organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o898-o899

1-Methyl-2-[(E)-2,4,5-trimeth­­oxy­styr­yl]­pyridinium benzene­sulfonate mono­hydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cDepartment of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 9 February 2012; accepted 21 February 2012; online 29 February 2012)

The asymmetric unit of the title compound, C17H20NO3+·C6H5O3S·H2O, comprises two 1-methyl-2-[(E)-2,4,5-trimeth­oxy­styr­yl]pyridinium cations, two benzene­sulfonate anions and two water mol­ecules. The cations exist in the E conformation with respect to the C=C bond; one cation is essentially planar while the other is slightly twisted, the dihedral angles between the pyridinium and phenyl rings being 1.23 (14) and 6.64 (13)°, respectively. In the crystal, cations, anions and water mol­ecules are linked by O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions into chains along the b axis. ππ inter­actions with centroid–centroid distances in the range 3.5557 (16)–3.6876 (16) Å are observed. C—H⋯π inter­actions and a C⋯O short contact [2.94 (4) Å] are also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to, and applications of, hy­droxy­lated stilbenes, see: Elmali et al. (2006[Elmali, N., Baysal, O., Harma, A., Esenkaya, I. & Mizrak, B. (2006). Inflammation, 30, 1-6.]); Kimura (2005[Kimura, Y. (2005). In Vivo, 19, 37-60.]); Ko et al. (1999[Ko, S. K., Lee, S. M. & Whang, W. K. (1999). Arch. Pharm. Res. 22, 401-403.]); Nitta et al. (2002[Nitta, T., Arai, T., Takamatsu, H., Inatomi, Y., Murata, H., Iinuma, M., Tanaka, T., Ito, T., Asai, F., Ibrahim, I., Nakanishi, T. & Watabe, K. (2002). J. Health Sci. 48, 273-276.]); Olas & Wachowicz (2002[Olas, B. & Wachowicz, B. (2002). Thromb. Res. 106, 143-148.]); Park et al. (2008[Park, W.-H., Lee, S.-J. & Moon, H.-I. (2008). Antimicrob. Agents Chemother. 52, 3451-3453.]); Roupe et al. (2006[Roupe, K. A., Remsberg, C. M., Yáñez, J. A. & Davies, N. M. (2006). Curr. Clin. Pharmacol. 1, 81-101.]); Son et al. (2007[Son, I. H., Chung, I. M., Lee, S.-J. & Moon, H.-I. (2007). Parasitol. Res. 101, 27-241.]). For related structures, see: Chanawanno et al. (2010[Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199-4208.]); Fun et al. (2011[Fun, H.-K., Mueangkeaw, C., Ruanwas, P. & Chantrapromma, S. (2011). Acta Cryst. E67, o867-o868.]); Mueangkeaw et al. (2010[Mueangkeaw, C., Chantrapromma, S., Ruanwas, P. & Fun, H.-K. (2010). Acta Cryst. E66, o3098-o3099.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20NO3+·C6H5O3S·H2O

  • Mr = 461.53

  • Triclinic, [P \overline 1]

  • a = 11.2458 (4) Å

  • b = 13.5995 (5) Å

  • c = 15.3604 (6) Å

  • α = 73.345 (2)°

  • β = 84.623 (2)°

  • γ = 82.842 (2)°

  • V = 2228.92 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.44 × 0.22 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.920, Tmax = 0.970

  • 38826 measured reflections

  • 10142 independent reflections

  • 6560 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.180

  • S = 1.03

  • 10142 reflections

  • 598 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 and Cg6 are the centroids of the C18A–C23A and C18B–C23B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O5B 1.07 1.88 2.919 (3) 161
O1W—H2W1⋯O6A 0.99 1.87 2.843 (3) 169
O2W—H1W2⋯O5Ai 0.93 1.98 2.894 (3) 169
O2W—H2W2⋯O4B 0.94 1.97 2.884 (4) 163
C1A—H1AA⋯O4Aii 0.93 2.24 3.159 (4) 169
C4A—H4AA⋯O6A 0.93 2.51 3.394 (3) 160
C1B—H1BA⋯O6Biii 0.93 2.34 3.216 (4) 157
C4B—H4BA⋯O4Biv 0.93 2.39 3.198 (3) 145
C6B—H6BA⋯O5Bv 0.93 2.54 3.419 (4) 158
C14B—H14D⋯O6Biii 0.96 2.39 3.307 (4) 160
C14B—H14F⋯O5Bv 0.96 2.51 3.331 (4) 143
C19A—H19A⋯O1W 0.93 2.59 3.477 (4) 160
C20A—H20A⋯O2Bvi 0.93 2.60 3.393 (5) 144
C3A—H3AACg5 0.93 2.78 3.688 (3) 164
C16A—H16CCg6iv 0.96 2.79 3.453 (4) 127
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1; (v) x-1, y, z; (vi) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydroxylated stilbenes are widely found in nature and also show interesting biological activities (Ko et al., 1999; Park et al., 2008; Roupe et al., 2006; Son et al., 2007). Resveratrol, a well known hydroxylated stilbene, is an isolated bioactive substance found in grapes and red wine (Kimura, 2005). It has shown various bioactivities such as antibacterial (Nitta et al., 2002), antiplasmodial (Son et al., 2007), antioxidant (Olas & Wachowicz 2002), anti-inflammatory (Elmali et al., 2006) and anticancer activities (Kimura, 2005). Due to these activities, it led us to synthesize the hydroxylated pyridinium stilbenes and to evaluate their antimicrobial activity. The title compound (I) is a hydroxylated pyridinium stilbene derivative which was synthesized and tested for antibacterial activity against the Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Methicillin-Resistant Staphylococcus aureus, Vancomycin-Resistant Enterococcus faecalis, Pseudomonas aeruginosa, Salmonella typhi and Shigella sonnei, but unfortunately it was found to be inactive. Herein we report the crystal structure of (I).

Fig. 1 shows the asymmetric unit of (I) which consists of two C17H20NO3+ cations, two C7H7O4S- anions and two solvent water molecules. The SO3 moiety of one anion (molecule A) is disordered over two positions with the refined site-occupancy ratio of 0.948 (4):0.052 (4). The cations exist in the E configuration with respect to the C6C7 double bonds [1.358 (4) Å in molecule A and 1.352 (4) Å molecule B ] with the torsion angle C5–C6–C7–C8 = -179.4 (3)° in molecule A [175.8 (3)° in molecule B]. One cation is essentially planar (molecule A) whereas the other (molecule B) is slightly twisted with the dihedral angle between the pyridinium and phenyl rings being 1.23 (14) and 6.64 (13)°, respectively. Three methoxy substituent groups of the 2,4,5-trimethoxyphenyl are almost co-planar with their attached phenyl ring with torsion angles of C15–O1–C9–C10, C16–O2–C11–C12 and C17–O3–C12–C13 being 5.2 (4), 173.3 (3) and 0.4 (4)° respectively in molecule A [the corresponding values are -2.0 (4), 178.6 (2) and 4.9 (4) ° in molecule B]. These angle values also indicated that the para methoxy group (at atom C11) points toward the ortho methoxy group (at atom C9) whereas it points away from the meta methoxy group (at atom C12) (Fig. 1) due to the steric effect of their positions. The two anions are inclined with respect to the two cations in which the C18A–C23A benzene ring of the anion makes dihedral angles of 81.28 (14) and 79.93 (14)° with the N1A/C1A–C5A and N1B/C1B–C5B pyridinium rings, respectively and the C18B–C23B benzene ring makes dihedral angles of 36.38 (14) and 34.35 (14)° with the N1A/C1A–C5A and N1B/C1B–C5B pyridinium rings. The bond lengths of (I) are in normal ranges (Allen et al., 1987) and are comparable to those in related structures (Fun et al., 2011; Mueangkeaw et al., 2010).

In the crystal packing (Fig. 2) O—H···O hydrogen bonds and weak C—H···O interactions (Table 1) link cations, anions and water molecules into chains along the b axis. ππ interactions were observed with the distances of Cg1···Cg2vi = 3.6780 (17) Å (symmetry code (vi) = 2--x, -y, 1-z), Cg1···Cg4i = 3.5951 (17) Å, Cg2···Cg3i = 3.5557 (16) Å and Cg3···Cg4ii = 3.6876 (16) Å; Cg1, Cg2, Cg3 and Cg4 are centroids of N1A/C1A–C5A, C8A–C13A, N1B/C1B–C5B and C8B–C13B rings, respectively. A C16A···O4AAvii [2.94 (4) Å; (vii) = 1--x, -y, 1-z] short contact was observed. The crystal is stabilized by weak C—H···O, C—H···π (Table 1) and ππ interactions.

Related literature top

For bond-length data, see: Allen et al. (1987). For background to, and applications of, hydroxylated stilbenes, see: Elmali et al. (2006); Kimura (2005); Ko et al. (1999); Nitta et al. (2002); Olas & Wachowicz (2002); Park et al. (2008); Roupe et al. (2006); Son et al. (2007). For related structures, see: Chanawanno et al. (2010); Fun et al. (2011); Mueangkeaw et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by mixing a 1:1 molar ratio of 1-methyl-2-[(E)-2,4,5-trimethoxystyryl]pyridinium iodide (0.10 g, 0.24 mmol) which was prepared according to the previous method (Mueangkeaw et al., 2010) and silver (I) benzenesulfonate (Chanawanno et al., 2010) (0.06 g, 0.24 mmol) in methanol (50 ml). The mixture immediately yielded a grey precipitate of silver iodide. After stirring the mixture for ca. 30 min, the precipitate of silver iodide was removed and the resulting solution was evaporated yielding the title compound as an orange solid. Orange block-shaped single crystals of (I) suitable for x-ray structure determination were recrystallized from DMSO by slow evaporation at room temperature over a few weeks, Mp. 455-456 K.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(O-H) = 0.92 - 1.07 Å, d(C-H) = 0.93 Å for aromatic and CH and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The SO3group of one benzenesulfonate is disordered over two positions with the refined site-occupancy ratio of 0.948 (4):0.052 (4).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed approximately down the a-axis. Only the major component is shown. For clarity, only H atoms involved in hydrogen bonds are shown. Hydrogen bonds are shown as dashed lines.
1-Methyl-2-[(E)-2,4,5-trimethoxystyryl]pyridinium benzenesulfonate monohydrate top
Crystal data top
C17H20NO3+·C6H5O3S·H2OZ = 4
Mr = 461.53F(000) = 976
Triclinic, P1Dx = 1.375 Mg m3
Hall symbol: -P 1Melting point = 455–456 K
a = 11.2458 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.5995 (5) ÅCell parameters from 10142 reflections
c = 15.3604 (6) Åθ = 2.2–27.5°
α = 73.345 (2)°µ = 0.19 mm1
β = 84.623 (2)°T = 100 K
γ = 82.842 (2)°Block, orange
V = 2228.92 (15) Å30.44 × 0.22 × 0.16 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10142 independent reflections
Radiation source: sealed tube6560 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1414
Tmin = 0.920, Tmax = 0.970k = 1717
38826 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0791P)2 + 1.8818P]
where P = (Fo2 + 2Fc2)/3
10142 reflections(Δ/σ)max = 0.001
598 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C17H20NO3+·C6H5O3S·H2Oγ = 82.842 (2)°
Mr = 461.53V = 2228.92 (15) Å3
Triclinic, P1Z = 4
a = 11.2458 (4) ÅMo Kα radiation
b = 13.5995 (5) ŵ = 0.19 mm1
c = 15.3604 (6) ÅT = 100 K
α = 73.345 (2)°0.44 × 0.22 × 0.16 mm
β = 84.623 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10142 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6560 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.970Rint = 0.057
38826 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.03Δρmax = 0.72 e Å3
10142 reflectionsΔρmin = 0.45 e Å3
598 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.64507 (17)0.11731 (17)0.51621 (14)0.0336 (5)
O2A0.69138 (17)0.04628 (17)0.83918 (14)0.0327 (5)
O3A0.91709 (17)0.06224 (17)0.81037 (14)0.0314 (5)
N1A1.15749 (19)0.16459 (17)0.32746 (16)0.0220 (5)
C1A1.1978 (3)0.1857 (2)0.2393 (2)0.0290 (7)
H1AA1.27950.19010.22460.035*
C2A1.1220 (3)0.2008 (3)0.1707 (2)0.0335 (7)
H2AA1.15120.21540.11010.040*
C3A1.0001 (3)0.1937 (2)0.1943 (2)0.0341 (7)
H3AA0.94650.20260.14940.041*
C4A0.9595 (2)0.1734 (2)0.2840 (2)0.0291 (7)
H4AA0.87790.16950.29920.035*
C5A1.0373 (2)0.1587 (2)0.3530 (2)0.0247 (6)
C6A0.9983 (3)0.1373 (3)0.4472 (2)0.0362 (8)
H6AA1.05550.12820.48960.043*
C7A0.8816 (3)0.1295 (2)0.4777 (2)0.0351 (7)
H7AA0.82630.13820.43410.042*
C8A0.8348 (3)0.1090 (2)0.5718 (2)0.0297 (7)
C9A0.7104 (2)0.1028 (2)0.59021 (19)0.0252 (6)
C10A0.6599 (2)0.0813 (2)0.67848 (19)0.0244 (6)
H10A0.57780.07630.68950.029*
C11A0.7317 (2)0.0672 (2)0.75031 (19)0.0241 (6)
C12A0.8564 (2)0.0750 (2)0.73381 (19)0.0241 (6)
C13A0.9063 (2)0.0947 (2)0.6466 (2)0.0275 (7)
H13A0.98860.09870.63620.033*
C14A1.2469 (2)0.1503 (2)0.3959 (2)0.0272 (7)
H14A1.32560.15620.36590.041*
H14B1.24460.08320.43850.041*
H14C1.22860.20220.42760.041*
C15A0.5171 (3)0.1185 (3)0.5306 (2)0.0331 (7)
H15A0.48180.13440.47300.050*
H15B0.48650.16980.56100.050*
H15C0.49720.05190.56740.050*
C16A0.5639 (3)0.0492 (3)0.8575 (2)0.0336 (7)
H16A0.54540.03710.92180.050*
H16B0.53440.00330.83730.050*
H16C0.52660.11560.82580.050*
C17A1.0434 (3)0.0711 (3)0.7967 (2)0.0334 (7)
H17A1.07600.06360.85410.050*
H17B1.05700.13760.75620.050*
H17C1.08190.01810.77070.050*
S1A0.59991 (6)0.15568 (6)0.23898 (5)0.02814 (19)
O4A0.47821 (19)0.1975 (2)0.21697 (16)0.0399 (7)0.948 (4)
O5A0.6119 (2)0.04475 (18)0.28039 (16)0.0383 (7)0.948 (4)
O6A0.65514 (19)0.21139 (17)0.29030 (15)0.0328 (6)0.948 (4)
O4AA0.488 (3)0.113 (3)0.221 (3)0.028 (10)*0.052 (4)
O5AA0.665 (4)0.099 (3)0.313 (3)0.036 (12)*0.052 (4)
O6AA0.558 (3)0.262 (3)0.245 (2)0.021 (9)*0.052 (4)
C18A0.6856 (2)0.1748 (2)0.1330 (2)0.0250 (6)
C19A0.7215 (2)0.2718 (2)0.0885 (2)0.0290 (7)
H19A0.69770.32720.11230.035*
C20A0.7934 (3)0.2851 (3)0.0081 (2)0.0335 (7)
H20A0.81910.34940.02140.040*
C21A0.8267 (3)0.2032 (3)0.0279 (2)0.0356 (8)
H21A0.87570.21240.08120.043*
C22A0.7880 (3)0.1078 (3)0.0144 (2)0.0347 (7)
H22A0.80910.05330.01110.042*
C23A0.7177 (2)0.0935 (2)0.0952 (2)0.0304 (7)
H23A0.69190.02910.12410.036*
O1B0.28112 (17)0.39190 (17)0.41584 (14)0.0330 (5)
O2B0.25360 (17)0.45714 (16)0.09077 (14)0.0303 (5)
O3B0.02436 (17)0.47482 (17)0.11018 (14)0.0304 (5)
N1B0.2427 (2)0.35988 (18)0.58282 (16)0.0244 (5)
C1B0.2907 (3)0.3367 (2)0.6690 (2)0.0306 (7)
H1BA0.37260.33040.67950.037*
C2B0.2229 (3)0.3223 (2)0.7410 (2)0.0317 (7)
H2BA0.25740.30660.80010.038*
C3B0.1002 (3)0.3315 (2)0.7243 (2)0.0280 (7)
H3BA0.05180.32280.77240.034*
C4B0.0510 (2)0.3535 (2)0.6363 (2)0.0265 (6)
H4BA0.03110.35860.62550.032*
C5B0.1224 (2)0.3684 (2)0.5628 (2)0.0246 (6)
C6B0.0768 (3)0.3963 (2)0.4691 (2)0.0328 (7)
H6BA0.13130.41950.42380.039*
C7B0.0418 (3)0.3905 (2)0.4439 (2)0.0300 (7)
H7BA0.09440.37150.49050.036*
C8B0.0947 (2)0.4104 (2)0.3527 (2)0.0272 (6)
C9B0.2210 (2)0.4087 (2)0.3390 (2)0.0262 (6)
C10B0.2777 (2)0.4236 (2)0.2528 (2)0.0255 (6)
H10B0.36100.42010.24510.031*
C11B0.2087 (2)0.4438 (2)0.17786 (19)0.0239 (6)
C12B0.0817 (2)0.4511 (2)0.18900 (19)0.0239 (6)
C13B0.0278 (2)0.4331 (2)0.2751 (2)0.0273 (7)
H13B0.05550.43590.28250.033*
C14B0.3247 (3)0.3742 (3)0.5090 (2)0.0344 (7)
H14D0.40460.36290.53500.052*
H14E0.29810.32590.47460.052*
H14F0.32460.44320.46960.052*
C15B0.4093 (3)0.3863 (3)0.4067 (2)0.0378 (8)
H15D0.44040.36830.46590.057*
H15E0.43350.45210.37160.057*
H15F0.43990.33480.37640.057*
C16B0.3813 (3)0.4530 (3)0.0747 (2)0.0348 (7)
H16D0.40170.46610.01060.052*
H16E0.41720.38580.10620.052*
H16F0.41070.50420.09670.052*
C17B0.1048 (3)0.4897 (3)0.1180 (2)0.0365 (8)
H17D0.13510.51060.05830.055*
H17E0.13000.54230.14820.055*
H17F0.13530.42630.15260.055*
S1B0.68516 (6)0.65230 (6)0.30445 (5)0.02695 (19)
O4B0.77426 (19)0.71188 (18)0.32296 (16)0.0391 (6)
O5B0.7331 (2)0.54663 (17)0.31094 (15)0.0401 (6)
O6B0.57193 (19)0.6606 (2)0.35600 (15)0.0437 (6)
C18B0.6532 (2)0.7081 (2)0.1882 (2)0.0249 (6)
C19B0.7214 (3)0.7823 (2)0.1321 (2)0.0306 (7)
H19B0.78380.80420.15510.037*
C20B0.6959 (3)0.8236 (2)0.0415 (2)0.0354 (8)
H20B0.74130.87370.00370.042*
C21B0.6034 (3)0.7910 (2)0.0068 (2)0.0362 (8)
H21B0.58770.81790.05430.043*
C22B0.5352 (3)0.7188 (2)0.0632 (2)0.0354 (8)
H22B0.47190.69790.04030.043*
C23B0.5593 (3)0.6767 (2)0.1536 (2)0.0296 (7)
H23B0.51280.62750.19120.035*
O1W0.6043 (2)0.42912 (18)0.22536 (18)0.0468 (6)
H1W10.64800.48510.24420.070*
H2W10.62130.35480.25570.070*
O2W0.77573 (19)0.88811 (19)0.39160 (16)0.0427 (6)
H1W20.73120.94330.35410.064*
H2W20.76570.82520.37990.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0137 (10)0.0592 (15)0.0269 (12)0.0028 (9)0.0017 (9)0.0104 (10)
O2A0.0171 (10)0.0534 (14)0.0271 (12)0.0036 (9)0.0021 (9)0.0116 (10)
O3A0.0152 (10)0.0482 (13)0.0315 (12)0.0024 (9)0.0026 (9)0.0124 (10)
N1A0.0116 (11)0.0283 (13)0.0278 (13)0.0014 (9)0.0013 (9)0.0108 (10)
C1A0.0155 (14)0.0363 (17)0.0338 (18)0.0023 (12)0.0013 (12)0.0085 (13)
C2A0.0217 (16)0.048 (2)0.0299 (17)0.0001 (14)0.0000 (13)0.0118 (14)
C3A0.0200 (15)0.0418 (19)0.042 (2)0.0007 (13)0.0065 (14)0.0134 (15)
C4A0.0113 (13)0.0309 (16)0.048 (2)0.0026 (11)0.0018 (13)0.0151 (14)
C5A0.0136 (13)0.0267 (15)0.0339 (17)0.0002 (11)0.0028 (12)0.0105 (12)
C6A0.0216 (16)0.051 (2)0.0359 (19)0.0008 (14)0.0031 (14)0.0124 (15)
C7A0.0245 (16)0.0383 (18)0.042 (2)0.0007 (13)0.0031 (14)0.0109 (15)
C8A0.0156 (14)0.0431 (18)0.0293 (17)0.0003 (12)0.0017 (12)0.0105 (14)
C9A0.0148 (14)0.0338 (16)0.0250 (16)0.0005 (11)0.0014 (12)0.0066 (12)
C10A0.0109 (13)0.0313 (16)0.0311 (16)0.0005 (11)0.0007 (11)0.0101 (12)
C11A0.0168 (14)0.0291 (15)0.0258 (16)0.0000 (11)0.0007 (12)0.0084 (12)
C12A0.0165 (14)0.0294 (16)0.0276 (16)0.0021 (11)0.0046 (12)0.0108 (12)
C13A0.0099 (13)0.0369 (17)0.0361 (18)0.0007 (11)0.0009 (12)0.0121 (13)
C14A0.0117 (13)0.0373 (17)0.0337 (17)0.0022 (11)0.0025 (12)0.0116 (13)
C15A0.0161 (15)0.047 (2)0.0345 (18)0.0027 (13)0.0033 (13)0.0081 (15)
C16A0.0179 (15)0.049 (2)0.0298 (17)0.0017 (13)0.0061 (13)0.0072 (14)
C17A0.0192 (15)0.0418 (19)0.0412 (19)0.0030 (13)0.0063 (13)0.0136 (15)
S1A0.0132 (3)0.0387 (4)0.0323 (4)0.0053 (3)0.0019 (3)0.0095 (3)
O4A0.0122 (11)0.0612 (19)0.0437 (15)0.0014 (10)0.0004 (10)0.0118 (12)
O5A0.0338 (14)0.0379 (14)0.0404 (14)0.0093 (11)0.0037 (11)0.0058 (11)
O6A0.0225 (12)0.0429 (14)0.0344 (13)0.0051 (10)0.0005 (10)0.0130 (10)
C18A0.0094 (13)0.0361 (17)0.0298 (16)0.0019 (11)0.0042 (11)0.0090 (13)
C19A0.0155 (14)0.0365 (17)0.0346 (18)0.0020 (12)0.0041 (12)0.0102 (14)
C20A0.0225 (16)0.0401 (18)0.0318 (18)0.0013 (13)0.0058 (13)0.0002 (14)
C21A0.0243 (16)0.054 (2)0.0238 (17)0.0044 (14)0.0034 (13)0.0061 (15)
C22A0.0223 (16)0.046 (2)0.0379 (19)0.0052 (14)0.0034 (14)0.0172 (15)
C23A0.0160 (14)0.0363 (17)0.0384 (18)0.0016 (12)0.0048 (13)0.0092 (14)
O1B0.0129 (10)0.0563 (14)0.0323 (12)0.0006 (9)0.0038 (9)0.0173 (10)
O2B0.0137 (10)0.0456 (13)0.0300 (12)0.0013 (9)0.0022 (8)0.0098 (10)
O3B0.0141 (10)0.0513 (14)0.0253 (11)0.0014 (9)0.0014 (8)0.0120 (10)
N1B0.0141 (11)0.0302 (13)0.0276 (13)0.0003 (9)0.0019 (10)0.0069 (10)
C1B0.0160 (14)0.0375 (17)0.0322 (17)0.0010 (12)0.0035 (13)0.0033 (13)
C2B0.0215 (16)0.0378 (18)0.0302 (17)0.0049 (13)0.0010 (13)0.0049 (13)
C3B0.0243 (16)0.0305 (16)0.0289 (17)0.0017 (12)0.0069 (13)0.0079 (13)
C4B0.0137 (14)0.0305 (16)0.0343 (17)0.0014 (11)0.0035 (12)0.0070 (13)
C5B0.0138 (13)0.0296 (16)0.0296 (16)0.0005 (11)0.0018 (12)0.0077 (12)
C6B0.0184 (15)0.0451 (19)0.0331 (18)0.0004 (13)0.0028 (13)0.0093 (14)
C7B0.0216 (15)0.0335 (17)0.0354 (18)0.0010 (12)0.0033 (13)0.0105 (14)
C8B0.0147 (14)0.0395 (17)0.0269 (16)0.0001 (12)0.0006 (12)0.0099 (13)
C9B0.0169 (14)0.0324 (16)0.0304 (17)0.0026 (12)0.0060 (12)0.0112 (13)
C10B0.0115 (13)0.0299 (16)0.0359 (17)0.0022 (11)0.0009 (12)0.0108 (13)
C11B0.0190 (14)0.0254 (15)0.0278 (16)0.0014 (11)0.0015 (12)0.0093 (12)
C12B0.0145 (14)0.0296 (15)0.0285 (16)0.0006 (11)0.0016 (12)0.0102 (12)
C13B0.0116 (13)0.0364 (17)0.0355 (18)0.0021 (12)0.0003 (12)0.0130 (13)
C14B0.0170 (15)0.051 (2)0.0311 (18)0.0070 (14)0.0045 (13)0.0032 (15)
C15B0.0157 (15)0.060 (2)0.0381 (19)0.0010 (14)0.0078 (13)0.0147 (16)
C16B0.0153 (15)0.050 (2)0.0388 (19)0.0040 (13)0.0076 (13)0.0154 (15)
C17B0.0139 (15)0.061 (2)0.0354 (19)0.0030 (14)0.0036 (13)0.0176 (16)
S1B0.0133 (3)0.0366 (4)0.0299 (4)0.0012 (3)0.0015 (3)0.0090 (3)
O4B0.0249 (12)0.0504 (14)0.0442 (14)0.0071 (10)0.0092 (10)0.0132 (11)
O5B0.0397 (14)0.0389 (13)0.0370 (13)0.0040 (10)0.0056 (10)0.0055 (10)
O6B0.0162 (11)0.0790 (18)0.0346 (13)0.0030 (11)0.0001 (10)0.0177 (12)
C18B0.0122 (13)0.0318 (16)0.0308 (16)0.0032 (11)0.0013 (12)0.0109 (13)
C19B0.0205 (15)0.0369 (17)0.0364 (18)0.0037 (12)0.0019 (13)0.0143 (14)
C20B0.0334 (18)0.0330 (18)0.0363 (19)0.0030 (14)0.0055 (15)0.0064 (14)
C21B0.0385 (19)0.0379 (19)0.0302 (18)0.0074 (14)0.0064 (15)0.0097 (14)
C22B0.0295 (18)0.0363 (18)0.044 (2)0.0029 (14)0.0119 (15)0.0160 (15)
C23B0.0188 (15)0.0335 (17)0.0368 (18)0.0015 (12)0.0022 (13)0.0110 (14)
O1W0.0363 (14)0.0420 (14)0.0641 (17)0.0029 (11)0.0015 (12)0.0189 (12)
O2W0.0273 (13)0.0596 (16)0.0433 (14)0.0019 (11)0.0062 (10)0.0191 (12)
Geometric parameters (Å, º) top
O1A—C9A1.365 (3)O1B—C15B1.429 (3)
O1A—C15A1.435 (3)O2B—C11B1.354 (3)
O2A—C11A1.358 (3)O2B—C16B1.431 (3)
O2A—C16A1.433 (3)O3B—C12B1.363 (3)
O3A—C12A1.372 (3)O3B—C17B1.439 (3)
O3A—C17A1.431 (3)N1B—C1B1.347 (4)
N1A—C1A1.347 (4)N1B—C5B1.370 (3)
N1A—C5A1.377 (3)N1B—C14B1.483 (4)
N1A—C14A1.478 (4)C1B—C2B1.356 (4)
C1A—C2A1.372 (4)C1B—H1BA0.9300
C1A—H1AA0.9300C2B—C3B1.394 (4)
C2A—C3A1.393 (4)C2B—H2BA0.9300
C2A—H2AA0.9300C3B—C4B1.374 (4)
C3A—C4A1.371 (4)C3B—H3BA0.9300
C3A—H3AA0.9300C4B—C5B1.400 (4)
C4A—C5A1.391 (4)C4B—H4BA0.9300
C4A—H4AA0.9300C5B—C6B1.441 (4)
C5A—C6A1.430 (4)C6B—C7B1.352 (4)
C6A—C7A1.358 (4)C6B—H6BA0.9300
C6A—H6AA0.9300C7B—C8B1.433 (4)
C7A—C8A1.451 (4)C7B—H7BA0.9300
C7A—H7AA0.9300C8B—C13B1.408 (4)
C8A—C9A1.409 (4)C8B—C9B1.415 (4)
C8A—C13A1.418 (4)C9B—C10B1.386 (4)
C9A—C10A1.384 (4)C10B—C11B1.390 (4)
C10A—C11A1.383 (4)C10B—H10B0.9300
C10A—H10A0.9300C11B—C12B1.417 (4)
C11A—C12A1.414 (4)C12B—C13B1.371 (4)
C12A—C13A1.368 (4)C13B—H13B0.9300
C13A—H13A0.9300C14B—H14D0.9600
C14A—H14A0.9600C14B—H14E0.9600
C14A—H14B0.9600C14B—H14F0.9600
C14A—H14C0.9600C15B—H15D0.9600
C15A—H15A0.9600C15B—H15E0.9600
C15A—H15B0.9600C15B—H15F0.9600
C15A—H15C0.9600C16B—H16D0.9600
C16A—H16A0.9600C16B—H16E0.9600
C16A—H16B0.9600C16B—H16F0.9600
C16A—H16C0.9600C17B—H17D0.9600
C17A—H17A0.9600C17B—H17E0.9600
C17A—H17B0.9600C17B—H17F0.9600
C17A—H17C0.9600S1B—O6B1.445 (2)
S1A—O5AA1.40 (4)S1B—O5B1.449 (2)
S1A—O4A1.447 (2)S1B—O4B1.459 (2)
S1A—O5A1.454 (2)S1B—C18B1.780 (3)
S1A—O6A1.460 (2)C18B—C19B1.384 (4)
S1A—O6AA1.49 (3)C18B—C23B1.389 (4)
S1A—O4AA1.53 (4)C19B—C20B1.387 (5)
S1A—C18A1.781 (3)C19B—H19B0.9300
C18A—C23A1.385 (4)C20B—C21B1.384 (5)
C18A—C19A1.391 (4)C20B—H20B0.9300
C19A—C20A1.390 (4)C21B—C22B1.371 (5)
C19A—H19A0.9300C21B—H21B0.9300
C20A—C21A1.377 (5)C22B—C23B1.380 (4)
C20A—H20A0.9300C22B—H22B0.9300
C21A—C22A1.377 (5)C23B—H23B0.9300
C21A—H21A0.9300O1W—H1W11.0725
C22A—C23A1.386 (4)O1W—H2W10.9868
C22A—H22A0.9300O2W—H1W20.9268
C23A—H23A0.9300O2W—H2W20.9445
O1B—C9B1.363 (3)
C9A—O1A—C15A117.9 (2)C21A—C22A—C23A119.7 (3)
C11A—O2A—C16A116.5 (2)C21A—C22A—H22A120.2
C12A—O3A—C17A116.5 (2)C23A—C22A—H22A120.2
C1A—N1A—C5A121.4 (2)C22A—C23A—C18A120.2 (3)
C1A—N1A—C14A117.5 (2)C22A—C23A—H23A119.9
C5A—N1A—C14A121.1 (2)C18A—C23A—H23A119.9
N1A—C1A—C2A122.0 (3)C9B—O1B—C15B117.9 (2)
N1A—C1A—H1AA119.0C11B—O2B—C16B117.3 (2)
C2A—C1A—H1AA119.0C12B—O3B—C17B116.7 (2)
C1A—C2A—C3A118.1 (3)C1B—N1B—C5B122.1 (2)
C1A—C2A—H2AA121.0C1B—N1B—C14B117.5 (2)
C3A—C2A—H2AA121.0C5B—N1B—C14B120.4 (2)
C4A—C3A—C2A119.7 (3)N1B—C1B—C2B121.7 (3)
C4A—C3A—H3AA120.2N1B—C1B—H1BA119.1
C2A—C3A—H3AA120.2C2B—C1B—H1BA119.1
C3A—C4A—C5A121.7 (3)C1B—C2B—C3B118.5 (3)
C3A—C4A—H4AA119.1C1B—C2B—H2BA120.7
C5A—C4A—H4AA119.1C3B—C2B—H2BA120.7
N1A—C5A—C4A117.2 (3)C4B—C3B—C2B119.6 (3)
N1A—C5A—C6A119.6 (3)C4B—C3B—H3BA120.2
C4A—C5A—C6A123.3 (3)C2B—C3B—H3BA120.2
C7A—C6A—C5A123.0 (3)C3B—C4B—C5B121.1 (3)
C7A—C6A—H6AA118.5C3B—C4B—H4BA119.4
C5A—C6A—H6AA118.5C5B—C4B—H4BA119.4
C6A—C7A—C8A126.4 (3)N1B—C5B—C4B116.9 (3)
C6A—C7A—H7AA116.8N1B—C5B—C6B119.6 (3)
C8A—C7A—H7AA116.8C4B—C5B—C6B123.5 (3)
C9A—C8A—C13A117.8 (3)C7B—C6B—C5B123.0 (3)
C9A—C8A—C7A118.1 (3)C7B—C6B—H6BA118.5
C13A—C8A—C7A124.1 (3)C5B—C6B—H6BA118.5
O1A—C9A—C10A123.1 (2)C6B—C7B—C8B126.7 (3)
O1A—C9A—C8A115.8 (2)C6B—C7B—H7BA116.6
C10A—C9A—C8A121.2 (3)C8B—C7B—H7BA116.6
C11A—C10A—C9A119.9 (3)C13B—C8B—C9B117.6 (3)
C11A—C10A—H10A120.0C13B—C8B—C7B123.6 (3)
C9A—C10A—H10A120.0C9B—C8B—C7B118.8 (3)
O2A—C11A—C10A124.7 (2)O1B—C9B—C10B123.3 (2)
O2A—C11A—C12A115.1 (2)O1B—C9B—C8B115.3 (3)
C10A—C11A—C12A120.2 (3)C10B—C9B—C8B121.4 (3)
C13A—C12A—O3A125.7 (3)C9B—C10B—C11B119.3 (3)
C13A—C12A—C11A119.7 (3)C9B—C10B—H10B120.3
O3A—C12A—C11A114.6 (2)C11B—C10B—H10B120.3
C12A—C13A—C8A121.2 (3)O2B—C11B—C10B124.8 (2)
C12A—C13A—H13A119.4O2B—C11B—C12B114.6 (2)
C8A—C13A—H13A119.4C10B—C11B—C12B120.6 (3)
N1A—C14A—H14A109.5O3B—C12B—C13B126.0 (2)
N1A—C14A—H14B109.5O3B—C12B—C11B114.9 (2)
H14A—C14A—H14B109.5C13B—C12B—C11B119.1 (3)
N1A—C14A—H14C109.5C12B—C13B—C8B121.9 (3)
H14A—C14A—H14C109.5C12B—C13B—H13B119.0
H14B—C14A—H14C109.5C8B—C13B—H13B119.0
O1A—C15A—H15A109.5N1B—C14B—H14D109.5
O1A—C15A—H15B109.5N1B—C14B—H14E109.5
H15A—C15A—H15B109.5H14D—C14B—H14E109.5
O1A—C15A—H15C109.5N1B—C14B—H14F109.5
H15A—C15A—H15C109.5H14D—C14B—H14F109.5
H15B—C15A—H15C109.5H14E—C14B—H14F109.5
O2A—C16A—H16A109.5O1B—C15B—H15D109.5
O2A—C16A—H16B109.5O1B—C15B—H15E109.5
H16A—C16A—H16B109.5H15D—C15B—H15E109.5
O2A—C16A—H16C109.5O1B—C15B—H15F109.5
H16A—C16A—H16C109.5H15D—C15B—H15F109.5
H16B—C16A—H16C109.5H15E—C15B—H15F109.5
O3A—C17A—H17A109.5O2B—C16B—H16D109.5
O3A—C17A—H17B109.5O2B—C16B—H16E109.5
H17A—C17A—H17B109.5H16D—C16B—H16E109.5
O3A—C17A—H17C109.5O2B—C16B—H16F109.5
H17A—C17A—H17C109.5H16D—C16B—H16F109.5
H17B—C17A—H17C109.5H16E—C16B—H16F109.5
O5AA—S1A—O4A140.5 (17)O3B—C17B—H17D109.5
O5AA—S1A—O5A51.4 (18)O3B—C17B—H17E109.5
O4A—S1A—O5A113.11 (15)H17D—C17B—H17E109.5
O5AA—S1A—O6A61.6 (18)O3B—C17B—H17F109.5
O4A—S1A—O6A113.33 (14)H17D—C17B—H17F109.5
O5A—S1A—O6A112.66 (14)H17E—C17B—H17F109.5
O5AA—S1A—O6AA112 (2)O6B—S1B—O5B113.29 (15)
O4A—S1A—O6AA61.6 (14)O6B—S1B—O4B113.51 (14)
O5A—S1A—O6AA150.0 (13)O5B—S1B—O4B111.97 (14)
O6A—S1A—O6AA54.4 (14)O6B—S1B—C18B105.69 (13)
O5AA—S1A—O4AA118 (2)O5B—S1B—C18B105.38 (13)
O5A—S1A—O4AA72.0 (15)O4B—S1B—C18B106.17 (14)
O6A—S1A—O4AA148.6 (15)C19B—C18B—C23B119.8 (3)
O6AA—S1A—O4AA105 (2)C19B—C18B—S1B120.6 (2)
O5AA—S1A—C18A113.1 (17)C23B—C18B—S1B119.6 (2)
O4A—S1A—C18A105.98 (14)C18B—C19B—C20B119.6 (3)
O5A—S1A—C18A105.38 (14)C18B—C19B—H19B120.2
O6A—S1A—C18A105.50 (13)C20B—C19B—H19B120.2
O6AA—S1A—C18A104.4 (13)C21B—C20B—C19B120.5 (3)
O4AA—S1A—C18A102.7 (14)C21B—C20B—H20B119.8
C23A—C18A—C19A119.8 (3)C19B—C20B—H20B119.8
C23A—C18A—S1A120.4 (2)C22B—C21B—C20B119.6 (3)
C19A—C18A—S1A119.7 (2)C22B—C21B—H21B120.2
C20A—C19A—C18A119.5 (3)C20B—C21B—H21B120.2
C20A—C19A—H19A120.2C21B—C22B—C23B120.7 (3)
C18A—C19A—H19A120.3C21B—C22B—H22B119.7
C21A—C20A—C19A120.1 (3)C23B—C22B—H22B119.7
C21A—C20A—H20A120.0C22B—C23B—C18B119.9 (3)
C19A—C20A—H20A120.0C22B—C23B—H23B120.1
C20A—C21A—C22A120.7 (3)C18B—C23B—H23B120.1
C20A—C21A—H21A119.7H1W1—O1W—H2W1120.7
C22A—C21A—H21A119.7H1W2—O2W—H2W2111.6
C5A—N1A—C1A—C2A1.0 (4)C21A—C22A—C23A—C18A0.4 (4)
C14A—N1A—C1A—C2A179.6 (3)C19A—C18A—C23A—C22A1.7 (4)
N1A—C1A—C2A—C3A0.1 (5)S1A—C18A—C23A—C22A177.6 (2)
C1A—C2A—C3A—C4A0.9 (5)C5B—N1B—C1B—C2B1.2 (4)
C2A—C3A—C4A—C5A0.6 (5)C14B—N1B—C1B—C2B179.9 (3)
C1A—N1A—C5A—C4A1.2 (4)N1B—C1B—C2B—C3B0.3 (5)
C14A—N1A—C5A—C4A179.8 (2)C1B—C2B—C3B—C4B0.8 (4)
C1A—N1A—C5A—C6A179.3 (3)C2B—C3B—C4B—C5B0.9 (4)
C14A—N1A—C5A—C6A0.7 (4)C1B—N1B—C5B—C4B1.0 (4)
C3A—C4A—C5A—N1A0.4 (4)C14B—N1B—C5B—C4B179.8 (3)
C3A—C4A—C5A—C6A179.9 (3)C1B—N1B—C5B—C6B178.2 (3)
N1A—C5A—C6A—C7A179.5 (3)C14B—N1B—C5B—C6B2.9 (4)
C4A—C5A—C6A—C7A0.1 (5)C3B—C4B—C5B—N1B0.1 (4)
C5A—C6A—C7A—C8A179.4 (3)C3B—C4B—C5B—C6B177.0 (3)
C6A—C7A—C8A—C9A179.4 (3)N1B—C5B—C6B—C7B169.2 (3)
C6A—C7A—C8A—C13A0.5 (5)C4B—C5B—C6B—C7B13.8 (5)
C15A—O1A—C9A—C10A5.2 (4)C5B—C6B—C7B—C8B175.8 (3)
C15A—O1A—C9A—C8A176.0 (3)C6B—C7B—C8B—C13B4.4 (5)
C13A—C8A—C9A—O1A179.8 (3)C6B—C7B—C8B—C9B174.8 (3)
C7A—C8A—C9A—O1A0.2 (4)C15B—O1B—C9B—C10B2.0 (4)
C13A—C8A—C9A—C10A1.3 (4)C15B—O1B—C9B—C8B178.2 (3)
C7A—C8A—C9A—C10A178.6 (3)C13B—C8B—C9B—O1B176.6 (3)
O1A—C9A—C10A—C11A179.9 (3)C7B—C8B—C9B—O1B2.7 (4)
C8A—C9A—C10A—C11A1.1 (4)C13B—C8B—C9B—C10B3.2 (4)
C16A—O2A—C11A—C10A6.3 (4)C7B—C8B—C9B—C10B177.6 (3)
C16A—O2A—C11A—C12A173.3 (3)O1B—C9B—C10B—C11B177.8 (3)
C9A—C10A—C11A—O2A179.7 (3)C8B—C9B—C10B—C11B2.0 (4)
C9A—C10A—C11A—C12A0.2 (4)C16B—O2B—C11B—C10B1.9 (4)
C17A—O3A—C12A—C13A0.4 (4)C16B—O2B—C11B—C12B178.6 (2)
C17A—O3A—C12A—C11A179.1 (2)C9B—C10B—C11B—O2B178.3 (3)
O2A—C11A—C12A—C13A179.2 (3)C9B—C10B—C11B—C12B1.2 (4)
C10A—C11A—C12A—C13A1.2 (4)C17B—O3B—C12B—C13B4.9 (4)
O2A—C11A—C12A—O3A1.3 (4)C17B—O3B—C12B—C11B176.0 (3)
C10A—C11A—C12A—O3A178.3 (2)O2B—C11B—C12B—O3B2.8 (4)
O3A—C12A—C13A—C8A178.5 (3)C10B—C11B—C12B—O3B177.7 (2)
C11A—C12A—C13A—C8A1.0 (4)O2B—C11B—C12B—C13B176.5 (3)
C9A—C8A—C13A—C12A0.2 (4)C10B—C11B—C12B—C13B3.1 (4)
C7A—C8A—C13A—C12A179.7 (3)O3B—C12B—C13B—C8B179.1 (3)
O5AA—S1A—C18A—C23A71.9 (19)C11B—C12B—C13B—C8B1.8 (4)
O4A—S1A—C18A—C23A102.4 (3)C9B—C8B—C13B—C12B1.2 (4)
O5A—S1A—C18A—C23A17.8 (3)C7B—C8B—C13B—C12B179.5 (3)
O6A—S1A—C18A—C23A137.2 (2)O6B—S1B—C18B—C19B129.7 (2)
O6AA—S1A—C18A—C23A166.4 (14)O5B—S1B—C18B—C19B110.1 (3)
O4AA—S1A—C18A—C23A56.8 (16)O4B—S1B—C18B—C19B8.8 (3)
O5AA—S1A—C18A—C19A107.5 (19)O6B—S1B—C18B—C23B50.5 (3)
O4A—S1A—C18A—C19A78.3 (3)O5B—S1B—C18B—C23B69.7 (3)
O5A—S1A—C18A—C19A161.6 (2)O4B—S1B—C18B—C23B171.4 (2)
O6A—S1A—C18A—C19A42.2 (3)C23B—C18B—C19B—C20B0.7 (4)
O6AA—S1A—C18A—C19A14.2 (14)S1B—C18B—C19B—C20B179.1 (2)
O4AA—S1A—C18A—C19A123.9 (16)C18B—C19B—C20B—C21B0.3 (5)
C23A—C18A—C19A—C20A2.5 (4)C19B—C20B—C21B—C22B1.3 (5)
S1A—C18A—C19A—C20A176.8 (2)C20B—C21B—C22B—C23B1.4 (5)
C18A—C19A—C20A—C21A1.2 (4)C21B—C22B—C23B—C18B0.4 (5)
C19A—C20A—C21A—C22A0.9 (5)C19B—C18B—C23B—C22B0.7 (4)
C20A—C21A—C22A—C23A1.7 (5)S1B—C18B—C23B—C22B179.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg5 and Cg6 are the centroids of the C18A–C23A and C18B–C23B rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O5B1.071.882.919 (3)161
O1W—H2W1···O6A0.991.872.843 (3)169
O2W—H1W2···O5Ai0.931.982.894 (3)169
O2W—H2W2···O4B0.941.972.884 (4)163
C1A—H1AA···O4Aii0.932.243.159 (4)169
C4A—H4AA···O6A0.932.513.394 (3)160
C1B—H1BA···O6Biii0.932.343.216 (4)157
C4B—H4BA···O4Biv0.932.393.198 (3)145
C6B—H6BA···O5Bv0.932.543.419 (4)158
C14B—H14D···O6Biii0.962.393.307 (4)160
C14B—H14F···O5Bv0.962.513.331 (4)143
C19A—H19A···O1W0.932.593.477 (4)160
C20A—H20A···O2Bvi0.932.603.393 (5)144
C3A—H3AA···Cg50.932.783.688 (3)164
C16A—H16C···Cg6iv0.962.793.453 (4)127
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H20NO3+·C6H5O3S·H2O
Mr461.53
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)11.2458 (4), 13.5995 (5), 15.3604 (6)
α, β, γ (°)73.345 (2), 84.623 (2), 82.842 (2)
V3)2228.92 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.44 × 0.22 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.920, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
38826, 10142, 6560
Rint0.057
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.180, 1.03
No. of reflections10142
No. of parameters598
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.45

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg5 and Cg6 are the centroids of the C18A–C23A and C18B–C23B rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O5B1.071.882.919 (3)161
O1W—H2W1···O6A0.991.872.843 (3)169
O2W—H1W2···O5Ai0.931.982.894 (3)169
O2W—H2W2···O4B0.941.972.884 (4)163
C1A—H1AA···O4Aii0.932.243.159 (4)169
C4A—H4AA···O6A0.932.513.394 (3)160
C1B—H1BA···O6Biii0.932.343.216 (4)157
C4B—H4BA···O4Biv0.932.393.198 (3)145
C6B—H6BA···O5Bv0.932.543.419 (4)158
C14B—H14D···O6Biii0.962.393.307 (4)160
C14B—H14F···O5Bv0.962.513.331 (4)143
C19A—H19A···O1W0.932.593.477 (4)160
C20A—H20A···O2Bvi0.932.603.393 (5)144
C3A—H3AA···Cg50.932.783.688 (3)164
C16A—H16C···Cg6iv0.962.793.453 (4)127
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x+1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

PR thanks the Crystal Materials Research Unit for financial support. NB thanks the Prince of Songkla University for a postdoctoral fellowship. Mr Charoensak Mueangkeaw is acknowledged for supplying the authentic sample. The authors thank the Prince of Songkla University and the Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199–4208.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationElmali, N., Baysal, O., Harma, A., Esenkaya, I. & Mizrak, B. (2006). Inflammation, 30, 1–6.  Web of Science CrossRef Google Scholar
First citationFun, H.-K., Mueangkeaw, C., Ruanwas, P. & Chantrapromma, S. (2011). Acta Cryst. E67, o867–o868.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKimura, Y. (2005). In Vivo, 19, 37–60.  Web of Science PubMed CAS Google Scholar
First citationKo, S. K., Lee, S. M. & Whang, W. K. (1999). Arch. Pharm. Res. 22, 401–403.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMueangkeaw, C., Chantrapromma, S., Ruanwas, P. & Fun, H.-K. (2010). Acta Cryst. E66, o3098–o3099.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNitta, T., Arai, T., Takamatsu, H., Inatomi, Y., Murata, H., Iinuma, M., Tanaka, T., Ito, T., Asai, F., Ibrahim, I., Nakanishi, T. & Watabe, K. (2002). J. Health Sci. 48, 273–276.  Web of Science CrossRef CAS Google Scholar
First citationOlas, B. & Wachowicz, B. (2002). Thromb. Res. 106, 143–148.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPark, W.-H., Lee, S.-J. & Moon, H.-I. (2008). Antimicrob. Agents Chemother. 52, 3451–3453.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRoupe, K. A., Remsberg, C. M., Yáñez, J. A. & Davies, N. M. (2006). Curr. Clin. Pharmacol. 1, 81–101.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSon, I. H., Chung, I. M., Lee, S.-J. & Moon, H.-I. (2007). Parasitol. Res. 101, 27–241.  Web of Science CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o898-o899
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds