organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,6-Di­nitro­pyrogallol

aFachrichtung Chemie, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany
*Correspondence e-mail: hegetschweiler@mx.uni-saarland.de

(Received 25 January 2012; accepted 3 February 2012; online 17 February 2012)

In the title mol­ecule, C6H4N2O7, the two nitro groups are tilted with respect to the aromatic ring by 11.2 (1) and 10.9 (1)°. All three hy­droxy groups are involved in the formation of bifurcated intra- and inter­molecular O—H⋯O hydrogen bonds. The crystal packing exhibits short O⋯O distances of 2.823 (2) Å between two O atoms of the nitro groups.

Related literature

The synthesis of the title compound has recently been reported by Merten et al. (2012[Merten, G. J., Neis, C., Stucky, S., Huch, V., Rentschler, E., Natter, H., Hempelmann, R., Stöwe, K. & Hegetschweiler, K. (2012). Eur. J. Inorg. Chem. pp. 31-35.]). The importance of hydrogen bonding, π stacking and donor–acceptor inter­actions in solid-state structures and in solution has been reviewed by Schneider (2009[Schneider, H.-J. (2009). Angew. Chem. Int. Ed. 48, 3924-3977.]). The crystal structure of dinitro­phloroglucinol, a constitutional isomer of the title compound, has been described by Schweitzer et al. (2008[Schweitzer, T., Taylor, D., Choppin, G., Neis, C. & Hegetschweiler, K. (2008). Z. Kristallogr. New Cryst. Struct. 223, 369-370.]). H atoms were treated as recommended by Müller et al. (2006[Müller, P., Herbst-Irmer, R., Spek, A. L., Schneider, T. R. & Sawaya, M. R. (2006). Crystal Structure Refinement - A Crystallographer's Guide to SHELXL. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C6H4N2O7

  • Mr = 216.11

  • Monoclinic, P 21 /c

  • a = 6.7612 (14) Å

  • b = 10.878 (2) Å

  • c = 10.297 (2) Å

  • β = 92.75 (3)°

  • V = 756.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 200 K

  • 0.60 × 0.22 × 0.20 mm

Data collection
  • Stoe IPDS image plate diffractometer

  • 5824 measured reflections

  • 1488 independent reflections

  • 1326 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.089

  • S = 1.06

  • 1488 reflections

  • 146 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O3 0.85 (1) 2.14 (2) 2.6467 (14) 118 (2)
O2—H2O⋯O4i 0.85 (1) 2.27 (2) 2.9531 (14) 138 (2)
O1—H1O⋯O6 0.86 (2) 1.91 (2) 2.6359 (15) 141 (2)
O1—H1O⋯O6ii 0.86 (2) 2.46 (2) 3.1361 (15) 137 (2)
O3—H3O⋯O4 0.83 (2) 1.97 (2) 2.6357 (14) 137 (2)
O3—H3O⋯O7iii 0.83 (2) 2.19 (2) 2.7658 (15) 127 (2)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x-1, -y+1, -z+1; (iii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: IPDS Software (Stoe & Cie, 1997[Stoe & Cie (1997). IPDS Software. Stoe & Cie, Darmstadt, Germany.]); cell refinement: IPDS Software; data reduction: IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As expected, the aromatic C6-ring is planar (the positions of the six C atoms deviate from the mean plane by 0.0025 (8)–0.0196 (8) Å). The C6-ring and the two nitro groups are also approximately coplanar, allowing significant π-delocalization. In the extended hydrogen bonding network all three phenolic hydroxy groups act as hydrogen donors and the nitro groups as hydrogen acceptors. The O atoms O1 and O6 of two neighbouring molecules form a planar, four-membered O1···O6···O1'···O6' ring with two bifurcated hydrogen bonds. Remarkably, the O6···O6' distance of 2.823 (2) Å (i.e. one of the diagonal of the corresponding parallelogram) is somewhat shorter than the sum of the van der Waals radii, although no direct hydrogen bond between these two atoms is operative. Some intermolecular C···C and C···O distances (C1···C1': 3.279 Å, C5···O2": 3.046 Å) are slightly shorter than the sum of the van der Waals radii and may be interpreted in terms of π-stacking or weak donor–acceptor interactions.

Related literature top

The synthesis of the title compound has recently been reported by Merten et al. (2012). The importance of hydrogen bonding, π stacking and donor–acceptor interactions in solid-state structures and in solution has been reviewed by Schneider (2009). The crystal structure of dinitrophloroglucinol, a diastereomer of the title compound, has been described by Schweitzer et al. (2008). H atoms were treated as recommended by Müller et al. (2006).

Experimental top

The title compound has been prepared by nitration of pyrogallol-triacetate. 1H NMR ([D6]acetone): δ (p.p.m.) = 8.51. 13C NMR ([D6]acetone): δ (p.p.m.) = 114.4, 128.7, 136.6, 148.8. Elemental analysis calculated for C6H4N2O7 (%): C 33.35, H 1.87, N 12.96; found (%): C 33.19, H 2.24, N 12.83. Single crystals were obtained directly from the reaction mixture at 278 K.

Refinement top

All non-hydrogen atoms were refined using anisotropic displacement parameters. H atoms were treated as recommended by Müller et al. (2006). A riding model was used for the C-bonded H5. The positional parameters of the O-bonded H1O, H2O and H3O were refined using isotropic displacement parameters which were set to 1.5Ueq of the pivot atom. In addition, a restraint of 0.84 Å was used for the O—H distances.

Computing details top

Data collection: IPDS Software (Stoe & Cie, 1997); cell refinement: IPDS Software (Stoe & Cie, 1997); data reduction: IPDS Software (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Section of the hydrogen bonding network, showing bifurcated hydrogen bonds for all three hydroxy groups (displacement ellipsoids are drawn at the 50% probability level).
4,6-Dinitrobenzene-1,2,3-triol top
Crystal data top
C6H4N2O7Z = 4
Mr = 216.11F(000) = 440
Monoclinic, P21/cDx = 1.898 Mg m3
a = 6.7612 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.878 (2) ŵ = 0.18 mm1
c = 10.297 (2) ÅT = 200 K
β = 92.75 (3)°Prism, light brown
V = 756.5 (3) Å30.60 × 0.22 × 0.20 mm
Data collection top
Stoe IPDS image plate
diffractometer
1326 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Graphite monochromatorθmax = 26.0°, θmin = 2.7°
ϕ scansh = 88
5824 measured reflectionsk = 1313
1488 independent reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.1574P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1488 reflectionsΔρmax = 0.31 e Å3
146 parametersΔρmin = 0.23 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.093 (9)
Crystal data top
C6H4N2O7V = 756.5 (3) Å3
Mr = 216.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.7612 (14) ŵ = 0.18 mm1
b = 10.878 (2) ÅT = 200 K
c = 10.297 (2) Å0.60 × 0.22 × 0.20 mm
β = 92.75 (3)°
Data collection top
Stoe IPDS image plate
diffractometer
1326 reflections with I > 2σ(I)
5824 measured reflectionsRint = 0.059
1488 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0313 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.31 e Å3
1488 reflectionsΔρmin = 0.23 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C50.03683 (18)0.22251 (11)0.46470 (11)0.0173 (3)
H50.01810.15420.52030.021*
C20.09313 (18)0.42549 (12)0.30137 (11)0.0176 (3)
C60.10033 (17)0.31771 (12)0.45731 (11)0.0166 (3)
C10.07860 (17)0.42018 (11)0.37270 (11)0.0168 (3)
C40.20152 (17)0.22875 (11)0.38968 (11)0.0167 (3)
C30.23403 (17)0.33087 (12)0.30757 (11)0.0176 (3)
O20.11938 (14)0.52556 (9)0.22378 (9)0.0253 (3)
H2O0.235 (2)0.5179 (17)0.1964 (17)0.038*
O10.20607 (13)0.51466 (9)0.35774 (9)0.0228 (3)
H1O0.310 (2)0.4983 (17)0.3996 (17)0.034*
O30.38713 (14)0.34789 (10)0.23055 (10)0.0265 (3)
H3O0.467 (3)0.2905 (15)0.2362 (18)0.040*
N40.34037 (15)0.12578 (10)0.39485 (10)0.0184 (3)
N60.26572 (15)0.31109 (10)0.54231 (10)0.0195 (3)
O40.50228 (13)0.14010 (9)0.34200 (9)0.0250 (3)
O50.29368 (14)0.03088 (9)0.44938 (9)0.0259 (3)
O60.40392 (14)0.38686 (10)0.52605 (9)0.0288 (3)
O70.26491 (15)0.23213 (9)0.62784 (10)0.0289 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.0202 (6)0.0161 (6)0.0156 (5)0.0017 (5)0.0016 (4)0.0004 (5)
C20.0208 (6)0.0168 (6)0.0152 (6)0.0010 (5)0.0011 (4)0.0022 (4)
C60.0159 (6)0.0189 (6)0.0154 (6)0.0021 (5)0.0029 (4)0.0024 (4)
C10.0179 (6)0.0171 (6)0.0151 (6)0.0020 (5)0.0010 (4)0.0027 (4)
C40.0189 (6)0.0150 (6)0.0162 (6)0.0017 (4)0.0007 (5)0.0014 (4)
C30.0165 (6)0.0208 (6)0.0158 (6)0.0009 (5)0.0025 (4)0.0013 (5)
O20.0246 (5)0.0238 (5)0.0283 (5)0.0039 (4)0.0084 (4)0.0113 (4)
O10.0209 (5)0.0231 (5)0.0247 (5)0.0065 (4)0.0048 (4)0.0036 (4)
O30.0227 (5)0.0280 (6)0.0300 (5)0.0065 (4)0.0135 (4)0.0090 (4)
N40.0199 (5)0.0191 (6)0.0163 (5)0.0019 (4)0.0011 (4)0.0012 (4)
N60.0189 (5)0.0196 (6)0.0204 (5)0.0016 (4)0.0041 (4)0.0027 (4)
O40.0208 (5)0.0265 (5)0.0284 (5)0.0056 (4)0.0084 (4)0.0003 (4)
O50.0306 (5)0.0186 (5)0.0288 (5)0.0030 (4)0.0040 (4)0.0062 (4)
O60.0214 (5)0.0345 (6)0.0314 (5)0.0085 (4)0.0091 (4)0.0023 (4)
O70.0319 (5)0.0252 (5)0.0310 (5)0.0009 (4)0.0155 (4)0.0071 (4)
Geometric parameters (Å, º) top
C5—C41.3870 (17)C4—N41.4609 (16)
C5—C61.3898 (17)C3—O31.3467 (15)
C5—H50.9500O2—H2O0.846 (14)
C2—O21.3669 (15)O1—H1O0.859 (15)
C2—C31.4019 (18)O3—H3O0.827 (15)
C2—C11.4046 (17)N4—O51.2237 (15)
C6—C11.4267 (17)N4—O41.2554 (14)
C6—N61.4545 (15)N6—O71.2301 (15)
C1—O11.3454 (15)N6—O61.2512 (15)
C4—C31.4195 (18)
C4—C5—C6118.97 (11)C5—C4—N4118.28 (11)
C4—C5—H5120.5O3—C3—C2114.34 (11)
C6—C5—H5120.5O3—C3—C4127.14 (12)
O2—C2—C3120.29 (11)C2—C3—C4118.51 (11)
O2—C2—C1118.18 (11)C2—O2—H2O105.3 (13)
C3—C2—C1121.53 (11)C1—O1—H1O108.5 (13)
C5—C6—C1121.85 (11)C3—O3—H3O111.9 (13)
C5—C6—N6117.42 (11)O5—N4—O4123.58 (11)
C1—C6—N6120.71 (11)O5—N4—C4118.95 (11)
O1—C1—C2116.73 (11)O4—N4—C4117.47 (10)
O1—C1—C6125.64 (11)O7—N6—O6122.24 (11)
C2—C1—C6117.61 (11)O7—N6—C6119.22 (11)
C5—C4—C3121.43 (11)O6—N6—C6118.54 (10)
C4—C5—C6—C11.40 (18)O2—C2—C3—C4179.79 (11)
C4—C5—C6—N6176.90 (10)C1—C2—C3—C40.88 (18)
O2—C2—C1—O10.65 (16)C5—C4—C3—O3179.92 (11)
C3—C2—C1—O1178.70 (11)N4—C4—C3—O31.37 (19)
O2—C2—C1—C6177.52 (10)C5—C4—C3—C21.28 (18)
C3—C2—C1—C63.13 (17)N4—C4—C3—C2177.43 (10)
C5—C6—C1—O1178.59 (11)C5—C4—N4—O510.41 (16)
N6—C6—C1—O13.17 (18)C3—C4—N4—O5168.34 (11)
C5—C6—C1—C23.43 (17)C5—C4—N4—O4169.81 (10)
N6—C6—C1—C2174.81 (10)C3—C4—N4—O411.44 (16)
C6—C5—C4—C31.01 (18)C5—C6—N6—O79.35 (16)
C6—C5—C4—N4177.72 (10)C1—C6—N6—O7168.96 (11)
O2—C2—C3—O31.27 (17)C5—C6—N6—O6171.03 (10)
C1—C2—C3—O3178.07 (10)C1—C6—N6—O610.65 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O30.85 (1)2.14 (2)2.6467 (14)118 (2)
O2—H2O···O4i0.85 (1)2.27 (2)2.9531 (14)138 (2)
O1—H1O···O60.86 (2)1.91 (2)2.6359 (15)141 (2)
O1—H1O···O6ii0.86 (2)2.46 (2)3.1361 (15)137 (2)
O3—H3O···O40.83 (2)1.97 (2)2.6357 (14)137 (2)
O3—H3O···O7iii0.83 (2)2.19 (2)2.7658 (15)127 (2)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y+1, z+1; (iii) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC6H4N2O7
Mr216.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)6.7612 (14), 10.878 (2), 10.297 (2)
β (°) 92.75 (3)
V3)756.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.60 × 0.22 × 0.20
Data collection
DiffractometerStoe IPDS image plate
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5824, 1488, 1326
Rint0.059
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.089, 1.06
No. of reflections1488
No. of parameters146
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.23

Computer programs: IPDS Software (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O30.846 (14)2.138 (18)2.6467 (14)118.4 (15)
O2—H2O···O4i0.846 (14)2.271 (16)2.9531 (14)137.9 (16)
O1—H1O···O60.859 (15)1.910 (16)2.6359 (15)141.3 (17)
O1—H1O···O6ii0.859 (15)2.457 (17)3.1361 (15)136.5 (16)
O3—H3O···O40.827 (15)1.973 (17)2.6357 (14)136.6 (17)
O3—H3O···O7iii0.827 (15)2.187 (17)2.7658 (15)127.2 (16)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y+1, z+1; (iii) x+1, y+1/2, z1/2.
 

Acknowledgements

The authors thank Dr Volker Huch (Universität des Saarlandes) for the collection of the data set.

References

First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationMerten, G. J., Neis, C., Stucky, S., Huch, V., Rentschler, E., Natter, H., Hempelmann, R., Stöwe, K. & Hegetschweiler, K. (2012). Eur. J. Inorg. Chem. pp. 31–35.  Web of Science CSD CrossRef Google Scholar
First citationMüller, P., Herbst-Irmer, R., Spek, A. L., Schneider, T. R. & Sawaya, M. R. (2006). Crystal Structure Refinement – A Crystallographer's Guide to SHELXL. Oxford University Press.  Google Scholar
First citationSchneider, H.-J. (2009). Angew. Chem. Int. Ed. 48, 3924–3977.  Web of Science CrossRef CAS Google Scholar
First citationSchweitzer, T., Taylor, D., Choppin, G., Neis, C. & Hegetschweiler, K. (2008). Z. Kristallogr. New Cryst. Struct. 223, 369–370.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). IPDS Software. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds