metal-organic compounds
μ-4,4′-Bipyridine-bis[aqua(4-hydroxypyridine-2,6-dicarboxylato)copper(II)]
aShaanxi Key Laboratory of Chemical Reaction Engineering, Department of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China
*Correspondence e-mail: chenxiaoli003@163.com
The title compound, [Cu2(C7H3NO5)2(C10H8N2)(H2O)2], exhibits a centrosymmetric binuclear molecule. Each completely deprotonated 4-hydroxypyridine-2,6-dicarboxylic acid molecule assumes a tridentate chelating coordination mode. The square-pyramidal coordination geometry around the CuII ion is completed by the bridging bipyridine ligand and an apical water molecule. Adjacent complexes are connected via O—H⋯O and C—H⋯O hydrogen bonds to generate a three-dimensional supramolecular structure.
Related literature
For related literature on the construction of supramolecular structures, see: Robin & Fromm (2006); Desiraju (1989). For compounds using heterocyclic carboxylic acids such as pyridine-, pyrazole- and imidazolecarboxylic acids as building blocks, see: Lin et al. (1998); Zhao et al. (2003); Pan et al. (2000); Liu et al. (2004); Mahata & Natarajan (2005); Panagiotis et al. (2005).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812004758/ff2054sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812004758/ff2054Isup2.hkl
The compound (I) was prepared by hydrothermal method. A mixture of CuSO4.5H2O (0.10 mmol), 4,4'-bipyridine (0.10 mmol), 4-hydroxypyridine-2,6-dicarboxylic acid (cam 0.10 mmol) and water (10 ml) was stirred for 30 min. The mixture was then transferred to a 23 ml Teflon-lined autoclave and kept at 433 K for 72 h under autogenous pressure. Then the mixture was cooled to room temperature slowly. Blue single crystals of the title compound suitable for X-ray analysis were obtained from the reaction mixture.
The H atoms of phenyl ring were included in the riding approximation with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C). The H atoms attached to O were located from a difference Fourier map and refined isotropically to O—H = 0.82 Å, with Uiso(H) = 1.5Ueq(O).
Data collection: SMART (Bruker, 1997); cell
SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure and labeling of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) 2 - x, 1 - y, -z] | |
Fig. 2. The one-dimensional supramolecular chain formed via hydrogen bonding interactions. Dashed lines denote hydrogen bonds. | |
Fig. 3. The three-dimensional supramolecular structure, viewed in the ac plane, linked via hydrogen bonding interactions. Dashed lines denote hydrogen bonds. |
[Cu2(C7H3NO5)2(C10H8N2)(H2O)2] | F(000) = 688 |
Mr = 681.50 | Dx = 1.888 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2433 reflections |
a = 8.3945 (9) Å | θ = 2.2–26.4° |
b = 18.433 (2) Å | µ = 1.85 mm−1 |
c = 7.8686 (10) Å | T = 296 K |
β = 100.044 (2)° | Prism, blue |
V = 1198.9 (2) Å3 | 0.30 × 0.25 × 0.25 mm |
Z = 2 |
Bruker SMART 1000 diffractometer | 2433 independent reflections |
Radiation source: fine-focus sealed tube | 1972 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
ϕ and ω scans | θmax = 26.4°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→10 |
Tmin = 0.579, Tmax = 0.629 | k = −20→23 |
6528 measured reflections | l = −8→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.103 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0447P)2] where P = (Fo2 + 2Fc2)/3 |
2433 reflections | (Δ/σ)max = 0.001 |
197 parameters | Δρmax = 0.44 e Å−3 |
2 restraints | Δρmin = −0.60 e Å−3 |
[Cu2(C7H3NO5)2(C10H8N2)(H2O)2] | V = 1198.9 (2) Å3 |
Mr = 681.50 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.3945 (9) Å | µ = 1.85 mm−1 |
b = 18.433 (2) Å | T = 296 K |
c = 7.8686 (10) Å | 0.30 × 0.25 × 0.25 mm |
β = 100.044 (2)° |
Bruker SMART 1000 diffractometer | 2433 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1972 reflections with I > 2σ(I) |
Tmin = 0.579, Tmax = 0.629 | Rint = 0.041 |
6528 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 2 restraints |
wR(F2) = 0.103 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.44 e Å−3 |
2433 reflections | Δρmin = −0.60 e Å−3 |
197 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.47889 (5) | 0.38222 (2) | 0.23311 (6) | 0.03017 (17) | |
N1 | 0.2865 (3) | 0.34582 (14) | 0.2945 (4) | 0.0261 (6) | |
N2 | 0.6518 (3) | 0.42601 (15) | 0.1330 (4) | 0.0300 (7) | |
O1 | 0.3886 (3) | 0.47502 (11) | 0.3063 (3) | 0.0332 (6) | |
O2 | 0.1826 (3) | 0.51815 (12) | 0.4202 (4) | 0.0377 (7) | |
O3 | −0.1274 (3) | 0.26614 (12) | 0.4182 (4) | 0.0463 (8) | |
H3 | −0.1858 | 0.2984 | 0.4443 | 0.069* | |
O4 | 0.4981 (3) | 0.27793 (12) | 0.1646 (4) | 0.0386 (7) | |
O5 | 0.3903 (3) | 0.16954 (12) | 0.1994 (4) | 0.0428 (7) | |
C1 | 0.2557 (4) | 0.46880 (17) | 0.3631 (5) | 0.0280 (8) | |
C2 | 0.1880 (4) | 0.39256 (16) | 0.3559 (4) | 0.0245 (7) | |
C3 | 0.0461 (4) | 0.36900 (17) | 0.4026 (5) | 0.0292 (8) | |
H3A | −0.0223 | 0.4010 | 0.4462 | 0.035* | |
C4 | 0.0081 (4) | 0.29506 (17) | 0.3821 (5) | 0.0305 (8) | |
C5 | 0.1158 (4) | 0.24840 (18) | 0.3192 (5) | 0.0318 (8) | |
H5 | 0.0925 | 0.1992 | 0.3060 | 0.038* | |
C6 | 0.2553 (4) | 0.27552 (17) | 0.2772 (5) | 0.0266 (8) | |
C7 | 0.3911 (4) | 0.23570 (19) | 0.2084 (5) | 0.0316 (8) | |
C8 | 0.6991 (4) | 0.49448 (19) | 0.1714 (5) | 0.0369 (9) | |
H8 | 0.6384 | 0.5229 | 0.2341 | 0.044* | |
C9 | 0.8328 (4) | 0.52411 (18) | 0.1222 (5) | 0.0363 (9) | |
H9 | 0.8621 | 0.5715 | 0.1542 | 0.044* | |
C10 | 0.9259 (4) | 0.48484 (17) | 0.0252 (4) | 0.0276 (8) | |
C11 | 0.8717 (4) | 0.41528 (19) | −0.0187 (5) | 0.0377 (10) | |
H11 | 0.9275 | 0.3867 | −0.0861 | 0.045* | |
C12 | 0.7374 (5) | 0.38763 (18) | 0.0353 (5) | 0.0399 (10) | |
H12 | 0.7044 | 0.3407 | 0.0030 | 0.048* | |
O6 | 0.6528 (3) | 0.35779 (13) | 0.5027 (4) | 0.0359 (6) | |
H6A | 0.689 (4) | 0.3975 (13) | 0.543 (5) | 0.043* | |
H6B | 0.593 (4) | 0.3429 (19) | 0.564 (4) | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0234 (3) | 0.0274 (3) | 0.0441 (3) | −0.00220 (18) | 0.0182 (2) | −0.00282 (19) |
N1 | 0.0228 (15) | 0.0241 (14) | 0.0344 (17) | 0.0011 (12) | 0.0136 (13) | −0.0017 (13) |
N2 | 0.0243 (15) | 0.0311 (16) | 0.0384 (18) | 0.0006 (12) | 0.0161 (14) | 0.0009 (13) |
O1 | 0.0278 (13) | 0.0223 (12) | 0.0547 (17) | −0.0030 (10) | 0.0215 (12) | −0.0014 (11) |
O2 | 0.0336 (14) | 0.0254 (13) | 0.0598 (19) | −0.0023 (11) | 0.0238 (13) | −0.0090 (12) |
O3 | 0.0297 (14) | 0.0281 (13) | 0.088 (2) | −0.0026 (11) | 0.0305 (15) | 0.0064 (15) |
O4 | 0.0310 (14) | 0.0336 (14) | 0.0572 (18) | −0.0015 (11) | 0.0239 (13) | −0.0100 (13) |
O5 | 0.0412 (16) | 0.0261 (14) | 0.0638 (19) | 0.0039 (12) | 0.0165 (14) | −0.0095 (13) |
C1 | 0.0260 (18) | 0.0241 (17) | 0.035 (2) | −0.0014 (14) | 0.0094 (16) | −0.0017 (15) |
C2 | 0.0203 (17) | 0.0250 (17) | 0.0291 (19) | 0.0006 (13) | 0.0071 (14) | −0.0002 (14) |
C3 | 0.0216 (18) | 0.0296 (18) | 0.038 (2) | 0.0019 (14) | 0.0108 (16) | 0.0018 (16) |
C4 | 0.0226 (18) | 0.0265 (18) | 0.044 (2) | −0.0029 (14) | 0.0109 (16) | 0.0042 (16) |
C5 | 0.0311 (19) | 0.0220 (17) | 0.045 (2) | −0.0010 (15) | 0.0144 (17) | 0.0022 (16) |
C6 | 0.0243 (18) | 0.0223 (17) | 0.035 (2) | 0.0001 (14) | 0.0091 (15) | −0.0002 (15) |
C7 | 0.029 (2) | 0.034 (2) | 0.033 (2) | 0.0039 (16) | 0.0077 (16) | −0.0084 (16) |
C8 | 0.037 (2) | 0.0298 (19) | 0.050 (3) | 0.0017 (16) | 0.0242 (19) | −0.0058 (18) |
C9 | 0.037 (2) | 0.0253 (18) | 0.051 (2) | −0.0088 (16) | 0.0220 (19) | −0.0089 (17) |
C10 | 0.0269 (19) | 0.0270 (18) | 0.032 (2) | −0.0004 (15) | 0.0120 (16) | 0.0057 (15) |
C11 | 0.034 (2) | 0.0312 (19) | 0.055 (3) | −0.0020 (16) | 0.0280 (19) | −0.0057 (18) |
C12 | 0.040 (2) | 0.0288 (19) | 0.057 (3) | −0.0072 (17) | 0.027 (2) | −0.0071 (18) |
O6 | 0.0350 (16) | 0.0296 (13) | 0.0482 (18) | −0.0092 (11) | 0.0211 (13) | −0.0041 (12) |
Cu1—N1 | 1.888 (3) | C3—C4 | 1.403 (4) |
Cu1—N2 | 1.944 (3) | C3—H3A | 0.9300 |
Cu1—O1 | 1.996 (2) | C4—C5 | 1.400 (4) |
Cu1—O4 | 2.011 (2) | C5—C6 | 1.365 (4) |
Cu1—O6 | 2.399 (3) | C5—H5 | 0.9300 |
N1—C6 | 1.324 (4) | C6—C7 | 1.532 (4) |
N1—C2 | 1.341 (4) | C8—C9 | 1.363 (4) |
N2—C12 | 1.342 (4) | C8—H8 | 0.9300 |
N2—C8 | 1.342 (4) | C9—C10 | 1.388 (4) |
O1—C1 | 1.277 (4) | C9—H9 | 0.9300 |
O2—C1 | 1.226 (4) | C10—C11 | 1.384 (5) |
O3—C4 | 1.330 (4) | C10—C10i | 1.480 (6) |
O3—H3 | 0.8200 | C11—C12 | 1.370 (5) |
O4—C7 | 1.280 (4) | C11—H11 | 0.9300 |
O5—C7 | 1.222 (4) | C12—H12 | 0.9300 |
C1—C2 | 1.513 (4) | O6—H6A | 0.834 (18) |
C2—C3 | 1.377 (4) | O6—H6B | 0.804 (18) |
N1—Cu1—N2 | 169.74 (13) | O3—C4—C3 | 123.4 (3) |
N1—Cu1—O1 | 81.12 (10) | C5—C4—C3 | 119.3 (3) |
N2—Cu1—O1 | 96.27 (10) | C6—C5—C4 | 119.7 (3) |
N1—Cu1—O4 | 80.85 (10) | C6—C5—H5 | 120.2 |
N2—Cu1—O4 | 100.83 (10) | C4—C5—H5 | 120.2 |
O1—Cu1—O4 | 161.60 (9) | N1—C6—C5 | 119.7 (3) |
N1—Cu1—O6 | 97.05 (10) | N1—C6—C7 | 111.0 (3) |
N2—Cu1—O6 | 93.09 (10) | C5—C6—C7 | 129.2 (3) |
O1—Cu1—O6 | 96.24 (10) | O5—C7—O4 | 126.0 (3) |
O4—Cu1—O6 | 89.58 (10) | O5—C7—C6 | 120.1 (3) |
C6—N1—C2 | 122.8 (3) | O4—C7—C6 | 113.8 (3) |
C6—N1—Cu1 | 119.0 (2) | N2—C8—C9 | 122.6 (3) |
C2—N1—Cu1 | 118.2 (2) | N2—C8—H8 | 118.7 |
C12—N2—C8 | 117.3 (3) | C9—C8—H8 | 118.7 |
C12—N2—Cu1 | 121.7 (2) | C8—C9—C10 | 121.2 (3) |
C8—N2—Cu1 | 120.8 (2) | C8—C9—H9 | 119.4 |
C1—O1—Cu1 | 115.01 (19) | C10—C9—H9 | 119.4 |
C4—O3—H3 | 109.5 | C11—C10—C9 | 115.4 (3) |
C7—O4—Cu1 | 114.6 (2) | C11—C10—C10i | 122.6 (4) |
O2—C1—O1 | 125.8 (3) | C9—C10—C10i | 122.1 (4) |
O2—C1—C2 | 119.6 (3) | C12—C11—C10 | 121.3 (3) |
O1—C1—C2 | 114.6 (3) | C12—C11—H11 | 119.3 |
N1—C2—C3 | 120.7 (3) | C10—C11—H11 | 119.3 |
N1—C2—C1 | 111.0 (3) | N2—C12—C11 | 122.2 (3) |
C3—C2—C1 | 128.3 (3) | N2—C12—H12 | 118.9 |
C2—C3—C4 | 117.8 (3) | C11—C12—H12 | 118.9 |
C2—C3—H3A | 121.1 | Cu1—O6—H6A | 107 (3) |
C4—C3—H3A | 121.1 | Cu1—O6—H6B | 104 (3) |
O3—C4—C5 | 117.3 (3) | H6A—O6—H6B | 107 (4) |
N2—Cu1—N1—C6 | 103.6 (6) | O1—C1—C2—N1 | 1.8 (5) |
O1—Cu1—N1—C6 | 179.6 (3) | O2—C1—C2—C3 | 1.9 (6) |
O4—Cu1—N1—C6 | 3.3 (3) | O1—C1—C2—C3 | −178.0 (3) |
O6—Cu1—N1—C6 | −85.2 (3) | N1—C2—C3—C4 | −0.5 (5) |
N2—Cu1—N1—C2 | −77.2 (7) | C1—C2—C3—C4 | 179.2 (3) |
O1—Cu1—N1—C2 | −1.2 (3) | C2—C3—C4—O3 | −178.2 (3) |
O4—Cu1—N1—C2 | −177.5 (3) | C2—C3—C4—C5 | 1.2 (5) |
O6—Cu1—N1—C2 | 94.1 (3) | O3—C4—C5—C6 | 178.9 (3) |
N1—Cu1—N2—C12 | −93.6 (7) | C3—C4—C5—C6 | −0.6 (6) |
O1—Cu1—N2—C12 | −168.3 (3) | C2—N1—C6—C5 | 1.6 (5) |
O4—Cu1—N2—C12 | 4.9 (3) | Cu1—N1—C6—C5 | −179.3 (3) |
O6—Cu1—N2—C12 | 95.1 (3) | C2—N1—C6—C7 | −178.6 (3) |
N1—Cu1—N2—C8 | 92.1 (7) | Cu1—N1—C6—C7 | 0.6 (4) |
O1—Cu1—N2—C8 | 17.4 (3) | C4—C5—C6—N1 | −0.8 (5) |
O4—Cu1—N2—C8 | −169.4 (3) | C4—C5—C6—C7 | 179.4 (4) |
O6—Cu1—N2—C8 | −79.2 (3) | Cu1—O4—C7—O5 | −170.6 (3) |
N1—Cu1—O1—C1 | 2.3 (3) | Cu1—O4—C7—C6 | 9.4 (4) |
N2—Cu1—O1—C1 | 172.2 (3) | N1—C6—C7—O5 | 173.3 (3) |
O4—Cu1—O1—C1 | 13.9 (5) | C5—C6—C7—O5 | −6.9 (6) |
O6—Cu1—O1—C1 | −93.9 (3) | N1—C6—C7—O4 | −6.8 (5) |
N1—Cu1—O4—C7 | −7.3 (3) | C5—C6—C7—O4 | 173.1 (4) |
N2—Cu1—O4—C7 | −177.1 (3) | C12—N2—C8—C9 | −3.2 (6) |
O1—Cu1—O4—C7 | −19.0 (5) | Cu1—N2—C8—C9 | 171.4 (3) |
O6—Cu1—O4—C7 | 89.9 (3) | N2—C8—C9—C10 | 1.5 (6) |
Cu1—O1—C1—O2 | 177.3 (3) | C8—C9—C10—C11 | 1.0 (6) |
Cu1—O1—C1—C2 | −2.8 (4) | C8—C9—C10—C10i | −178.2 (4) |
C6—N1—C2—C3 | −0.9 (5) | C9—C10—C11—C12 | −1.6 (6) |
Cu1—N1—C2—C3 | 179.9 (3) | C10i—C10—C11—C12 | 177.5 (4) |
C6—N1—C2—C1 | 179.3 (3) | C8—N2—C12—C11 | 2.5 (6) |
Cu1—N1—C2—C1 | 0.1 (4) | Cu1—N2—C12—C11 | −172.0 (3) |
O2—C1—C2—N1 | −178.2 (3) | C10—C11—C12—N2 | −0.1 (6) |
Symmetry code: (i) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O6ii | 0.82 | 1.86 | 2.670 (3) | 169 |
O6—H6B···O4iii | 0.80 (2) | 2.54 (3) | 3.185 (3) | 139 (3) |
O6—H6B···O5iii | 0.80 (2) | 2.17 (2) | 2.948 (3) | 163 (4) |
C12—H12···O3iv | 0.93 | 2.58 | 3.246 (4) | 129 |
C8—H8···O1 | 0.93 | 2.43 | 3.003 (4) | 120 |
C12—H12···O4 | 0.93 | 2.59 | 3.142 (4) | 118 |
Symmetry codes: (ii) x−1, y, z; (iii) x, −y+1/2, z+1/2; (iv) x+1, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C7H3NO5)2(C10H8N2)(H2O)2] |
Mr | 681.50 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 8.3945 (9), 18.433 (2), 7.8686 (10) |
β (°) | 100.044 (2) |
V (Å3) | 1198.9 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.85 |
Crystal size (mm) | 0.30 × 0.25 × 0.25 |
Data collection | |
Diffractometer | Bruker SMART 1000 diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.579, 0.629 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6528, 2433, 1972 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.103, 1.09 |
No. of reflections | 2433 |
No. of parameters | 197 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.44, −0.60 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—N1 | 1.888 (3) | Cu1—O4 | 2.011 (2) |
Cu1—N2 | 1.944 (3) | Cu1—O6 | 2.399 (3) |
Cu1—O1 | 1.996 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O6i | 0.82 | 1.86 | 2.670 (3) | 169.1 |
O6—H6B···O4ii | 0.804 (18) | 2.54 (3) | 3.185 (3) | 139 (3) |
O6—H6B···O5ii | 0.804 (18) | 2.17 (2) | 2.948 (3) | 163 (4) |
C12—H12···O3iii | 0.93 | 2.58 | 3.246 (4) | 129.1 |
C8—H8···O1 | 0.93 | 2.43 | 3.003 (4) | 119.7 |
C12—H12···O4 | 0.93 | 2.59 | 3.142 (4) | 118.3 |
Symmetry codes: (i) x−1, y, z; (ii) x, −y+1/2, z+1/2; (iii) x+1, −y+1/2, z−1/2. |
Acknowledgements
This project was supported by the National Natural Science Foundation of China (grant No. 21101133) and the Natural Science Foundation of the Educational Bureau of Shaanxi Province (grant No. 11JK0565).
References
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. (1989). In Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier. Google Scholar
Lin, W. B., Evans, O. R., Xiong, R. G. & Wang, Z. (1998). J. Am. Chem. Soc. 120, 13272–13274. Web of Science CSD CrossRef CAS Google Scholar
Liu, Y. L., Kravtsov, V., Walsh, R. D., Poddar, P., Srikanth, H. & Eddaoudi, M. (2004). Chem. Commun. pp. 2806–2807. Web of Science CSD CrossRef Google Scholar
Mahata, P. & Natarajan, S. (2005). Eur. J. Inorg. Chem. pp. 2156–2163. Web of Science CSD CrossRef Google Scholar
Pan, L., Huang, X. Y., Li, J., Wu, Y. & Zheng, N. (2000). Angew. Chem. Int. Ed. 39, 527–530. CrossRef CAS Google Scholar
Panagiotis, A., Jeff, W. K. & Vincent, L. P. (2005). Inorg. Chem. 44, 3626–3635. Web of Science PubMed Google Scholar
Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, B., Cheng, P., Dai, Y., Cai, C., Liao, D. Z., Yan, S. P., Jiang, Z. H. & Wang, G. L. (2003). Angew. Chem. Int. Ed. 42, 934–936. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The self-assembled construction of supramolecular structure is of current interest because controlling the molecular organization in the solid state can lead to materials with novel structure and promising properties (Desiraju, 1989; Robin & Fromm, 2006). Supramolecular chemistry uses molecular recognition processes that rely heavily on the understanding of the recognition properties of the functional groups involved in these interactions. Recently, increasing investigations have been focused on the constructions of supramolecular structure using heterocyclic carboxylic acids such as pyridine- (Lin et al., 1998; Zhao et al.,2003), pyrazole- (Pan et al., 2000), and imidazole-carboxylic acids (Liu et al., 2004; Mahata & Natarajan, 2005; Panagiotis et al., 2005) as building blocks. These building blocks contain multi-oxygen and N atoms and can coordinate with metal ions in different ways, resulting in the formations of various metal–organic frameworks with specific topologies and useful properties. In this aspect, 4-hydroxypyridine-2,6-dicarboxylic acid (cam), which has six potential donor atoms, is a quite versatile ligand for the construction of metal–organic hybrid compounds. Herein we hydrothermally synthesized the title compound, which exhibits a binuclear structure (Fig. 1). The asymmetric unit consists of a Cu2+ ion, one cam2- ion, half 4,4'-bipy ligand, one coordinated water molecule. It is worth noting that each completely deprotonated cam2- ion coordinates one Cu2+ ion in a tridentate chelating coordination mode (Scheme 1). Interestingly, the adjacent binuclear complexes form a one-dimensional supramolecular chain via O3—H3···O6 hydrogen bonding interaction (Fig. 2), which is further involved in a three-dimensional supramolecular structure connected via O—H···O and C—H···O hydrogen bonding interactions (Fig. 3).