metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m348-m349

Bis[4-amino-N-(pyrimidin-2-yl)benzene­sulfonamidato](1,10-phenanthroline)nickel(II)

aFaculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: lix905@126.com

(Received 13 January 2012; accepted 23 February 2012; online 29 February 2012)

In the mononuclear title compound, [Ni(C10H9N4O2S)2(C12H8N2)], the NiII atom has a distorted octa­hedral coordination geometry comprising four N atoms from two 4-amino-N-(pyrimidin-2-yl)benzene­sulfonamidate ligands and two N atoms from a 1,10-phenanthroline ligand. In the crystal, mol­ecules are connected into a three-dimensional supra­molecular network via N—H⋯O hydrogen bonds and weak C—H⋯O and C—H⋯N contacts.

Related literature

For related literature regarding the properties of 4-amino-N-(pyrimidin-2-yl)benzene­sulfonamidate ligands, see: Ellena et al. (2007[Ellena, J., Kremer, E., Facchin, G., Baran, E. J., Nascimento, O. R., Costa-Filho, A. J. & Torre, M. H. (2007). Polyhedron, 26, 3277-3285.]); Garcia-Raso et al. (1997[Garcia-Raso, A., Fiol, J. J., Martorell, G., Lopez-Zafra, A. & Quiros, M. (1997). Polyhedron, 16, 613-621.]). For related literature regarding crystal engineering studies of 4-amino-N-(pyrimidin-2-yl) benzene­sulfonamidate ligands, see: Garcia-Raso et al. (2000[Garcia-Raso, A., Fiol, J. J., Rigo, S., López-López, A., Molins, E., Espinosa, E., Borras, E., Alzuet, G., Borras, J. & Castineiras, A. (2000). Polyhedron, 19, 991-1004.]); Golzar Hossain et al. (2007[Golzar Hossain, G. M., Amoroso, A. J., Banu, A. & Malik, K. M. A. (2007). Polyhedron, 26, 967-974.]); Gutierrez et al. (2001[Gutierrez, L., Alzuet, G., Borras, J., Castineiras, A., Rodriguez-Fortea, A. & Ruiz, E. (2001). Inorg. Chem. 40, 3089-3096.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C10H9N4O2S)2(C12H8N2)]

  • Mr = 737.46

  • Orthorhombic, P c a 21

  • a = 11.015 (2) Å

  • b = 17.995 (3) Å

  • c = 16.128 (3) Å

  • V = 3196.9 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 293 K

  • 0.34 × 0.26 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.774, Tmax = 0.870

  • 27217 measured reflections

  • 7075 independent reflections

  • 5020 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.110

  • S = 1.02

  • 7075 reflections

  • 431 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3236 Friedel pairs

  • Flack parameter: 0.236 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.46 3.162 (6) 140
N1—H1B⋯O2ii 0.86 2.23 3.056 (6) 162
N5—H5A⋯O3iii 0.86 2.52 3.285 (6) 148
N5—H5B⋯O4iv 0.86 2.20 3.016 (6) 158
C5—H5C⋯O2v 0.93 2.56 3.377 (5) 147
C12—H12A⋯N8iii 0.93 2.56 3.470 (6) 166
Symmetry codes: (i) [-x+1, -y, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (iii) [-x-{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (iv) [-x, -y+1, z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y, z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4-amino-N-(pyrimidin-2-yl)benzenesulfonamidato ligands have strong metal-binding properties as well as antibacterial functions (Ellena et al., 2007; Garcia-Raso et al., 1997). Crystal engineering studies of metal 4-amino-N-(pyrimidin-2-yl)benzenesulfonamidato complexes are less well developed (Garcia-Raso et al., 2000; Golzar et al., 2007; Gutierrez et al. 2001), and adding 1,10-phenanthroline as secondary ligand with 4-amino-N-(pyrimidin-2-yl)benzenesulfonamide to synthesize novel complex has not been reported yet, as far as we know. Here, we report the crystal structure of the title nickel complex with 1,10-phenanthroline and 4-amino-N-(pyrimidin-2-yl)benzenesulfonamide, (I).

Complex (I) is a mononuclear structure, in which the NiII atom has a distorted octahedral coordination geometry comprising four N atoms from two 4-amino-N-(pyrimidin-2-yl)benzenesulfonamidato ligands, two N atoms from a 1,10-phenanthroline ligand. Ni—N distances range from 2.064 to 2.205 Å (Figure 1). In the crystal, the molecules are connected into a three-dimensional supramolecular network via N—H···O hydrogen bonds and weak C—H···O and C—H···N contacts. (Figure 2).

Related literature top

For related literature regarding the properties of 4-amino-N-(pyrimidin-2-yl)benzenesulfonamidate ligands, see: Ellena et al. (2007); Garcia-Raso et al. (1997). For related literature regarding crystal engineering studies of 4-amino-N-(pyrimidin-2-yl) benzenesulfonamidate ligands, see: Garcia-Raso et al. (2000); Golzar et al. (2007); Gutierrez et al. (2001).

Experimental top

A mixture containing 0.005 mmol of 4-amino-N-(pyrimidin-2-yl)benzenesulfonamide, 0.005 mmol of Ni(OAc)2, 0.005 mmol of 1,10-phenanthroline and 0.005 mmol of KOH was placed in a small vial containing H2O (1.0 ml). The vial was sealed, heated at 373 K for 2 days, and allowed to cool to room temperature. Green crystals suitable for X-ray diffraction were collected and dried in air (yield, 31%).

Refinement top

H atoms attached to C and N atoms were placed in calculated positions and treated using a riding-model approximation [C—H, N—H = 0.93–0.98 Å with Uiso(H) = 1.2Ueq(C,N)/1.5 Ueq(C)]. The crystal studied was a racemic twin, as suggested by the Flack parameter of 0.236 (16) obtained by the TWIN/BASF procedure in SHELXL (Sheldrick, 2008).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Unit-cell contents for (I) viewed in projection down the a axis.
Bis[4-amino-N-(pyrimidin-2-yl)benzenesulfonamidato](1,10- phenanthroline)nickel(II) top
Crystal data top
[Ni(C10H9N4O2S)2(C12H8N2)]F(000) = 1520
Mr = 737.46Dx = 1.532 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 4514 reflections
a = 11.015 (2) Åθ = 2.2–23.4°
b = 17.995 (3) ŵ = 0.79 mm1
c = 16.128 (3) ÅT = 293 K
V = 3196.9 (10) Å3Block, green
Z = 40.34 × 0.26 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7075 independent reflections
Radiation source: fine-focus sealed tube5020 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
phi and ω scansθmax = 27.6°, θmin = 2.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.774, Tmax = 0.870k = 2322
27217 measured reflectionsl = 1820
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.7787P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
7075 reflectionsΔρmax = 0.51 e Å3
431 parametersΔρmin = 0.35 e Å3
2 restraintsAbsolute structure: Flack (1983), 3236 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.236 (16)
Crystal data top
[Ni(C10H9N4O2S)2(C12H8N2)]V = 3196.9 (10) Å3
Mr = 737.46Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 11.015 (2) ŵ = 0.79 mm1
b = 17.995 (3) ÅT = 293 K
c = 16.128 (3) Å0.34 × 0.26 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7075 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5020 reflections with I > 2σ(I)
Tmin = 0.774, Tmax = 0.870Rint = 0.058
27217 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.110Δρmax = 0.51 e Å3
S = 1.02Δρmin = 0.35 e Å3
7075 reflectionsAbsolute structure: Flack (1983), 3236 Friedel pairs
431 parametersAbsolute structure parameter: 0.236 (16)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.08935 (4)0.25754 (2)0.18766 (4)0.04064 (12)
S10.26208 (7)0.09491 (5)0.18621 (8)0.0421 (2)
S20.12704 (9)0.40536 (6)0.14560 (7)0.0451 (3)
O10.3501 (3)0.07865 (16)0.12315 (19)0.0571 (8)
O20.1443 (2)0.06087 (14)0.1758 (2)0.0553 (8)
O30.2414 (2)0.3700 (2)0.1294 (2)0.0745 (10)
O40.1087 (3)0.47423 (18)0.1020 (2)0.0692 (9)
N10.4429 (4)0.0080 (3)0.5131 (3)0.0859 (14)
H1B0.40440.00480.55710.103*
H1A0.50710.03510.51680.103*
N20.2338 (2)0.18145 (15)0.1963 (3)0.0420 (7)
N30.2674 (3)0.30325 (16)0.1940 (3)0.0466 (7)
N40.4420 (3)0.22257 (17)0.1955 (3)0.0468 (7)
N50.1094 (5)0.4790 (3)0.5019 (3)0.106 (2)
H5A0.16830.46590.53370.127*
H5B0.04890.50330.52190.127*
N60.0154 (3)0.34928 (16)0.13242 (19)0.0408 (7)
N70.0896 (3)0.2665 (2)0.0604 (2)0.0460 (9)
N80.0354 (3)0.3499 (2)0.0161 (2)0.0583 (10)
N90.0642 (3)0.19039 (18)0.1896 (4)0.0570 (8)
N100.0438 (5)0.2643 (2)0.3117 (3)0.0667 (13)
C10.4020 (4)0.0146 (3)0.4366 (3)0.0551 (11)
C20.2985 (4)0.0583 (2)0.4303 (3)0.0533 (10)
H2A0.25490.07050.47780.064*
C30.2601 (4)0.0837 (2)0.3543 (3)0.0488 (10)
H3A0.19190.11410.35150.059*
C40.3206 (3)0.0651 (2)0.2817 (3)0.0395 (9)
C50.4211 (4)0.0207 (2)0.2871 (3)0.0534 (11)
H5C0.46230.00720.23900.064*
C60.4622 (4)0.0042 (3)0.3629 (3)0.0661 (13)
H6A0.53100.03400.36520.079*
C70.3218 (3)0.23493 (18)0.1954 (3)0.0394 (8)
C80.3396 (4)0.3626 (2)0.1879 (4)0.0585 (10)
H8A0.30560.40990.18550.070*
C90.4641 (4)0.3546 (2)0.1849 (4)0.0581 (10)
H9A0.51520.39540.17910.070*
C100.5090 (3)0.2838 (2)0.1909 (3)0.0522 (9)
H10A0.59290.27820.19190.063*
C110.1119 (4)0.4612 (3)0.4200 (3)0.0624 (13)
C120.2097 (4)0.4218 (3)0.3869 (3)0.0641 (13)
H12A0.27350.40740.42110.077*
C130.2117 (4)0.4043 (2)0.3044 (3)0.0540 (11)
H13A0.27760.37820.28310.065*
C140.1180 (4)0.4247 (2)0.2518 (3)0.0436 (10)
C150.0206 (4)0.4629 (2)0.2838 (3)0.0524 (11)
H15A0.04310.47680.24920.063*
C160.0166 (4)0.4810 (3)0.3674 (3)0.0657 (13)
H16A0.05010.50640.38860.079*
C170.0102 (3)0.3235 (2)0.0552 (2)0.0416 (9)
C180.0034 (5)0.3153 (3)0.0834 (3)0.0739 (15)
H18A0.02740.33130.13400.089*
C190.0845 (5)0.2583 (3)0.0851 (3)0.0763 (17)
H19A0.10930.23660.13460.092*
C200.1284 (5)0.2342 (3)0.0089 (3)0.0643 (13)
H20A0.18450.19560.00630.077*
C210.1147 (4)0.1532 (3)0.1260 (4)0.0726 (15)
H21A0.07260.15100.07610.087*
C220.2264 (5)0.1177 (3)0.1312 (6)0.102 (2)
H22A0.25960.09260.08620.123*
C230.2840 (6)0.1216 (4)0.2044 (7)0.123 (3)
H23A0.36060.10010.20860.148*
C240.2353 (8)0.1563 (5)0.2753 (6)0.1249 (18)
C250.2921 (7)0.1584 (4)0.3481 (6)0.1249 (18)
H25A0.36780.13620.35430.150*
C260.2388 (8)0.1930 (4)0.4128 (6)0.1249 (18)
H26A0.27880.19390.46360.150*
C270.1208 (8)0.2290 (5)0.4057 (6)0.116 (2)
C280.0600 (11)0.2649 (7)0.4671 (5)0.152 (4)
H28A0.09390.26550.51990.182*
C290.0518 (10)0.3012 (6)0.4548 (5)0.130 (3)
H29A0.09200.32520.49790.156*
C300.1011 (6)0.2993 (4)0.3709 (4)0.099 (2)
H30A0.17410.32330.35940.119*
C310.0656 (5)0.2289 (3)0.3275 (3)0.0754 (17)
C320.1222 (5)0.1917 (3)0.2603 (4)0.0717 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0409 (2)0.0465 (3)0.0345 (2)0.00456 (19)0.0015 (3)0.0027 (3)
S10.0427 (4)0.0406 (5)0.0428 (5)0.0028 (3)0.0011 (5)0.0020 (6)
S20.0396 (5)0.0521 (6)0.0437 (6)0.0067 (4)0.0002 (4)0.0002 (5)
O10.0654 (18)0.0592 (19)0.0469 (19)0.0048 (15)0.0074 (15)0.0075 (15)
O20.0510 (14)0.0504 (15)0.065 (2)0.0131 (12)0.0083 (16)0.0006 (16)
O30.0397 (15)0.125 (3)0.059 (2)0.0106 (17)0.0056 (15)0.015 (2)
O40.102 (3)0.0514 (19)0.054 (2)0.0244 (17)0.0111 (17)0.0098 (16)
N10.092 (3)0.112 (4)0.054 (3)0.032 (3)0.011 (2)0.016 (3)
N20.0408 (14)0.0349 (15)0.050 (2)0.0026 (11)0.0030 (18)0.0058 (18)
N30.0485 (15)0.0398 (16)0.051 (2)0.0030 (13)0.008 (2)0.003 (2)
N40.0402 (14)0.0541 (18)0.046 (2)0.0020 (13)0.0013 (19)0.002 (2)
N50.109 (4)0.156 (5)0.052 (3)0.066 (4)0.018 (3)0.027 (3)
N60.0463 (16)0.0415 (17)0.0346 (17)0.0082 (14)0.0002 (14)0.0013 (15)
N70.050 (2)0.052 (2)0.036 (2)0.0120 (16)0.0017 (16)0.0046 (17)
N80.069 (2)0.068 (3)0.037 (2)0.019 (2)0.0056 (18)0.0053 (18)
N90.0466 (16)0.0558 (19)0.068 (2)0.0068 (14)0.007 (3)0.020 (3)
N100.083 (3)0.076 (3)0.041 (2)0.030 (2)0.007 (2)0.000 (2)
C10.061 (3)0.050 (3)0.054 (3)0.006 (2)0.011 (2)0.009 (2)
C20.065 (3)0.050 (2)0.045 (3)0.002 (2)0.008 (2)0.003 (2)
C30.047 (2)0.046 (2)0.053 (3)0.0064 (19)0.0030 (19)0.005 (2)
C40.0402 (19)0.036 (2)0.042 (2)0.0011 (16)0.0010 (17)0.0020 (17)
C50.048 (2)0.057 (3)0.055 (3)0.012 (2)0.007 (2)0.003 (2)
C60.055 (3)0.079 (3)0.064 (3)0.027 (3)0.005 (2)0.004 (3)
C70.0430 (16)0.0415 (19)0.034 (2)0.0025 (14)0.001 (2)0.001 (2)
C80.069 (2)0.0370 (19)0.070 (3)0.0032 (18)0.006 (3)0.001 (3)
C90.063 (2)0.051 (2)0.060 (3)0.0197 (18)0.002 (3)0.004 (3)
C100.0466 (19)0.063 (2)0.048 (2)0.0135 (17)0.004 (3)0.000 (3)
C110.070 (3)0.072 (3)0.045 (3)0.020 (2)0.006 (2)0.009 (2)
C120.051 (2)0.087 (4)0.054 (3)0.027 (2)0.011 (2)0.006 (3)
C130.045 (2)0.062 (3)0.055 (3)0.013 (2)0.003 (2)0.007 (2)
C140.036 (2)0.050 (3)0.045 (2)0.0035 (18)0.0027 (17)0.004 (2)
C150.047 (2)0.057 (3)0.053 (3)0.009 (2)0.010 (2)0.002 (2)
C160.058 (3)0.080 (4)0.060 (3)0.029 (2)0.007 (2)0.008 (3)
C170.045 (2)0.041 (2)0.038 (2)0.0024 (16)0.0008 (17)0.0032 (18)
C180.074 (3)0.110 (4)0.037 (3)0.023 (3)0.008 (2)0.006 (3)
C190.086 (4)0.110 (5)0.033 (3)0.027 (3)0.005 (2)0.013 (3)
C200.065 (3)0.076 (3)0.052 (3)0.021 (3)0.002 (2)0.009 (3)
C210.057 (3)0.062 (3)0.100 (5)0.010 (2)0.010 (3)0.002 (3)
C220.064 (4)0.076 (4)0.168 (8)0.005 (3)0.011 (4)0.013 (5)
C230.073 (4)0.072 (4)0.225 (11)0.009 (3)0.041 (6)0.058 (6)
C240.113 (4)0.126 (4)0.136 (5)0.001 (3)0.052 (3)0.040 (4)
C250.113 (4)0.126 (4)0.136 (5)0.001 (3)0.052 (3)0.040 (4)
C260.113 (4)0.126 (4)0.136 (5)0.001 (3)0.052 (3)0.040 (4)
C270.127 (5)0.134 (6)0.087 (5)0.030 (5)0.030 (5)0.037 (5)
C280.181 (10)0.225 (12)0.051 (5)0.067 (9)0.008 (6)0.001 (6)
C290.169 (9)0.170 (9)0.052 (5)0.045 (8)0.022 (5)0.009 (5)
C300.117 (5)0.130 (6)0.051 (4)0.047 (4)0.022 (3)0.020 (4)
C310.083 (4)0.089 (4)0.054 (3)0.037 (3)0.034 (3)0.032 (3)
C320.069 (3)0.066 (3)0.080 (4)0.020 (3)0.017 (3)0.032 (3)
Geometric parameters (Å, º) top
Ni1—N72.059 (4)C5—H5C0.9300
Ni1—N102.066 (4)C6—H6A0.9300
Ni1—N92.079 (3)C8—C91.379 (5)
Ni1—N22.104 (3)C8—H8A0.9300
Ni1—N32.130 (3)C9—C101.370 (5)
Ni1—N62.202 (3)C9—H9A0.9300
S1—O11.435 (3)C10—H10A0.9300
S1—O21.444 (2)C11—C121.395 (6)
S1—N21.596 (3)C11—C161.396 (6)
S1—C41.754 (4)C12—C131.368 (6)
S2—O31.435 (3)C12—H12A0.9300
S2—O41.439 (3)C13—C141.385 (5)
S2—N61.605 (3)C13—H13A0.9300
S2—C141.750 (4)C14—C151.376 (6)
N1—C11.374 (6)C15—C161.388 (6)
N1—H1B0.8600C15—H15A0.9300
N1—H1A0.8600C16—H16A0.9300
N2—C71.367 (4)C18—C191.360 (7)
N3—C81.336 (4)C18—H18A0.9300
N3—C71.368 (4)C19—C201.391 (7)
N4—C101.329 (4)C19—H19A0.9300
N4—C71.342 (4)C20—H20A0.9300
N5—C111.360 (6)C21—C221.388 (7)
N5—H5A0.8600C21—H21A0.9300
N5—H5B0.8600C22—C231.344 (11)
N6—C171.359 (5)C22—H22A0.9300
N7—C201.330 (6)C23—C241.409 (12)
N7—C171.349 (5)C23—H23A0.9300
N8—C181.321 (6)C24—C251.330 (11)
N8—C171.343 (5)C24—C321.421 (10)
N9—C321.307 (7)C25—C261.350 (11)
N9—C211.346 (7)C25—H25A0.9300
N10—C301.306 (7)C26—C271.457 (12)
N10—C311.387 (7)C26—H26A0.9300
C1—C21.389 (6)C27—C281.359 (13)
C1—C61.402 (6)C27—C311.400 (9)
C2—C31.374 (6)C28—C291.408 (13)
C2—H2A0.9300C28—H28A0.9300
C3—C41.389 (6)C29—C301.459 (10)
C3—H3A0.9300C29—H29A0.9300
C4—C51.368 (5)C30—H30A0.9300
C5—C61.379 (6)C31—C321.418 (8)
N7—Ni1—N10163.95 (16)N3—C8—H8A119.7
N7—Ni1—N993.55 (19)C9—C8—H8A119.7
N10—Ni1—N979.7 (2)C10—C9—C8117.0 (3)
N7—Ni1—N296.67 (15)C10—C9—H9A121.5
N10—Ni1—N299.08 (17)C8—C9—H9A121.5
N9—Ni1—N2103.64 (11)N4—C10—C9125.1 (3)
N7—Ni1—N390.95 (16)N4—C10—H10A117.5
N10—Ni1—N398.85 (19)C9—C10—H10A117.5
N9—Ni1—N3166.70 (12)N5—C11—C12120.4 (4)
N2—Ni1—N363.36 (11)N5—C11—C16121.0 (4)
N7—Ni1—N662.52 (12)C12—C11—C16118.6 (4)
N10—Ni1—N6102.74 (14)C13—C12—C11120.1 (4)
N9—Ni1—N690.91 (12)C13—C12—H12A119.9
N2—Ni1—N6155.62 (13)C11—C12—H12A119.9
N3—Ni1—N6102.27 (12)C12—C13—C14121.5 (4)
O1—S1—O2115.96 (19)C12—C13—H13A119.2
O1—S1—N2113.76 (19)C14—C13—H13A119.2
O2—S1—N2104.49 (15)C15—C14—C13118.9 (4)
O1—S1—C4108.17 (18)C15—C14—S2120.7 (3)
O2—S1—C4107.61 (18)C13—C14—S2120.3 (3)
N2—S1—C4106.3 (2)C14—C15—C16120.4 (4)
O3—S2—O4114.6 (2)C14—C15—H15A119.8
O3—S2—N6111.69 (19)C16—C15—H15A119.8
O4—S2—N6111.68 (18)C15—C16—C11120.5 (4)
O3—S2—C14108.4 (2)C15—C16—H16A119.8
O4—S2—C14107.4 (2)C11—C16—H16A119.8
N6—S2—C14102.18 (19)N8—C17—N7124.3 (4)
C1—N1—H1B120.0N8—C17—N6125.9 (3)
C1—N1—H1A120.0N7—C17—N6109.7 (3)
H1B—N1—H1A120.0N8—C18—C19125.8 (5)
C7—N2—S1123.2 (2)N8—C18—H18A117.1
C7—N2—Ni194.5 (2)C19—C18—H18A117.1
S1—N2—Ni1140.89 (17)C18—C19—C20116.5 (5)
C8—N3—C7117.4 (3)C18—C19—H19A121.8
C8—N3—Ni1148.6 (3)C20—C19—H19A121.8
C7—N3—Ni193.3 (2)N7—C20—C19119.6 (4)
C10—N4—C7114.2 (3)N7—C20—H20A120.2
C11—N5—H5A120.0C19—C20—H20A120.2
C11—N5—H5B120.0N9—C21—C22123.3 (6)
H5A—N5—H5B120.0N9—C21—H21A118.3
C17—N6—S2119.7 (3)C22—C21—H21A118.3
C17—N6—Ni190.3 (2)C23—C22—C21116.6 (8)
S2—N6—Ni1145.00 (19)C23—C22—H22A121.7
C20—N7—C17119.2 (4)C21—C22—H22A121.7
C20—N7—Ni1143.5 (3)C22—C23—C24123.9 (7)
C17—N7—Ni196.9 (3)C22—C23—H23A118.1
C18—N8—C17114.5 (4)C24—C23—H23A118.1
C32—N9—C21118.2 (4)C25—C24—C23123.3 (9)
C32—N9—Ni1113.6 (4)C25—C24—C32123.4 (10)
C21—N9—Ni1127.9 (4)C23—C24—C32113.2 (7)
C30—N10—C31120.5 (6)C24—C25—C26119.4 (9)
C30—N10—Ni1128.2 (5)C24—C25—H25A120.3
C31—N10—Ni1111.2 (4)C26—C25—H25A120.3
N1—C1—C2120.2 (4)C25—C26—C27122.1 (8)
N1—C1—C6122.3 (4)C25—C26—H26A118.9
C2—C1—C6117.5 (4)C27—C26—H26A118.9
C3—C2—C1120.5 (4)C28—C27—C31116.3 (8)
C3—C2—H2A119.8C28—C27—C26126.4 (9)
C1—C2—H2A119.8C31—C27—C26117.3 (9)
C2—C3—C4121.5 (4)C27—C28—C29123.3 (8)
C2—C3—H3A119.2C27—C28—H28A118.3
C4—C3—H3A119.2C29—C28—H28A118.3
C5—C4—C3118.5 (4)C28—C29—C30116.4 (8)
C5—C4—S1122.1 (3)C28—C29—H29A121.8
C3—C4—S1119.3 (3)C30—C29—H29A121.8
C4—C5—C6120.7 (4)N10—C30—C29120.6 (8)
C4—C5—H5C119.6N10—C30—H30A119.7
C6—C5—H5C119.6C29—C30—H30A119.7
C5—C6—C1121.3 (4)N10—C31—C27122.8 (7)
C5—C6—H6A119.4N10—C31—C32117.3 (4)
C1—C6—H6A119.4C27—C31—C32119.9 (7)
N4—C7—N2125.7 (3)N9—C32—C24124.7 (7)
N4—C7—N3125.5 (3)N9—C32—C31117.4 (5)
N2—C7—N3108.8 (3)C24—C32—C31117.8 (7)
N3—C8—C9120.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.463.162 (6)140
N1—H1B···O2ii0.862.233.056 (6)162
N5—H5A···O3iii0.862.523.285 (6)148
N5—H5B···O4iv0.862.203.016 (6)158
C5—H5C···O2v0.932.563.377 (5)147
C12—H12A···N8iii0.932.563.470 (6)166
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y, z+1/2; (iii) x1/2, y, z+1/2; (iv) x, y+1, z+1/2; (v) x+1/2, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C10H9N4O2S)2(C12H8N2)]
Mr737.46
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)11.015 (2), 17.995 (3), 16.128 (3)
V3)3196.9 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.34 × 0.26 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.774, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
27217, 7075, 5020
Rint0.058
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.110, 1.02
No. of reflections7075
No. of parameters431
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.35
Absolute structureFlack (1983), 3236 Friedel pairs
Absolute structure parameter0.236 (16)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.86002.45563.162 (6)139.59
N1—H1B···O2ii0.85992.22623.056 (6)161.95
N5—H5A···O3iii0.86012.52083.285 (6)148.34
N5—H5B···O4iv0.86002.20253.016 (6)157.46
C5—H5C···O2v0.92992.55983.377 (5)146.85
C12—H12A···N8iii0.93002.56013.470 (6)166.00
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y, z+1/2; (iii) x1/2, y, z+1/2; (iv) x, y+1, z+1/2; (v) x+1/2, y, z.
 

Acknowledgements

The work was supported by the Ningbo Natural Science Foundation (grant No. 2010 A610060), the Ningbo University Foundation (grant No. XK1066), the training funds of excellent theses for Masters in Ningbo University (grant Nos. PY20090012 and PY20100007) and the K. C. Wong Magna Fund in Ningbo University.

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEllena, J., Kremer, E., Facchin, G., Baran, E. J., Nascimento, O. R., Costa-Filho, A. J. & Torre, M. H. (2007). Polyhedron, 26, 3277–3285.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGarcia-Raso, A., Fiol, J. J., Martorell, G., Lopez-Zafra, A. & Quiros, M. (1997). Polyhedron, 16, 613–621.  CSD CrossRef CAS Web of Science Google Scholar
First citationGarcia-Raso, A., Fiol, J. J., Rigo, S., López-López, A., Molins, E., Espinosa, E., Borras, E., Alzuet, G., Borras, J. & Castineiras, A. (2000). Polyhedron, 19, 991–1004.  CAS Google Scholar
First citationGolzar Hossain, G. M., Amoroso, A. J., Banu, A. & Malik, K. M. A. (2007). Polyhedron, 26, 967–974.  Google Scholar
First citationGutierrez, L., Alzuet, G., Borras, J., Castineiras, A., Rodriguez-Fortea, A. & Ruiz, E. (2001). Inorg. Chem. 40, 3089–3096.  Web of Science PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m348-m349
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds