organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Methyl­phen­yl)-5-[({[5-(4-methyl­phen­yl)-1,3,4-thia­diazol-2-yl]sulfan­yl}meth­yl)sulfan­yl]-1,3,4-thia­diazole

aSchool of Chemical Engineering, University of Science and Technology LiaoNing, Anshan 114051, People's Republic of China, bAnshan Normal University, Anshan 114005, People's Republic of China, and cShengyang Agricultural University, Shengyang 116121, People's Republic of China
*Correspondence e-mail: wy2002866@126.com

(Received 8 February 2012; accepted 20 February 2012; online 24 February 2012)

In the title compound, C19H16N4S4, the mol­ecules exhibit a butterfly conformation, where the thia­diazole and attached benzene rings in two wings are almost coplanar, with dihedral angles of 0.8 (3) and 0.9 (3)°, respectively, while the two thia­diazole rings form a dihedral angle of 46.3 (3)°.

Related literature

For the biological properties of 1,3,4-thia­diazole derivatives, see: Nakagawa et al. (1996[Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.]); Wang et al. (1999[Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.]); Carvalho et al. (2004[Carvalho, S. A., da Silva, E. F., Santa-Rita, R. M., de Castro, S. L. & Fraga, C. A. M. (2004). Bioorg. Med. Chem. Lett. 14, 5967-5970.]). For the crystal structures of related compounds, see: Li et al. (2011[Li, S., Zhang, J., Jia, X., Gao, Y. & Wang, W. (2011). Acta Cryst. E67, o681.]); Wang et al. (2010[Wang, H., Gao, Y. & Wang, W. (2010). Acta Cryst. E66, o3085.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16N4S4

  • Mr = 428.60

  • Monoclinic, P 21 /n

  • a = 16.8944 (14) Å

  • b = 4.1959 (5) Å

  • c = 27.107 (2) Å

  • β = 96.084 (8)°

  • V = 1910.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 113 K

  • 0.50 × 0.04 × 0.04 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.785, Tmax = 0.980

  • 14969 measured reflections

  • 4535 independent reflections

  • 2927 reflections with I > 2σ(I)

  • Rint = 0.094

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.142

  • S = 0.96

  • 4535 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives are important for medicinal chemistry due to their chemical and pharmaceutical properties (Nakagawa et al., 1996; Wang et al., 1999; Carvalho et al., 2004). Similar crystal structures of the 1,3,4-thiadiazole derivatives have been reported . As a part of our research, the title compound (I) has been synthesized, and herewith we present its crystal structure.

In (I) (Fig. 1), all geometric parameters are normal and comparable with those reported for related 1,3,4-thiadiazole derivatives (Li et al., 2011; Wang et al., 2010). Two thiadiazole rings form a dihedral angle of 46.3 (3)%. The dihedral angles between the benzene rings and attached thiadiazole rings are 0.8 (3) and 0.9 (3)° indicating the two rings are almost parallel. The same situation has been observed in the crystal structure of 1,4-bis(5-phenyl-1,3,4-thiadiazol-2-ylsulfanyl)butane (Li et al., 2011).

Related literature top

For the biological properties of 1,3,4-thiadiazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999); Carvalho et al. (2004). For the crystal structures of related compounds, see: Li et al. (2011); Wang et al. (2010).

Experimental top

The title compound was synthesized by the reaction of the 1,1-dibromomethane (1.0 mmol) and 5-tolyl-1,3,4-thiadiazol-2-thiol (2.0 mmol) in ethanol (20 ml) at room temperature. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-enthanol (1:1).

Refinement top

All H atoms were positioned geometrically and refined as riding (C—H = 0.95 - 0.99 Å), with Uiso(H) = 1.2 - 1.5Ueq (C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 60% probability level.
2-(4-Methylphenyl)-5-[({[5-(4-methylphenyl)-1,3,4-thiadiazol-2- yl]sulfanyl}methyl)sulfanyl]-1,3,4-thiadiazole top
Crystal data top
C19H16N4S4F(000) = 888
Mr = 428.60Dx = 1.490 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5461 reflections
a = 16.8944 (14) Åθ = 1.4–27.8°
b = 4.1959 (5) ŵ = 0.51 mm1
c = 27.107 (2) ÅT = 113 K
β = 96.084 (8)°Prism, colourless
V = 1910.7 (3) Å30.50 × 0.04 × 0.04 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4535 independent reflections
Radiation source: rotating anode2927 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.094
Detector resolution: 14.22 pixels mm-1θmax = 27.8°, θmin = 1.4°
ϕ and ω scansh = 2222
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 54
Tmin = 0.785, Tmax = 0.980l = 3531
14969 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0566P)2]
where P = (Fo2 + 2Fc2)/3
4535 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C19H16N4S4V = 1910.7 (3) Å3
Mr = 428.60Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.8944 (14) ŵ = 0.51 mm1
b = 4.1959 (5) ÅT = 113 K
c = 27.107 (2) Å0.50 × 0.04 × 0.04 mm
β = 96.084 (8)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4535 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2927 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.980Rint = 0.094
14969 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 0.96Δρmax = 0.42 e Å3
4535 reflectionsΔρmin = 0.60 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.41711 (5)0.77165 (19)0.01333 (3)0.0266 (2)
S20.39123 (5)1.1072 (2)0.08165 (3)0.0282 (2)
S30.26282 (5)1.06832 (19)0.15267 (3)0.0270 (2)
S40.33462 (5)1.07934 (19)0.26002 (3)0.0268 (2)
N10.26848 (16)0.6479 (6)0.02748 (10)0.0285 (6)
N20.27897 (16)0.8187 (6)0.01681 (10)0.0288 (6)
N30.39960 (17)1.3525 (6)0.18983 (10)0.0292 (6)
N40.44931 (16)1.4137 (6)0.23312 (10)0.0289 (6)
C10.3546 (2)0.0838 (8)0.23078 (12)0.0349 (8)
H1A0.32230.27820.23130.052*
H1B0.41010.14030.23410.052*
H1C0.33430.05470.25840.052*
C20.3500 (2)0.0891 (7)0.18231 (12)0.0263 (7)
C30.4179 (2)0.2240 (8)0.15616 (12)0.0296 (8)
H30.46800.20070.16870.036*
C40.4135 (2)0.3902 (7)0.11251 (12)0.0283 (7)
H40.46020.48070.09550.034*
C50.34068 (19)0.4251 (7)0.09335 (11)0.0237 (7)
C60.27246 (19)0.2897 (7)0.11872 (12)0.0268 (7)
H60.22250.31260.10600.032*
C70.2776 (2)0.1227 (7)0.16224 (12)0.0275 (7)
H70.23090.02890.17880.033*
C80.33463 (19)0.6019 (7)0.04729 (11)0.0242 (7)
C90.35275 (19)0.8994 (7)0.02832 (11)0.0255 (7)
C100.2996 (2)1.2661 (7)0.10072 (12)0.0277 (7)
H10A0.30801.49390.10920.033*
H10B0.25811.25510.07210.033*
C110.33781 (19)1.1814 (7)0.19861 (12)0.0247 (7)
C120.42392 (18)1.2861 (7)0.27270 (12)0.0258 (7)
C130.46511 (19)1.3186 (7)0.32295 (12)0.0262 (7)
C140.43531 (19)1.1764 (8)0.36363 (12)0.0278 (7)
H140.38721.05800.35910.033*
C150.4755 (2)1.2068 (8)0.41067 (12)0.0292 (7)
H150.45401.10960.43800.035*
C160.54653 (19)1.3758 (7)0.41906 (12)0.0285 (7)
C170.5753 (2)1.5225 (8)0.37799 (12)0.0286 (7)
H170.62311.64340.38260.034*
C180.53548 (19)1.4947 (8)0.33077 (12)0.0279 (7)
H180.55621.59610.30350.033*
C190.5928 (2)1.3981 (9)0.46959 (12)0.0346 (8)
H19A0.63981.26020.47080.052*
H19B0.55901.32940.49490.052*
H19C0.60961.61900.47600.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0174 (4)0.0334 (5)0.0289 (4)0.0015 (3)0.0025 (3)0.0022 (4)
S20.0207 (4)0.0359 (5)0.0279 (4)0.0021 (3)0.0019 (3)0.0029 (4)
S30.0204 (4)0.0320 (5)0.0285 (4)0.0002 (3)0.0022 (3)0.0018 (3)
S40.0197 (4)0.0329 (5)0.0279 (4)0.0018 (3)0.0022 (3)0.0007 (3)
N10.0230 (15)0.0343 (16)0.0279 (14)0.0008 (12)0.0014 (12)0.0048 (12)
N20.0242 (15)0.0342 (16)0.0282 (14)0.0000 (12)0.0035 (12)0.0044 (12)
N30.0228 (15)0.0352 (16)0.0296 (14)0.0016 (12)0.0026 (12)0.0011 (12)
N40.0211 (15)0.0357 (16)0.0297 (15)0.0025 (12)0.0013 (12)0.0020 (12)
C10.034 (2)0.037 (2)0.0336 (19)0.0041 (16)0.0044 (16)0.0033 (16)
C20.0266 (18)0.0262 (17)0.0261 (16)0.0032 (14)0.0024 (14)0.0034 (13)
C30.0204 (17)0.0360 (19)0.0332 (18)0.0014 (14)0.0064 (15)0.0030 (15)
C40.0199 (17)0.0312 (18)0.0332 (18)0.0029 (14)0.0003 (14)0.0010 (14)
C50.0209 (17)0.0231 (16)0.0262 (16)0.0013 (13)0.0009 (13)0.0034 (13)
C60.0203 (17)0.0292 (17)0.0311 (17)0.0002 (13)0.0035 (14)0.0023 (14)
C70.0214 (17)0.0306 (18)0.0303 (17)0.0017 (14)0.0012 (14)0.0005 (14)
C80.0196 (16)0.0231 (16)0.0290 (16)0.0002 (13)0.0020 (13)0.0030 (13)
C90.0230 (17)0.0279 (17)0.0261 (16)0.0001 (14)0.0045 (14)0.0043 (14)
C100.0249 (18)0.0283 (17)0.0290 (17)0.0051 (14)0.0019 (14)0.0024 (14)
C110.0185 (16)0.0265 (17)0.0291 (16)0.0049 (13)0.0034 (13)0.0005 (13)
C120.0151 (16)0.0272 (17)0.0355 (18)0.0012 (13)0.0041 (14)0.0025 (14)
C130.0169 (16)0.0276 (17)0.0342 (18)0.0044 (13)0.0029 (14)0.0012 (14)
C140.0156 (16)0.0309 (18)0.0371 (18)0.0004 (13)0.0028 (14)0.0020 (15)
C150.0217 (17)0.0355 (19)0.0308 (17)0.0002 (14)0.0044 (14)0.0010 (15)
C160.0193 (17)0.0306 (18)0.0350 (18)0.0046 (14)0.0001 (14)0.0035 (15)
C170.0169 (16)0.0317 (18)0.0373 (19)0.0002 (14)0.0027 (14)0.0037 (15)
C180.0210 (17)0.0300 (17)0.0329 (17)0.0012 (14)0.0043 (14)0.0028 (15)
C190.0221 (18)0.046 (2)0.0344 (18)0.0029 (15)0.0023 (15)0.0011 (16)
Geometric parameters (Å, º) top
S1—C91.733 (3)C4—H40.9500
S1—C81.739 (3)C5—C61.398 (4)
S2—C91.753 (3)C5—C81.465 (4)
S2—C101.810 (3)C6—C71.383 (4)
S3—C111.745 (3)C6—H60.9500
S3—C101.801 (3)C7—H70.9500
S4—C111.725 (3)C10—H10A0.9900
S4—C121.743 (3)C10—H10B0.9900
N1—C81.304 (4)C12—C131.469 (4)
N1—N21.393 (4)C13—C141.394 (4)
N2—C91.297 (4)C13—C181.397 (4)
N3—C111.310 (4)C14—C151.386 (4)
N3—N41.393 (4)C14—H140.9500
N4—C121.311 (4)C15—C161.391 (4)
C1—C21.510 (4)C15—H150.9500
C1—H1A0.9800C16—C171.403 (5)
C1—H1B0.9800C16—C191.506 (4)
C1—H1C0.9800C17—C181.386 (5)
C2—C71.398 (4)C17—H170.9500
C2—C31.403 (4)C18—H180.9500
C3—C41.382 (4)C19—H19A0.9800
C3—H30.9500C19—H19B0.9800
C4—C51.393 (4)C19—H19C0.9800
C9—S1—C887.06 (15)S1—C9—S2119.18 (19)
C9—S2—C1099.51 (15)S3—C10—S2115.46 (17)
C11—S3—C1098.52 (15)S3—C10—H10A108.4
C11—S4—C1287.24 (15)S2—C10—H10A108.4
C8—N1—N2113.2 (3)S3—C10—H10B108.4
C9—N2—N1111.9 (3)S2—C10—H10B108.4
C11—N3—N4111.6 (3)H10A—C10—H10B107.5
C12—N4—N3113.2 (3)N3—C11—S4114.7 (2)
C2—C1—H1A109.5N3—C11—S3123.5 (2)
C2—C1—H1B109.5S4—C11—S3121.77 (18)
H1A—C1—H1B109.5N4—C12—C13123.9 (3)
C2—C1—H1C109.5N4—C12—S4113.2 (2)
H1A—C1—H1C109.5C13—C12—S4123.0 (2)
H1B—C1—H1C109.5C14—C13—C18118.6 (3)
C7—C2—C3117.7 (3)C14—C13—C12121.2 (3)
C7—C2—C1121.0 (3)C18—C13—C12120.1 (3)
C3—C2—C1121.3 (3)C15—C14—C13120.3 (3)
C4—C3—C2121.4 (3)C15—C14—H14119.8
C4—C3—H3119.3C13—C14—H14119.8
C2—C3—H3119.3C14—C15—C16121.9 (3)
C3—C4—C5120.2 (3)C14—C15—H15119.1
C3—C4—H4119.9C16—C15—H15119.1
C5—C4—H4119.9C15—C16—C17117.3 (3)
C4—C5—C6119.2 (3)C15—C16—C19122.4 (3)
C4—C5—C8121.0 (3)C17—C16—C19120.3 (3)
C6—C5—C8119.8 (3)C18—C17—C16121.4 (3)
C7—C6—C5120.2 (3)C18—C17—H17119.3
C7—C6—H6119.9C16—C17—H17119.3
C5—C6—H6119.9C17—C18—C13120.4 (3)
C6—C7—C2121.3 (3)C17—C18—H18119.8
C6—C7—H7119.3C13—C18—H18119.8
C2—C7—H7119.3C16—C19—H19A109.5
N1—C8—C5124.5 (3)C16—C19—H19B109.5
N1—C8—S1113.2 (2)H19A—C19—H19B109.5
C5—C8—S1122.3 (2)C16—C19—H19C109.5
N2—C9—S1114.6 (2)H19A—C19—H19C109.5
N2—C9—S2126.2 (3)H19B—C19—H19C109.5
C8—N1—N2—C91.0 (4)C11—S3—C10—S267.8 (2)
C11—N3—N4—C120.4 (4)C9—S2—C10—S3104.05 (19)
C7—C2—C3—C41.3 (5)N4—N3—C11—S40.1 (3)
C1—C2—C3—C4178.2 (3)N4—N3—C11—S3178.8 (2)
C2—C3—C4—C50.4 (5)C12—S4—C11—N30.2 (3)
C3—C4—C5—C60.1 (5)C12—S4—C11—S3179.1 (2)
C3—C4—C5—C8179.6 (3)C10—S3—C11—N32.0 (3)
C4—C5—C6—C70.2 (5)C10—S3—C11—S4176.80 (19)
C8—C5—C6—C7179.9 (3)N3—N4—C12—C13179.3 (3)
C5—C6—C7—C21.0 (5)N3—N4—C12—S40.6 (3)
C3—C2—C7—C61.6 (5)C11—S4—C12—N40.4 (2)
C1—C2—C7—C6177.9 (3)C11—S4—C12—C13179.2 (3)
N2—N1—C8—C5178.9 (3)N4—C12—C13—C14179.8 (3)
N2—N1—C8—S10.9 (3)S4—C12—C13—C141.6 (4)
C4—C5—C8—N1179.1 (3)N4—C12—C13—C180.3 (5)
C6—C5—C8—N10.7 (5)S4—C12—C13—C18178.3 (2)
C4—C5—C8—S11.2 (4)C18—C13—C14—C150.8 (5)
C6—C5—C8—S1179.1 (2)C12—C13—C14—C15179.3 (3)
C9—S1—C8—N10.4 (2)C13—C14—C15—C160.5 (5)
C9—S1—C8—C5179.4 (3)C14—C15—C16—C171.5 (5)
N1—N2—C9—S10.7 (3)C14—C15—C16—C19177.1 (3)
N1—N2—C9—S2178.4 (2)C15—C16—C17—C181.3 (5)
C8—S1—C9—N20.2 (3)C19—C16—C17—C18177.4 (3)
C8—S1—C9—S2178.1 (2)C16—C17—C18—C130.0 (5)
C10—S2—C9—N216.9 (3)C14—C13—C18—C171.0 (5)
C10—S2—C9—S1165.53 (19)C12—C13—C18—C17179.1 (3)

Experimental details

Crystal data
Chemical formulaC19H16N4S4
Mr428.60
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)16.8944 (14), 4.1959 (5), 27.107 (2)
β (°) 96.084 (8)
V3)1910.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.50 × 0.04 × 0.04
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.785, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
14969, 4535, 2927
Rint0.094
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.142, 0.96
No. of reflections4535
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.60

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationCarvalho, S. A., da Silva, E. F., Santa-Rita, R. M., de Castro, S. L. & Fraga, C. A. M. (2004). Bioorg. Med. Chem. Lett. 14, 5967–5970.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, S., Zhang, J., Jia, X., Gao, Y. & Wang, W. (2011). Acta Cryst. E67, o681.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201.  CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.  CAS Google Scholar
First citationWang, H., Gao, Y. & Wang, W. (2010). Acta Cryst. E66, o3085.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds