organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o589-o590

9α-Hy­dr­oxy-12-{[4-(4-meth­­oxy­phen­yl)piperazin-1-yl]meth­yl}-4,8-di­methyl-3,14-dioxatri­cyclo­[9.3.0.02,4]tetra­dec-7-en-13-one

aLaboratoire de Chimie Biomoléculaire, Substances Naturelles et Réactivité, URAC 16, Faculté des Sciences Semlalia, BP 2390, Boulevard My Abdellah, 40000 Marrakech, Morocco, bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France, and cLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia-Casablanca 20810 Mohammedia, Morocco
*Correspondence e-mail: mberraho@yahoo.fr

(Received 17 January 2012; accepted 27 January 2012; online 4 February 2012)

The title compound, C26H36N2O5, was synthesized from 9α-hy­droxy­parthenolide (9α-hy­droxy-4,8-dimethyl-12-methyl­ene-3,14-dioxatricyclo­[9.3.0.02,4]tetra­dec-7-en-13-one), wich was isolated from the chloro­form extract of the aerial parts of Anvillea radiata. The mol­ecule is built up from fused five- and ten-membered rings with the meth­oxy­phenyl­piperazine group as a substituent. The ten-membered ring adopts an approximate chair–chair conformation, while the piperazine ring displays a chair conformation and the five-membered ring a flattened envelope conformation; the C(H)—C—C(H) atoms representing the flap lie out of the mean plane through the remaining four atoms by 0.343 (3) Å. The dihedral angle between the mean planes of the ten-membered ring and the lactone ring is 18.12 (14)°. An intra­molecular O—H⋯N hydrogen bond occurs. The crystal structure features weak C—H⋯O inter­actions.

Related literature

For background to the medicinal uses of the plant Anvillea radiata, see: Abdel Sattar et al. (1996[Abdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403-405.]); Bellakhdar (1997[Bellakhdar, J. (1997). La Pharmacopée Marocaine Traditionnelle, pp. 272-274. Paris: Ibis Press.]); El Hassany et al. (2004[El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573-576.]); Qureshi et al. (1990[Qureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157-162.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C26H36N2O5

  • Mr = 456.57

  • Orthorhombic, P 21 21 21

  • a = 6.7066 (7) Å

  • b = 11.9033 (11) Å

  • c = 30.322 (4) Å

  • V = 2420.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 180 K

  • 0.33 × 0.17 × 0.04 mm

Data collection
  • Agilent Xcalibur Sapphire1 (long nozzle) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.732, Tmax = 1.000

  • 14543 measured reflections

  • 4925 independent reflections

  • 3663 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.130

  • S = 1.04

  • 4925 reflections

  • 303 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N1 0.84 2.14 2.977 (4) 170
C2—H2⋯O12i 1.00 2.42 3.225 (4) 137
C5—H5B⋯O3ii 0.99 2.45 3.310 (4) 145
C7—H7⋯O14iii 0.95 2.50 3.198 (4) 130
C15—H15A⋯O12i 0.99 2.57 3.413 (4) 143
C15—H15A⋯O14i 0.99 2.50 3.469 (4) 165
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z]; (iii) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.])and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Our work lies within the framework of the valorization of medicinals plants and concerning the Anvillea radiata wich is a plant that grows in northern Africa and particularly found in the two Maghreb countries, Morocco and Algeria. This plant is used in traditional local medicine for the treatment of dysentery, gastric-intestinal disorders (Bellakhdar, 1997), hypoglycemic activity (Qureshi et al., 1990), and has been reported to have antitumoral activity (Abdel Sattar et al., 1996). In our study of different Moroccan endemic plants, we have demonstrated that the aerial parts of Anvillea radiata could be used as a renewable source of 9-hydroxyparthenolide (El Hassany et al., 2004). In order to prepare products with high added value that can be used in pharmacology and cosmetics industry, we studied the chemical reactivity of this major constituent of Anvillea radiata. Thus, treatment of this sesquiterpene lactone by an equivalent amount of 1-(4-methoxyphenylpiperazine) in ethanol led to the title compound with a yield of 78%. The crystal structure of (I) is reported herein. The molecule contains a fused ring system and methoxyphenylpiperazine group as a substituent to a lactone ring. The molecular structure of (I), Fig. 1, shows the lactone ring to adopt an envelope conformation, as indicated by Cremer & Pople (1975) puckering parameters Q = 0.216 (3) Å and ϕ = 69.7 (8)°. The atom C11 deviate from the mean plane through other four atoms in the ring by 0.343 (2) Å. The ten-membered ring displays an approximate chair–chair conformation, while the piperazine ring has a perfect chair conformation with QT = 0.557 (3) Å, θ = 3.4 (3)° and ϕ2 = 33 (6)°. In the crystal structure, the molecules are linked by C—H···O intermolecular hydrogen bonds into chains along the b axis (Table 1, Fig.2). In addition an intramolecular O—H···N hydrogen bond is also observed.

Related literature top

For background to the medicinal uses of the plant Anvillea radiata, see: Abdel Sattar et al. (1996); Bellakhdar (1997); El Hassany et al. (2004); Qureshi et al. (1990). For ring-puckering parameters, see: Cremer & Pople (1975).

Experimental top

The mixture of 9α-hydroxyparthenolide (1 g, (3.78 mmol) and one equivalent of 1-(4-methoxyphenylpipirazine) in EtOH (30 ml) was stirred for one night at room temperature. The next day the reaction was stopped by adding water (20 ml) and extracted three times with ethyl acetate (3 × 30 ml). The combined organic layers were dried over anhydrous MgSO4, filtered and concentrated under vacuum to give 1.34 g (2.94 mmol) of the title compound, which was recrystallized in ethyl acetate.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2Ueq(methylene, methine) or Uiso(H) = 1.5Ueq(methyl, OH). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and any references to the Flack parameter were removed.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997)and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the C—H···O hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
9α-Hydroxy-12-{[4-(4-methoxyphenyl)piperazin-1-yl]methyl}-4,8-dimethyl- 3,14-dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one top
Crystal data top
C26H36N2O5F(000) = 984
Mr = 456.57Dx = 1.253 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 14543 reflections
a = 6.7066 (7) Åθ = 3.1–26.4°
b = 11.9033 (11) ŵ = 0.09 mm1
c = 30.322 (4) ÅT = 180 K
V = 2420.6 (4) Å3Platelet, colourless
Z = 40.33 × 0.17 × 0.04 mm
Data collection top
Agilent Xcalibur Sapphire1 (long nozzle)
diffractometer
4925 independent reflections
Radiation source: fine-focus sealed tube3663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 8.2632 pixels mm-1θmax = 26.4°, θmin = 3.1°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1414
Tmin = 0.732, Tmax = 1.000l = 3737
14543 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0567P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4925 reflectionsΔρmax = 0.25 e Å3
303 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0073 (12)
Crystal data top
C26H36N2O5V = 2420.6 (4) Å3
Mr = 456.57Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.7066 (7) ŵ = 0.09 mm1
b = 11.9033 (11) ÅT = 180 K
c = 30.322 (4) Å0.33 × 0.17 × 0.04 mm
Data collection top
Agilent Xcalibur Sapphire1 (long nozzle)
diffractometer
4925 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3663 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 1.000Rint = 0.055
14543 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
4925 reflectionsΔρmin = 0.23 e Å3
303 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent Technologies)

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4429 (4)0.9320 (2)0.06430 (8)0.0236 (6)
H10.51560.97470.08770.028*
C20.3207 (4)1.0088 (2)0.03673 (9)0.0276 (6)
H20.21980.96920.01810.033*
C40.2646 (4)1.1235 (2)0.04810 (10)0.0328 (7)
C50.0642 (5)1.1608 (2)0.03175 (11)0.0440 (8)
H5A0.03341.12150.00380.053*
H5B0.06811.24250.02560.053*
C60.1006 (5)1.1365 (3)0.06533 (12)0.0500 (9)
H6A0.09281.19170.08970.060*
H6B0.23231.14470.05100.060*
C70.0803 (4)1.0198 (2)0.08363 (11)0.0377 (7)
H70.10120.95980.06350.045*
C80.0368 (5)0.9912 (3)0.12466 (10)0.0396 (8)
C90.0201 (4)0.8728 (3)0.13688 (10)0.0382 (7)
H90.01450.86140.16860.046*
C100.2457 (4)0.8572 (2)0.13205 (9)0.0306 (6)
H10A0.28710.79200.15020.037*
H10B0.31330.92450.14400.037*
C110.3171 (4)0.8384 (2)0.08456 (8)0.0227 (6)
H110.19590.82910.06570.027*
C120.4457 (4)0.7345 (2)0.07835 (8)0.0243 (6)
H120.52180.71940.10610.029*
C130.5872 (4)0.7650 (2)0.04265 (9)0.0266 (6)
C150.3307 (4)0.6301 (2)0.06537 (9)0.0288 (6)
H15A0.26350.64370.03680.035*
H15B0.42560.56730.06120.035*
C160.2748 (4)0.5460 (2)0.13653 (9)0.0309 (7)
H16A0.36590.60110.15040.037*
H16B0.35520.48060.12710.037*
C170.1246 (4)0.5089 (3)0.16934 (9)0.0358 (7)
H17A0.19330.47460.19490.043*
H17B0.04880.57490.18000.043*
C180.1058 (4)0.4730 (2)0.11077 (9)0.0327 (7)
H18A0.19520.53570.11900.039*
H18B0.18780.41380.09670.039*
C190.0472 (4)0.5141 (2)0.07857 (9)0.0328 (7)
H19A0.12640.44950.06780.039*
H19B0.02130.54800.05290.039*
C200.1351 (4)0.3686 (2)0.18020 (9)0.0271 (6)
C210.0596 (5)0.3360 (2)0.22117 (9)0.0383 (7)
H210.06990.35980.22970.046*
C220.1693 (5)0.2703 (3)0.24923 (10)0.0429 (8)
H220.11470.24930.27690.051*
C230.3549 (5)0.2348 (3)0.23802 (10)0.0413 (8)
C240.4336 (5)0.2676 (3)0.19821 (11)0.0467 (8)
H240.56440.24470.19020.056*
C250.3234 (4)0.3338 (3)0.16971 (10)0.0387 (7)
H250.37980.35550.14230.046*
C260.3438 (5)1.1828 (3)0.08780 (12)0.0526 (10)
H26A0.47151.14940.09640.079*
H26B0.24851.17560.11210.079*
H26C0.36341.26250.08090.079*
C270.0231 (7)1.0695 (3)0.16314 (13)0.0744 (13)
H27A0.03601.14720.15280.112*
H27B0.10621.05980.17770.112*
H27C0.13041.05270.18410.112*
C280.6231 (7)0.1128 (6)0.2554 (2)0.134 (3)
H28A0.73100.16780.25270.201*
H28B0.65910.05640.27760.201*
H28C0.60190.07580.22690.201*
N10.1814 (3)0.59719 (17)0.09797 (7)0.0254 (5)
N20.0123 (3)0.42794 (18)0.15021 (7)0.0286 (5)
O30.4135 (3)1.10270 (15)0.01501 (7)0.0388 (5)
O40.0873 (3)0.79295 (17)0.11206 (8)0.0440 (6)
H40.01120.74000.10490.066*
O50.4482 (4)0.1672 (2)0.26829 (8)0.0655 (8)
O120.6957 (3)0.70592 (16)0.02200 (7)0.0392 (5)
O140.5817 (3)0.87658 (14)0.03489 (6)0.0277 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0273 (14)0.0170 (13)0.0264 (13)0.0045 (11)0.0020 (12)0.0043 (11)
C20.0301 (14)0.0167 (12)0.0360 (15)0.0029 (12)0.0034 (13)0.0024 (13)
C40.0362 (15)0.0138 (13)0.0484 (18)0.0002 (12)0.0031 (14)0.0001 (13)
C50.0467 (18)0.0231 (15)0.062 (2)0.0085 (14)0.0062 (17)0.0091 (15)
C60.0412 (18)0.0364 (18)0.072 (2)0.0170 (16)0.0093 (18)0.0051 (18)
C70.0255 (14)0.0313 (16)0.056 (2)0.0021 (14)0.0035 (15)0.0011 (15)
C80.0371 (17)0.0342 (17)0.0476 (19)0.0160 (15)0.0053 (15)0.0058 (15)
C90.0415 (17)0.0354 (16)0.0377 (16)0.0084 (14)0.0085 (15)0.0036 (15)
C100.0373 (15)0.0254 (15)0.0292 (15)0.0072 (13)0.0056 (13)0.0000 (13)
C110.0273 (13)0.0154 (12)0.0254 (13)0.0033 (11)0.0001 (11)0.0005 (11)
C120.0321 (14)0.0164 (13)0.0243 (13)0.0055 (11)0.0037 (12)0.0002 (11)
C130.0318 (14)0.0178 (13)0.0301 (15)0.0059 (12)0.0005 (13)0.0005 (12)
C150.0411 (15)0.0178 (13)0.0275 (14)0.0053 (13)0.0049 (13)0.0000 (12)
C160.0339 (16)0.0270 (15)0.0319 (15)0.0020 (12)0.0040 (13)0.0092 (13)
C170.0423 (17)0.0355 (16)0.0294 (15)0.0113 (14)0.0069 (14)0.0075 (13)
C180.0419 (17)0.0257 (14)0.0304 (15)0.0056 (13)0.0096 (14)0.0057 (12)
C190.0479 (17)0.0237 (14)0.0269 (14)0.0051 (14)0.0052 (14)0.0025 (12)
C200.0375 (15)0.0154 (12)0.0283 (14)0.0028 (11)0.0006 (12)0.0014 (11)
C210.0473 (18)0.0352 (17)0.0325 (15)0.0144 (15)0.0045 (15)0.0053 (14)
C220.059 (2)0.0404 (18)0.0295 (15)0.0120 (17)0.0055 (16)0.0058 (15)
C230.0438 (18)0.0407 (18)0.0395 (18)0.0049 (15)0.0043 (15)0.0094 (15)
C240.0338 (16)0.048 (2)0.058 (2)0.0046 (16)0.0044 (16)0.0198 (17)
C250.0367 (16)0.0369 (17)0.0425 (17)0.0059 (15)0.0034 (14)0.0138 (15)
C260.056 (2)0.0249 (16)0.077 (3)0.0041 (16)0.0127 (19)0.0184 (17)
C270.103 (3)0.056 (2)0.064 (2)0.039 (2)0.001 (2)0.022 (2)
C280.076 (3)0.183 (6)0.143 (5)0.071 (4)0.035 (3)0.119 (5)
N10.0358 (13)0.0180 (11)0.0223 (11)0.0021 (10)0.0044 (10)0.0038 (9)
N20.0372 (13)0.0231 (11)0.0255 (12)0.0044 (10)0.0039 (11)0.0039 (10)
O30.0443 (11)0.0162 (9)0.0558 (13)0.0018 (9)0.0035 (11)0.0104 (9)
O40.0342 (12)0.0337 (12)0.0640 (14)0.0016 (10)0.0071 (11)0.0012 (11)
O50.0575 (15)0.0798 (19)0.0593 (15)0.0293 (15)0.0015 (13)0.0339 (15)
O120.0498 (13)0.0286 (10)0.0390 (12)0.0102 (10)0.0163 (10)0.0017 (9)
O140.0314 (10)0.0177 (9)0.0341 (10)0.0027 (8)0.0081 (9)0.0003 (8)
Geometric parameters (Å, º) top
C1—O141.448 (3)C16—C171.483 (4)
C1—C21.485 (4)C16—H16A0.9900
C1—C111.526 (3)C16—H16B0.9900
C1—H11.0000C17—N21.452 (3)
C2—O31.439 (3)C17—H17A0.9900
C2—C41.457 (4)C17—H17B0.9900
C2—H21.0000C18—N21.453 (3)
C4—O31.437 (4)C18—C191.499 (4)
C4—C261.494 (4)C18—H18A0.9900
C4—C51.500 (4)C18—H18B0.9900
C5—C61.530 (4)C19—N11.460 (3)
C5—H5A0.9900C19—H19A0.9900
C5—H5B0.9900C19—H19B0.9900
C6—C71.502 (4)C20—C251.367 (4)
C6—H6A0.9900C20—C211.396 (4)
C6—H6B0.9900C20—N21.416 (3)
C7—C81.323 (4)C21—C221.370 (4)
C7—H70.9500C21—H210.9500
C8—C271.496 (5)C22—C231.358 (4)
C8—C91.507 (4)C22—H220.9500
C9—O41.410 (4)C23—O51.371 (4)
C9—C101.532 (4)C23—C241.374 (4)
C9—H91.0000C24—C251.384 (4)
C10—C111.534 (4)C24—H240.9500
C10—H10A0.9900C25—H250.9500
C10—H10B0.9900C26—H26A0.9800
C11—C121.520 (3)C26—H26B0.9800
C11—H111.0000C26—H26C0.9800
C12—C131.484 (4)C27—H27A0.9800
C12—C151.515 (4)C27—H27B0.9800
C12—H121.0000C27—H27C0.9800
C13—O121.190 (3)C28—O51.396 (5)
C13—O141.350 (3)C28—H28A0.9800
C15—N11.460 (3)C28—H28B0.9800
C15—H15A0.9900C28—H28C0.9800
C15—H15B0.9900O4—H40.8400
C16—N11.460 (3)
O14—C1—C2106.8 (2)N1—C16—H16A109.3
O14—C1—C11105.74 (18)C17—C16—H16A109.3
C2—C1—C11111.8 (2)N1—C16—H16B109.3
O14—C1—H1110.8C17—C16—H16B109.3
C2—C1—H1110.8H16A—C16—H16B107.9
C11—C1—H1110.8N2—C17—C16111.0 (2)
O3—C2—C459.49 (17)N2—C17—H17A109.4
O3—C2—C1119.8 (2)C16—C17—H17A109.4
C4—C2—C1125.9 (2)N2—C17—H17B109.4
O3—C2—H2113.6C16—C17—H17B109.4
C4—C2—H2113.6H17A—C17—H17B108.0
C1—C2—H2113.6N2—C18—C19111.2 (2)
O3—C4—C259.63 (17)N2—C18—H18A109.4
O3—C4—C26113.4 (3)C19—C18—H18A109.4
C2—C4—C26122.8 (3)N2—C18—H18B109.4
O3—C4—C5116.3 (2)C19—C18—H18B109.4
C2—C4—C5115.5 (3)H18A—C18—H18B108.0
C26—C4—C5116.4 (3)N1—C19—C18112.4 (2)
C4—C5—C6111.8 (3)N1—C19—H19A109.1
C4—C5—H5A109.3C18—C19—H19A109.1
C6—C5—H5A109.3N1—C19—H19B109.1
C4—C5—H5B109.3C18—C19—H19B109.1
C6—C5—H5B109.3H19A—C19—H19B107.9
H5A—C5—H5B107.9C25—C20—C21117.2 (3)
C7—C6—C5110.8 (3)C25—C20—N2122.6 (2)
C7—C6—H6A109.5C21—C20—N2119.9 (2)
C5—C6—H6A109.5C22—C21—C20121.1 (3)
C7—C6—H6B109.5C22—C21—H21119.5
C5—C6—H6B109.5C20—C21—H21119.5
H6A—C6—H6B108.1C23—C22—C21121.0 (3)
C8—C7—C6127.2 (3)C23—C22—H22119.5
C8—C7—H7116.4C21—C22—H22119.5
C6—C7—H7116.4C22—C23—O5115.7 (3)
C7—C8—C27126.0 (3)C22—C23—C24118.9 (3)
C7—C8—C9121.9 (3)O5—C23—C24125.4 (3)
C27—C8—C9112.0 (3)C23—C24—C25120.3 (3)
O4—C9—C8111.7 (3)C23—C24—H24119.8
O4—C9—C10111.8 (2)C25—C24—H24119.8
C8—C9—C10109.9 (3)C20—C25—C24121.4 (3)
O4—C9—H9107.7C20—C25—H25119.3
C8—C9—H9107.7C24—C25—H25119.3
C10—C9—H9107.7C4—C26—H26A109.5
C9—C10—C11114.6 (2)C4—C26—H26B109.5
C9—C10—H10A108.6H26A—C26—H26B109.5
C11—C10—H10A108.6C4—C26—H26C109.5
C9—C10—H10B108.6H26A—C26—H26C109.5
C11—C10—H10B108.6H26B—C26—H26C109.5
H10A—C10—H10B107.6C8—C27—H27A109.5
C12—C11—C1103.3 (2)C8—C27—H27B109.5
C12—C11—C10114.3 (2)H27A—C27—H27B109.5
C1—C11—C10116.4 (2)C8—C27—H27C109.5
C12—C11—H11107.5H27A—C27—H27C109.5
C1—C11—H11107.5H27B—C27—H27C109.5
C10—C11—H11107.5O5—C28—H28A109.5
C13—C12—C15109.7 (2)O5—C28—H28B109.5
C13—C12—C11104.7 (2)H28A—C28—H28B109.5
C15—C12—C11114.2 (2)O5—C28—H28C109.5
C13—C12—H12109.4H28A—C28—H28C109.5
C15—C12—H12109.4H28B—C28—H28C109.5
C11—C12—H12109.4C16—N1—C15111.1 (2)
O12—C13—O14120.4 (2)C16—N1—C19107.7 (2)
O12—C13—C12129.1 (2)C15—N1—C19109.4 (2)
O14—C13—C12110.5 (2)C20—N2—C17116.3 (2)
N1—C15—C12113.2 (2)C20—N2—C18117.5 (2)
N1—C15—H15A108.9C17—N2—C18110.9 (2)
C12—C15—H15A108.9C4—O3—C260.88 (17)
N1—C15—H15B108.9C9—O4—H4109.5
C12—C15—H15B108.9C23—O5—C28117.9 (3)
H15A—C15—H15B107.8C13—O14—C1111.0 (2)
N1—C16—C17111.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N10.842.142.977 (4)170
C2—H2···O12i1.002.423.225 (4)137
C5—H5B···O3ii0.992.453.310 (4)145
C7—H7···O14iii0.952.503.198 (4)130
C15—H15A···O12i0.992.573.413 (4)143
C15—H15A···O14i0.992.503.469 (4)165
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x1/2, y+5/2, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC26H36N2O5
Mr456.57
Crystal system, space groupOrthorhombic, P212121
Temperature (K)180
a, b, c (Å)6.7066 (7), 11.9033 (11), 30.322 (4)
V3)2420.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.33 × 0.17 × 0.04
Data collection
DiffractometerAgilent Xcalibur Sapphire1 (long nozzle)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.732, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14543, 4925, 3663
Rint0.055
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.130, 1.04
No. of reflections4925
No. of parameters303
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997)and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N10.842.142.977 (4)170
C2—H2···O12i1.002.423.225 (4)137
C5—H5B···O3ii0.992.453.310 (4)145
C7—H7···O14iii0.952.503.198 (4)130
C15—H15A···O12i0.992.573.413 (4)143
C15—H15A···O14i0.992.503.469 (4)165
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x1/2, y+5/2, z; (iii) x1, y, z.
 

Acknowledgements

The authors thank Professor El Ammari for discussions on the refinement of the structure.

References

First citationAbdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403–405.  CrossRef CAS PubMed Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBellakhdar, J. (1997). La Pharmacopée Marocaine Traditionnelle, pp. 272–274. Paris: Ibis Press.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationQureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157-162.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o589-o590
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds