metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[bis­­(di­benzyl­ammonium) [[di­chloridomercurate(II)]-μ-sulfato-κ2O:O′]]

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bCNRS, Université de Bordeaux, ICMCB, 87 Avenue du Docteur A. Schweitzer, F-33608 Pessac, France
*Correspondence e-mail: mouhasboye@hotmail.com

(Received 5 January 2012; accepted 15 February 2012; online 29 February 2012)

The structure of the title compound, (C14H16N)2[HgCl2(SO4)], consists of an infinite chain propagating along the c direction, containing HgII ions tetra­coordinated by two bridging O atoms of bis-monodentate sulfate anions and two chloride ligands. In the the crystal, N—H⋯O hydrogen bonding between the cations and the anionic chains consolidates the packing. The crystal structure was determined from an inversion twin with approximately equal twin domains.

Related literature

For the behavior of sulfate as a ligand, see: Sall et al. (1992[Sall, A. S., Diasse, A., Sarr, O. & Diop, L. (1992). Main Group Met. Chem. 15, 265-268.]); Diop et al. (2000[Diop, C. A. K., Kochikpa, Y. A. O., Diop, L. & Mahieu, B. (2000). Main Group Met. Chem. 23, 9, 493-495.]); Boye et al. (2007[Boye, M. S., Diassé-Sarr, A., Diop, L., Russo, U., Biesemans, M. & Willem, R. (2007). C. R. Chim. 10, 466-468.]). For the IR vibrational frequencies of sulfate, see: Nakamoto (1978[Nakamoto, K. (1978). Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed., p. 142. New York: John Wiley & Sons.]).

[Scheme 1]

Experimental

Crystal data
  • (C14H16N)2[HgCl2(SO4)]

  • Mr = 764.14

  • Monoclinic, C c

  • a = 22.8275 (5) Å

  • b = 12.9547 (3) Å

  • c = 10.1512 (3) Å

  • β = 92.095 (2)°

  • V = 2999.94 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.41 mm−1

  • T = 293 K

  • 0.40 × 0.25 × 0.25 mm

Data collection
  • Nonius Kappa CCD diffractometer

  • Absorption correction: empirical (using intensity measurements) (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.221, Tmax = 0.345

  • 9151 measured reflections

  • 5464 independent reflections

  • 5304 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.121

  • S = 1.02

  • 5464 reflections

  • 315 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 1.12 e Å−3

  • Δρmin = −2.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.90 2.44 2.920 (9) 114
N1—H1A⋯O3i 0.90 2.29 3.037 (10) 141
N1—H1B⋯O3ii 0.90 1.90 2.766 (9) 161
N2—H2C⋯O4iii 0.90 2.32 3.043 (10) 137
N2—H2C⋯O1iii 0.90 2.12 2.857 (9) 139
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2003[Nonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the framework of our research work for understanding the behavior of sulfate acting as ligand (Sall et al., 1992; Diop et al., 2000; Boye et al., 2007), we report the crystallographic study of 2[(C6H5CH2)2NH2]+[HgSO4Cl2]2-.

The structure obtained by single-crystal XRD (Fig. 1) indicate an infinite chain in which each Hg atom is tetracoordinated by two O atoms of two sulfates and two chloride atoms in a distorted tetrahedral geometry. The tetrahedral angles are in the range 80.8 (2)–152.42 (10). The sulfate behaves as a bidentate anion with disparate Hg—O distances [Hg—O(1) = 2.433 (6) and Hg—O(4) = 2.533 (7) Å]. The S—O distances vary from 1.446 (6) to 1.492 (7) Å, the S—O distances for two O atoms linked to Hg atoms [1.474 (7)–1.492 (5) Å] are longer than those non-bonding [1.446 (6)–1.465 (6) Å].

The behavior of bidentate sulfate (C2v symmetry) is confirmed by the infrared data, νs(SO42-) appears at 988 cm-1 (Nakamoto, 1978) and νas(SO42-) splits into three bands (1115, 1082, 1041 cm-1). The crystal packing of the title compound is shown in Fig.2.

Related literature top

For the behavior of sulfate as a ligand, see: Sall et al. (1992); Diop et al. (2000); Boye et al. (2007). For the IR vibrational frequencies of sulfate, see: Nakamoto (1978).

Experimental top

(C6H5CH2)2NH, H2SO4 and HgCl2 (Aldrich chemicals) were used without further purification.

The title compound was obtained by mixing ethanolic solutions of (C6H5CH2)2NH (17.66 mmol), H2SO4 (8.83 mmol) and HgCl2 (4.41 mmol) in a 8–4–1 ratio. The mixture was stirred for around two hours at room temperature. Suitable crystals for X-ray diffraction were obtained after slow solvent evaporation. (m.p. 459 K).

The title compound was isolated according to the following reaction:

2(C6H5CH2)2NH + H2SO4 + HgCl2 2[(C6H5CH2)2NH2]+ [HgSO4Cl2]2-

- Infrared data (cm-1) [vs = very strong; s = strong]

988 s νs(SO42-); 1115 s, 1082 s, 1041 s νas(SO42-); 454 s δs(SO42-); 610 vs δas(SO42-).

Refinement top

Inversion twin matrix instruction was used during refinement. The twin components were 0.498 (9) and 0.502 (9), respectively.

All H atoms were placed in geometrically calculated positions (C—H = 0.93 Å for phenyl H and 0.97 Å for methyelene H, N—H = 0.90 Å) and refined using a riding model with Uiso(H) = 1.2Ueq of the respective carrier atom.

Computing details top

Data collection: COLLECT (Nonius, 2003); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing viewed along the c axis. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Chains propagate along the c direction. H atoms have been omitted for clarity.
catena-Poly[bis(dibenzylammonium) [[dichloridomercurate(II)]-µ-sulfato-κ2O:O']] top
Crystal data top
(C14H16N)2[HgCl2(SO4)]F(000) = 1504
Mr = 764.14Dx = 1.692 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C-2ycCell parameters from 10249 reflections
a = 22.8275 (5) Åθ = 0.4–26.0°
b = 12.9547 (3) ŵ = 5.41 mm1
c = 10.1512 (3) ÅT = 293 K
β = 92.095 (2)°Prism, colourless
V = 2999.94 (13) Å30.40 × 0.25 × 0.25 mm
Z = 4
Data collection top
Nonius Kappa CCD
diffractometer
5464 independent reflections
Radiation source: fine-focus sealed tube5304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: empirical (using intensity measurements)
(SCALEPACK; Otwinowski & Minor, 1997)
h = 2728
Tmin = 0.221, Tmax = 0.345k = 1515
9151 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.099P)2 + 6.3836P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.005
5464 reflectionsΔρmax = 1.12 e Å3
315 parametersΔρmin = 2.40 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0063 (3)
Crystal data top
(C14H16N)2[HgCl2(SO4)]V = 2999.94 (13) Å3
Mr = 764.14Z = 4
Monoclinic, CcMo Kα radiation
a = 22.8275 (5) ŵ = 5.41 mm1
b = 12.9547 (3) ÅT = 293 K
c = 10.1512 (3) Å0.40 × 0.25 × 0.25 mm
β = 92.095 (2)°
Data collection top
Nonius Kappa CCD
diffractometer
5464 independent reflections
Absorption correction: empirical (using intensity measurements)
(SCALEPACK; Otwinowski & Minor, 1997)
5304 reflections with I > 2σ(I)
Tmin = 0.221, Tmax = 0.345Rint = 0.020
9151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.02Δρmax = 1.12 e Å3
5464 reflectionsΔρmin = 2.40 e Å3
315 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47859 (7)0.47550 (14)0.25406 (15)0.0294 (3)
O10.4797 (2)0.4792 (5)0.1074 (4)0.0377 (11)
O30.4174 (2)0.4818 (5)0.2924 (6)0.0427 (12)
O20.5059 (3)0.3804 (5)0.2988 (6)0.0460 (13)
N10.8594 (3)0.0322 (6)0.5261 (7)0.0454 (15)
H1A0.87290.01320.58700.054*
H1B0.88510.03360.46100.054*
C20.8012 (4)0.0059 (8)0.4703 (8)0.0452 (18)
H2A0.78600.04430.40700.054*
H2B0.80760.06980.42310.054*
C40.7555 (4)0.0246 (7)0.5720 (8)0.0428 (17)
C60.7115 (5)0.0450 (9)0.5881 (11)0.057 (2)
H60.71100.10640.54060.068*
C50.7568 (5)0.1163 (8)0.6417 (9)0.051 (2)
H50.78670.16390.63070.061*
C70.7123 (5)0.1359 (8)0.7291 (11)0.057 (2)
H70.71220.19800.77500.068*
C80.6683 (5)0.0643 (9)0.7486 (12)0.063 (3)
H80.64000.07640.81020.075*
C110.5329 (10)0.1734 (10)0.580 (2)0.0868 (16)
C170.6597 (4)0.4041 (7)0.4804 (10)0.0476 (19)
C160.6563 (4)0.3853 (10)0.3472 (10)0.059 (3)
H160.62040.39230.30150.071*
C130.7640 (4)0.3654 (9)0.4791 (12)0.055 (2)
H130.80000.36160.52440.067*
C140.7590 (5)0.3438 (12)0.3478 (13)0.067 (3)
H140.79150.32100.30350.081*
C150.7054 (5)0.3559 (16)0.2797 (13)0.086 (4)
H150.70240.34430.18920.103*
C120.7138 (4)0.3934 (8)0.5433 (10)0.050 (2)
H120.71680.40550.63360.060*
C180.6675 (5)0.0243 (10)0.6755 (13)0.067 (3)
H180.63710.07130.68430.081*
C290.8848 (4)0.2461 (7)0.3960 (9)0.0486 (19)
H290.91860.20670.38830.058*
C300.8736 (8)0.3307 (8)0.3096 (13)0.069 (4)
H300.90000.34630.24490.083*
C310.8241 (7)0.3898 (10)0.3207 (14)0.074 (3)
H310.81700.44610.26560.088*
C330.7948 (5)0.2806 (11)0.4996 (12)0.064 (3)
H330.76710.26450.56130.076*
C320.7861 (6)0.3641 (9)0.4130 (17)0.078 (4)
H320.75240.40370.42010.094*
C340.8456 (4)0.2227 (7)0.4910 (7)0.0407 (16)
C350.8576 (5)0.1388 (8)0.5890 (9)0.051 (2)
H35A0.89490.15220.63480.061*
H35B0.82740.13970.65380.061*
N20.5594 (3)0.3587 (6)0.5478 (7)0.0403 (14)
H2C0.52910.38310.59270.048*
H2D0.54700.34900.46360.048*
C370.6092 (4)0.4390 (7)0.5523 (10)0.0467 (19)
H37A0.59480.50330.51440.056*
H37B0.62120.45210.64340.056*
C400.4857 (9)0.1670 (12)0.6625 (18)0.0868 (16)
H400.48290.21400.73120.104*
C420.5402 (8)0.1009 (11)0.4852 (15)0.0868 (16)
H420.57230.10300.43120.104*
C380.4515 (8)0.0193 (11)0.5571 (16)0.0868 (16)
H380.42470.03470.55580.104*
C390.4449 (8)0.0952 (12)0.6454 (15)0.0868 (16)
H390.41140.09730.69480.104*
C410.4946 (8)0.0166 (11)0.4705 (14)0.0868 (16)
H410.49630.03400.40570.104*
O40.5118 (3)0.5651 (6)0.3063 (7)0.0540 (17)
C30.5785 (5)0.2590 (8)0.6051 (10)0.052 (2)
H3A0.58540.26700.69930.063*
H3B0.61520.23870.56730.063*
Cl10.40170 (12)0.2706 (3)0.0297 (3)0.0596 (7)
Cl20.59979 (13)0.2769 (3)0.0059 (4)0.0672 (8)
Hg10.50000 (3)0.315360 (17)0.00102 (5)0.04119 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0266 (7)0.0391 (8)0.0226 (7)0.0018 (6)0.0036 (6)0.0009 (6)
O10.041 (3)0.054 (3)0.018 (2)0.003 (2)0.0051 (19)0.002 (2)
O30.033 (3)0.055 (3)0.041 (3)0.003 (2)0.011 (2)0.005 (2)
O20.048 (3)0.042 (3)0.048 (3)0.001 (2)0.001 (2)0.009 (2)
N10.045 (4)0.054 (4)0.036 (3)0.011 (3)0.000 (3)0.004 (3)
C20.040 (4)0.059 (5)0.036 (4)0.006 (4)0.001 (3)0.001 (4)
C40.044 (4)0.052 (5)0.032 (3)0.001 (3)0.006 (3)0.005 (3)
C60.048 (5)0.066 (6)0.057 (5)0.016 (4)0.005 (4)0.009 (5)
C50.059 (5)0.048 (5)0.045 (4)0.001 (4)0.010 (4)0.003 (4)
C70.057 (5)0.056 (5)0.056 (5)0.025 (4)0.007 (4)0.009 (4)
C80.052 (5)0.075 (7)0.061 (6)0.012 (5)0.002 (4)0.004 (5)
C110.109 (5)0.068 (3)0.082 (4)0.007 (3)0.009 (3)0.008 (3)
C170.044 (4)0.046 (5)0.053 (5)0.007 (4)0.010 (4)0.007 (4)
C160.036 (4)0.093 (8)0.048 (5)0.013 (4)0.004 (4)0.010 (5)
C130.039 (4)0.063 (6)0.064 (6)0.007 (4)0.002 (4)0.002 (5)
C140.041 (5)0.098 (8)0.065 (7)0.015 (5)0.018 (5)0.004 (6)
C150.043 (5)0.162 (13)0.053 (6)0.023 (7)0.012 (5)0.015 (8)
C120.038 (4)0.058 (5)0.052 (5)0.002 (4)0.003 (4)0.004 (4)
C180.049 (5)0.070 (7)0.084 (8)0.000 (5)0.023 (5)0.013 (6)
C290.055 (5)0.038 (4)0.054 (5)0.007 (4)0.013 (4)0.003 (3)
C300.116 (11)0.040 (5)0.051 (6)0.003 (6)0.010 (6)0.001 (4)
C310.094 (9)0.056 (6)0.069 (7)0.008 (6)0.017 (7)0.006 (6)
C330.063 (6)0.069 (7)0.060 (6)0.018 (5)0.016 (5)0.013 (6)
C320.067 (7)0.045 (6)0.121 (12)0.028 (5)0.010 (7)0.006 (7)
C340.048 (4)0.042 (4)0.032 (4)0.011 (3)0.002 (3)0.004 (3)
C350.065 (6)0.054 (5)0.033 (4)0.006 (4)0.006 (4)0.006 (4)
N20.032 (3)0.047 (4)0.042 (4)0.006 (3)0.009 (3)0.001 (3)
C370.042 (4)0.041 (4)0.058 (5)0.009 (3)0.004 (4)0.000 (4)
C400.109 (5)0.068 (3)0.082 (4)0.007 (3)0.009 (3)0.008 (3)
C420.109 (5)0.068 (3)0.082 (4)0.007 (3)0.009 (3)0.008 (3)
C380.109 (5)0.068 (3)0.082 (4)0.007 (3)0.009 (3)0.008 (3)
C390.109 (5)0.068 (3)0.082 (4)0.007 (3)0.009 (3)0.008 (3)
C410.109 (5)0.068 (3)0.082 (4)0.007 (3)0.009 (3)0.008 (3)
O40.046 (3)0.078 (5)0.038 (3)0.025 (3)0.016 (3)0.022 (3)
C30.048 (5)0.054 (5)0.054 (5)0.002 (4)0.008 (4)0.016 (4)
Cl10.0447 (13)0.0551 (16)0.0792 (18)0.0145 (12)0.0057 (12)0.0028 (13)
Cl20.0498 (15)0.075 (2)0.0761 (19)0.0215 (15)0.0071 (13)0.0090 (16)
Hg10.04012 (18)0.04296 (19)0.04054 (18)0.00013 (15)0.00241 (10)0.00068 (16)
Geometric parameters (Å, º) top
S1—O21.446 (6)C18—H180.9300
S1—O31.465 (5)C29—C341.374 (13)
S1—O41.473 (7)C29—C301.422 (15)
S1—O11.491 (5)C29—H290.9300
O1—Hg12.433 (6)C30—C311.37 (2)
N1—C21.508 (12)C30—H300.9300
N1—C351.523 (12)C31—C321.34 (2)
N1—H1A0.9000C31—H310.9300
N1—H1B0.9000C33—C341.386 (13)
C2—C41.514 (12)C33—C321.40 (2)
C2—H2A0.9700C33—H330.9300
C2—H2B0.9700C32—H320.9300
C4—C61.364 (13)C34—C351.492 (12)
C4—C51.382 (13)C35—H35A0.9700
C6—C181.390 (14)C35—H35B0.9700
C6—H60.9300N2—C31.477 (12)
C5—C71.396 (14)N2—C371.539 (11)
C5—H50.9300N2—H2C0.9000
C7—C81.385 (17)N2—H2D0.9000
C7—H70.9300C37—H37A0.9700
C8—C181.367 (17)C37—H37B0.9700
C8—H80.9300C40—C391.32 (2)
C11—C421.36 (2)C40—H400.9300
C11—C401.39 (3)C42—C411.51 (2)
C11—C31.536 (19)C42—H420.9300
C17—C161.374 (15)C38—C411.34 (2)
C17—C121.375 (13)C38—C391.34 (2)
C17—C371.459 (12)C38—H380.9300
C16—C151.388 (14)C39—H390.9300
C16—H160.9300C41—H410.9300
C13—C141.363 (18)O4—Hg1i2.533 (7)
C13—C121.387 (14)C3—H3A0.9700
C13—H130.9300C3—H3B0.9700
C14—C151.392 (18)Cl1—Hg12.327 (3)
C14—H140.9300Cl2—Hg12.331 (3)
C15—H150.9300Hg1—O4ii2.533 (7)
C12—H120.9300
O2—S1—O3111.6 (4)C31—C30—C29120.6 (13)
O2—S1—O4110.3 (4)C31—C30—H30119.7
O3—S1—O4110.0 (4)C29—C30—H30119.7
O2—S1—O1108.5 (4)C32—C31—C30118.3 (12)
O3—S1—O1108.3 (3)C32—C31—H31120.8
O4—S1—O1107.9 (4)C30—C31—H31120.8
S1—O1—Hg1115.2 (3)C34—C33—C32118.5 (11)
C2—N1—C35114.7 (7)C34—C33—H33120.7
C2—N1—H1A108.6C32—C33—H33120.7
C35—N1—H1A108.6C31—C32—C33123.2 (11)
C2—N1—H1B108.6C31—C32—H32118.4
C35—N1—H1B108.6C33—C32—H32118.4
H1A—N1—H1B107.6C29—C34—C33119.5 (9)
N1—C2—C4114.5 (7)C29—C34—C35121.3 (8)
N1—C2—H2A108.6C33—C34—C35119.1 (9)
C4—C2—H2A108.6C34—C35—N1112.8 (7)
N1—C2—H2B108.6C34—C35—H35A109.0
C4—C2—H2B108.6N1—C35—H35A109.0
H2A—C2—H2B107.6C34—C35—H35B109.0
C6—C4—C5120.5 (9)N1—C35—H35B109.0
C6—C4—C2120.3 (9)H35A—C35—H35B107.8
C5—C4—C2119.0 (8)C3—N2—C37111.9 (7)
C4—C6—C18120.1 (10)C3—N2—H2C109.2
C4—C6—H6120.0C37—N2—H2C109.2
C18—C6—H6120.0C3—N2—H2D109.2
C4—C5—C7118.7 (9)C37—N2—H2D109.2
C4—C5—H5120.7H2C—N2—H2D107.9
C7—C5—H5120.7C17—C37—N2111.8 (8)
C8—C7—C5121.1 (10)C17—C37—H37A109.2
C8—C7—H7119.4N2—C37—H37A109.2
C5—C7—H7119.4C17—C37—H37B109.2
C18—C8—C7118.7 (11)N2—C37—H37B109.2
C18—C8—H8120.7H37A—C37—H37B107.9
C7—C8—H8120.7C39—C40—C11121.3 (18)
C42—C11—C40120.2 (16)C39—C40—H40119.4
C42—C11—C3121.2 (18)C11—C40—H40119.4
C40—C11—C3118.4 (15)C11—C42—C41117.8 (17)
C16—C17—C12117.2 (8)C11—C42—H42121.1
C16—C17—C37122.0 (9)C41—C42—H42121.1
C12—C17—C37120.7 (9)C41—C38—C39124.0 (15)
C17—C16—C15121.1 (9)C41—C38—H38118.0
C17—C16—H16119.5C39—C38—H38118.0
C15—C16—H16119.5C40—C39—C38120.3 (19)
C14—C13—C12118.2 (10)C40—C39—H39119.8
C14—C13—H13120.9C38—C39—H39119.8
C12—C13—H13120.9C38—C41—C42115.8 (14)
C13—C14—C15120.2 (10)C38—C41—H41122.1
C13—C14—H14119.9C42—C41—H41122.1
C15—C14—H14119.9S1—O4—Hg1i134.0 (4)
C16—C15—C14119.8 (11)N2—C3—C11112.1 (10)
C16—C15—H15120.1N2—C3—H3A109.2
C14—C15—H15120.1C11—C3—H3A109.2
C17—C12—C13123.4 (10)N2—C3—H3B109.2
C17—C12—H12118.3C11—C3—H3B109.2
C13—C12—H12118.3H3A—C3—H3B107.9
C8—C18—C6120.8 (11)Cl1—Hg1—Cl2152.43 (10)
C8—C18—H18119.6Cl1—Hg1—O194.47 (15)
C6—C18—H18119.6Cl2—Hg1—O1112.27 (16)
C34—C29—C30119.7 (10)Cl1—Hg1—O4ii100.19 (18)
C34—C29—H29120.2Cl2—Hg1—O4ii90.91 (17)
C30—C29—H29120.2O1—Hg1—O4ii80.8 (2)
O2—S1—O1—Hg115.7 (4)C30—C29—C34—C35176.0 (10)
O3—S1—O1—Hg1105.6 (4)C32—C33—C34—C292.1 (17)
O4—S1—O1—Hg1135.3 (4)C32—C33—C34—C35175.3 (11)
C35—N1—C2—C465.4 (10)C29—C34—C35—N165.7 (12)
N1—C2—C4—C6102.6 (10)C33—C34—C35—N1116.9 (10)
N1—C2—C4—C581.8 (10)C2—N1—C35—C3468.1 (10)
C5—C4—C6—C180.2 (16)C16—C17—C37—N262.6 (13)
C2—C4—C6—C18175.8 (10)C12—C17—C37—N2120.4 (10)
C6—C4—C5—C70.2 (14)C3—N2—C37—C1759.3 (10)
C2—C4—C5—C7175.9 (8)C42—C11—C40—C395 (3)
C4—C5—C7—C81.5 (14)C3—C11—C40—C39179.8 (14)
C5—C7—C8—C183.3 (16)C40—C11—C42—C412 (2)
C12—C17—C16—C150.5 (19)C3—C11—C42—C41177.3 (13)
C37—C17—C16—C15177.5 (13)C11—C40—C39—C388 (2)
C12—C13—C14—C154 (2)C41—C38—C39—C408 (3)
C17—C16—C15—C141 (3)C39—C38—C41—C425 (2)
C13—C14—C15—C163 (3)C11—C42—C41—C382 (2)
C16—C17—C12—C130.3 (16)O2—S1—O4—Hg1i97.7 (6)
C37—C17—C12—C13176.8 (9)O3—S1—O4—Hg1i25.8 (7)
C14—C13—C12—C172.5 (17)O1—S1—O4—Hg1i143.8 (5)
C7—C8—C18—C63.3 (18)C37—N2—C3—C11170.1 (11)
C4—C6—C18—C81.6 (19)C42—C11—C3—N2102.8 (16)
C34—C29—C30—C310.5 (18)C40—C11—C3—N282.1 (16)
C29—C30—C31—C321 (2)S1—O1—Hg1—Cl192.6 (3)
C30—C31—C32—C331 (2)S1—O1—Hg1—Cl280.6 (3)
C34—C33—C32—C311 (2)S1—O1—Hg1—O4ii167.8 (4)
C30—C29—C34—C331.3 (15)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1iii0.902.442.920 (9)114
N1—H1A···O3iii0.902.293.037 (10)141
N1—H1B···O3iv0.901.902.766 (9)161
N2—H2C···O4i0.902.323.043 (10)137
N2—H2C···O1i0.902.122.857 (9)139
C37—H37A···Cl2i0.972.853.716 (10)149
Symmetry codes: (i) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula(C14H16N)2[HgCl2(SO4)]
Mr764.14
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)22.8275 (5), 12.9547 (3), 10.1512 (3)
β (°) 92.095 (2)
V3)2999.94 (13)
Z4
Radiation typeMo Kα
µ (mm1)5.41
Crystal size (mm)0.40 × 0.25 × 0.25
Data collection
DiffractometerNonius Kappa CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.221, 0.345
No. of measured, independent and
observed [I > 2σ(I)] reflections
9151, 5464, 5304
Rint0.020
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.121, 1.02
No. of reflections5464
No. of parameters315
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.12, 2.40

Computer programs: COLLECT (Nonius, 2003), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.902.442.920 (9)113.5
N1—H1A···O3i0.902.293.037 (10)140.8
N1—H1B···O3ii0.901.902.766 (9)161.0
N2—H2C···O4iii0.902.323.043 (10)137.3
N2—H2C···O1iii0.902.122.857 (9)138.8
C37—H37A···Cl2iii0.972.853.716 (10)149.0
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z; (iii) x, y+1, z+1/2.
 

References

First citationBoye, M. S., Diassé-Sarr, A., Diop, L., Russo, U., Biesemans, M. & Willem, R. (2007). C. R. Chim. 10, 466–468.  Google Scholar
First citationDiop, C. A. K., Kochikpa, Y. A. O., Diop, L. & Mahieu, B. (2000). Main Group Met. Chem. 23, 9, 493–495.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNakamoto, K. (1978). Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed., p. 142. New York: John Wiley & Sons.  Google Scholar
First citationNonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSall, A. S., Diasse, A., Sarr, O. & Diop, L. (1992). Main Group Met. Chem. 15, 265–268.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds