8)0.0042 (8)0.0007 (8)
C160.0129 (13)0.0135 (11)0.0132 (12)0.0016 (9)0.0042 (10)0.0001 (9)
O140.0137 (10)0.0303 (10)0.0194 (10)0.0067 (8)0.0079 (9)0.0014 (8)
O150.0152 (10)0.0336 (10)0.0113 (9)0.0068 (8)0.0057 (8)0.0043 (8)
O160.0297 (12)0.0225 (10)0.0140 (10)0.0053 (8)0.0002 (9)0.0034 (8)
O170.0111 (11)0.0532 (13)0.0215 (11)0.0062 (9)0.0071 (9)0.0058 (10)
O180.0347 (15)0.0383 (13)0.0323 (13)0.0133 (10)0.0046 (11)0.0015 (10)
Geometric parameters (Å, º) top
Sm1—O62.406 (2)O3—Sm2vi2.377 (2)
Sm1—O22.422 (2)O4—Sm2iv2.4185 (18)
Sm1—O82.436 (2)C8—O51.221 (3)
Sm1—O72.4582 (19)C8—O61.285 (3)
Sm1—O92.4642 (19)O7—H7B0.8654
Sm1—O132.5110 (18)O7—H7A0.8193
Sm1—O1i2.5243 (19)O8—H8A0.8930
Sm1—N12.564 (2)O8—H8B0.8667
Sm1—O122.587 (2)O9—H9A0.8662
Sm1—C152.901 (3)O9—H9B0.9304
Sm2—O10ii2.3600 (19)N2—C91.333 (3)
Sm2—O3iii2.377 (2)N2—C131.335 (3)
Sm2—O172.3925 (19)C9—C101.396 (3)
Sm2—O152.4120 (19)C9—C141.518 (3)
Sm2—O4iv2.4185 (19)C10—C111.387 (3)
Sm2—O112.420 (2)C10—H10A0.9300
Sm2—O162.463 (2)C11—C121.389 (4)
Sm2—N22.530 (2)C11—C151.512 (3)
N1—C11.327 (3)C12—C131.392 (4)
N1—C51.337 (3)C12—H12A0.9300
C1—C21.394 (3)C13—C161.518 (4)
C1—C61.514 (3)C14—O101.245 (3)
C2—C31.391 (4)C14—O111.252 (3)
C2—H2A0.9300O10—Sm2vii2.3600 (19)
C3—C41.393 (4)C15—O131.254 (3)
C3—C71.515 (3)C15—O121.256 (3)
C4—C51.394 (3)C16—O141.234 (3)
C4—H4A0.9300C16—O151.274 (3)
C5—C81.506 (4)O16—H16B0.7852
C6—O11.237 (3)O16—H16A0.8179
C6—O21.273 (3)O17—H17B0.8023
O1—Sm1v2.5243 (19)O17—H17A0.8383
C7—O31.238 (3)O18—H18B0.8223
C7—O41.260 (3)O18—H18A0.8524
O6—Sm1—O2125.63 (6)C2—C1—C6124.1 (2)
O6—Sm1—O884.72 (7)C3—C2—C1118.0 (2)
O2—Sm1—O873.68 (8)C3—C2—H2A121.0
O6—Sm1—O780.78 (7)C1—C2—H2A121.0
O2—Sm1—O786.62 (7)C2—C3—C4119.8 (2)
O8—Sm1—O7141.88 (7)C2—C3—C7120.7 (2)
O6—Sm1—O986.22 (7)C4—C3—C7119.5 (2)
O2—Sm1—O9139.32 (7)C3—C4—C5117.9 (2)
O8—Sm1—O9140.81 (7)C3—C4—H4A121.1
O7—Sm1—O973.17 (7)C5—C4—H4A121.1
O6—Sm1—O13121.87 (7)N1—C5—C4121.8 (2)
O2—Sm1—O13101.87 (6)N1—C5—C8114.3 (2)
O8—Sm1—O1378.10 (7)C4—C5—C8123.8 (2)
O7—Sm1—O13138.87 (7)O1—C6—O2125.5 (2)
O9—Sm1—O1374.70 (7)O1—C6—C1119.9 (2)
O6—Sm1—O1i147.10 (6)O2—C6—C1114.6 (2)
O2—Sm1—O1i72.76 (7)C6—O1—Sm1v136.93 (16)
O8—Sm1—O1i128.16 (7)C6—O2—Sm1127.30 (17)
O7—Sm1—O1i72.87 (6)O3—C7—O4126.5 (2)
O9—Sm1—O1i67.72 (7)O3—C7—C3116.3 (2)
O13—Sm1—O1i71.60 (7)O4—C7—C3117.1 (2)
O6—Sm1—N163.12 (7)C7—O3—Sm2vi170.38 (18)
O2—Sm1—N162.70 (7)C7—O4—Sm2iv127.27 (16)
O8—Sm1—N170.53 (7)O5—C8—O6125.2 (3)
O7—Sm1—N171.46 (6)O5—C8—C5120.0 (2)
O9—Sm1—N1136.02 (6)O6—C8—C5114.8 (2)
O13—Sm1—N1147.78 (7)C8—O6—Sm1127.38 (17)
O1i—Sm1—N1123.39 (7)Sm1—O7—H7B107.1
O6—Sm1—O1270.93 (7)Sm1—O7—H7A124.1
O2—Sm1—O12139.30 (7)H7B—O7—H7A104.9
O8—Sm1—O1271.36 (7)Sm1—O8—H8A127.1
O7—Sm1—O12134.07 (7)Sm1—O8—H8B95.7
O9—Sm1—O1269.64 (7)H8A—O8—H8B123.4
O13—Sm1—O1250.94 (7)Sm1—O9—H9A120.4
O1i—Sm1—O12114.82 (7)Sm1—O9—H9B124.7
N1—Sm1—O12121.65 (7)H9A—O9—H9B99.0
O6—Sm1—C1596.45 (8)C9—N2—C13119.8 (2)
O2—Sm1—C15123.75 (7)C9—N2—Sm2119.21 (16)
O8—Sm1—C1575.45 (7)C13—N2—Sm2120.87 (18)
O7—Sm1—C15140.98 (7)N2—C9—C10122.1 (2)
O9—Sm1—C1567.82 (7)N2—C9—C14114.5 (2)
O13—Sm1—C1525.51 (7)C10—C9—C14123.4 (2)
O1i—Sm1—C1592.01 (7)C11—C10—C9118.0 (2)
N1—Sm1—C15141.37 (7)C11—C10—H10A121.0
O12—Sm1—C1525.64 (7)C9—C10—H10A121.0
O10ii—Sm2—O3iii137.50 (7)C10—C11—C12119.7 (2)
O10ii—Sm2—O1794.18 (8)C10—C11—C15120.1 (2)
O3iii—Sm2—O1779.54 (8)C12—C11—C15120.1 (2)
O10ii—Sm2—O1591.23 (7)C11—C12—C13118.5 (2)
O3iii—Sm2—O1583.25 (7)C11—C12—H12A120.8
O17—Sm2—O15159.69 (7)C13—C12—H12A120.8
O10ii—Sm2—O4iv148.20 (7)N2—C13—C12121.8 (3)
O3iii—Sm2—O4iv73.67 (7)N2—C13—C16113.8 (2)
O17—Sm2—O4iv99.20 (7)C12—C13—C16124.4 (2)
O15—Sm2—O4iv86.13 (7)O10—C14—O11126.2 (2)
O10ii—Sm2—O1176.61 (8)O10—C14—C9117.2 (2)
O3iii—Sm2—O11137.89 (7)O11—C14—C9116.6 (2)
O17—Sm2—O1172.89 (7)C14—O10—Sm2vii149.34 (19)
O15—Sm2—O11127.43 (6)C14—O11—Sm2125.26 (16)
O4iv—Sm2—O1179.98 (7)O13—C15—O12121.9 (2)
O10ii—Sm2—O1666.67 (7)O13—C15—C11118.9 (2)
O3iii—Sm2—O1670.83 (7)O12—C15—C11119.2 (3)
O17—Sm2—O1682.31 (7)O13—C15—Sm159.59 (13)
O15—Sm2—O1681.90 (7)O12—C15—Sm163.06 (14)
O4iv—Sm2—O16143.57 (7)C11—C15—Sm1168.04 (17)
O11—Sm2—O16133.64 (7)C15—O12—Sm191.30 (17)
O10ii—Sm2—N273.77 (7)C15—O13—Sm194.91 (15)
O3iii—Sm2—N2136.39 (7)O14—C16—O15125.1 (3)
O17—Sm2—N2137.00 (8)O14—C16—C13120.0 (2)
O15—Sm2—N263.27 (7)O15—C16—C13114.9 (2)
O4iv—Sm2—N276.81 (6)C16—O15—Sm2127.11 (17)
O11—Sm2—N264.22 (7)Sm2—O16—H16B128.1
O16—Sm2—N2125.92 (7)Sm2—O16—H16A121.5
C1—N1—C5120.1 (2)H16B—O16—H16A104.5
C1—N1—Sm1120.05 (16)Sm2—O17—H17B117.1
C5—N1—Sm1119.15 (16)Sm2—O17—H17A121.9
N1—C1—C2122.0 (2)H17B—O17—H17A103.8
N1—C1—C6113.8 (2)H18B—O18—H18A100.8
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y1/2, z+3/2; (iii) x, y, z+1; (iv) x+1, y+1, z+1; (v) x+1/2, y+1/2, z+1/2; (vi) x, y, z1; (vii) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O14viii0.821.872.686 (3)172
O7—H7B···O2i0.861.802.645 (3)165
O8—H8A···O12iv0.891.832.727 (3)177
O8—H8B···O9ix0.872.382.831 (3)113
O9—H9A···O6viii0.871.842.698 (3)171
O9—H9B···O5viii0.932.553.052 (3)114
O16—H16A···O4viii0.822.313.075 (3)157
O16—H16B···O15x0.791.972.747 (3)171
O17—H17A···O18ii0.841.862.697 (3)176
O17—H17B···O5xi0.801.962.731 (3)162
O18—H18A···O14xii0.852.062.905 (3)174
O18—H18B···O130.821.932.736 (3)168
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y1/2, z+3/2; (iv) x+1, y+1, z+1; (viii) x+1, y, z+1; (ix) x, y+1, z; (x) x+1, y, z+2; (xi) x1/2, y+1/2, z+1/2; (xii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Sm2(C8H2NO6)2(H2O)5]·H2O
Mr825.01
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)18.426 (4), 6.9082 (14), 18.583 (4)
β (°) 111.98 (3)
V3)2193.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)5.40
Crystal size (mm)0.43 × 0.28 × 0.21
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.177, 0.321
No. of measured, independent and
observed [I > 2σ(I)] reflections
20300, 4963, 4776
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.041, 1.19
No. of reflections4963
No. of parameters344
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.84

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O14i0.821.872.686 (3)172
O7—H7B···O2ii0.861.802.645 (3)165
O8—H8A···O12iii0.891.832.727 (3)177
O8—H8B···O9iv0.872.382.831 (3)113
O9—H9A···O6i0.871.842.698 (3)171
O9—H9B···O5i0.932.553.052 (3)114
O16—H16A···O4i0.822.313.075 (3)157
O16—H16B···O15v0.791.972.747 (3)171
O17—H17A···O18vi0.841.862.697 (3)176
O17—H17B···O5vii0.801.962.731 (3)162
O18—H18A···O14viii0.852.062.905 (3)174
O18—H18B···O130.821.932.736 (3)168
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x+1, y, z+2; (vi) x+1/2, y1/2, z+3/2; (vii) x1/2, y+1/2, z+1/2; (viii) x1/2, y+1/2, z1/2.
 

Acknowledgements

This project was supported by the Scientific Research Fund of Ningbo University (grant Nos. XKL11058 and XYL11005). Sincere thanks are also extended to the K. C. Wong Magna Fund of Ningbo University.

References

First citationGao, H.-L., Yi, L., Ding, B., Wang, H.-S., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2006). Inorg. Chem. 45, 481–483.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGhosh, S. K. & Bharadwaj, P. K. (2005). Eur. J. Inorg. Chem. pp. 4886–4889.  Web of Science CSD CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, C.-J., Peng, M.-X., Leng, J.-D., Yang, M.-M., Lin, Z.-J. & Tong, M.-L. (2008). CrystEngComm, 10, 1645–1652.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H.-S., Zhao, B., Zhai, B., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Cryst. Growth Des. 7, 1851–1857.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds