organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 6-(4-fluoro­phen­yl)-4-hy­dr­oxy-2-sulfanyl­­idene-4-tri­fluoro­methyl-1,3-diazinane-5-carboxyl­ate

aInstitute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China
*Correspondence e-mail: huangbaojun77@yahoo.com.cn

(Received 26 December 2011; accepted 19 February 2012; online 29 February 2012)

In the title compound, C14H14F4N2O3S, the hexa­hydro­pyrimidine ring adopts a half-chair conformation. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond, generating an S(6) ring. The crystal structure features O—H⋯S and N—H⋯S hydrogen bonds.

Related literature

For the bioactivity of dihydro­pyrimidines, see: Atwal et al. (1989[Atwal, K. S., Rovnyak, G. C., O'Reilly, B. C. & Schwartz, J. (1989). J. Org. Chem. 54, 5898-5907.]); Kappe et al. (1997[Kappe, C. O., Fabian, W. M. F. & Semones, M. A. (1997). Tetrahedron, 53, 2803-2816.]); Brier et al. (2004[Brier, S., Lemaire, D., DeBonis, S., Forest, E. & Kozielski, F. (2004). Biochemistry, 43, 13072-13082.]); Cochran et al. (2005[Cochran, J. C., Gatial, J. E., Kapoor, T. M. & Gilbert, S. P. (2005). J. Biol. Chem. 280, 12658-12667.]). For the bioactivity of organofluorine compounds, see: Konz (1997[Konz, M. J. (1997). US Patent No. 5 683 966.]); Hass (2004[Hass, U. H. (2004). US Patent No. 2 004 033 897.]). For a related structure, see: Li et al. (2011[Li, G.-C., Wu, C.-Z., Guo, L.-L. & Yang, F.-L. (2011). Acta Cryst. E67, o1704-o1705.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14F4N2O3S

  • Mr = 366.33

  • Monoclinic, P 21 /c

  • a = 11.0091 (12) Å

  • b = 9.9741 (10) Å

  • c = 14.6890 (16) Å

  • β = 109.269 (12)°

  • V = 1522.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 113 K

  • 0.20 × 0.19 × 0.12 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2009[Rigaku (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.947, Tmax = 0.968

  • 18960 measured reflections

  • 3627 independent reflections

  • 2979 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.01

  • 3627 reflections

  • 227 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.84 2.06 2.7767 (13) 144
O1—H1⋯S1i 0.84 2.83 3.3796 (10) 124
N1—H1A⋯S1ii 0.835 (16) 2.635 (17) 3.4566 (12) 168.1 (15)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2009[Rigaku (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2009[Rigaku (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]).

Supporting information


Comment top

Dihydropyrimidine (DHPM) derivatives can be used as potential calcium channel blockers, antihypertensive agents, and α1–1 - a-antagonists (Atwal et al., 1989; Kappe et al., 1997;), inhibitors of mitotic kinesin Eg5 for treating cancer (Cochran et al., 2005; Brier et al., 2004). In addition, compounds that contain fluorine have special bioactivity, e.g. flumioxazin is a widely used herbicide (Konz, 1997; Hass, 2004). This led us to focus our attention on the synthesis and bioactivity of these important fused perfluoroalkylated heterocyclic compounds. During the synthesis of DHPM derivatives, the title compound, an intermediate C14H14F4N2O3S (I) was isolated and the structure confirmed by X-ray diffraction.

In the structure of the title molecule, the hexahydropyrimidine ring adopts a half-chair conformation, the mean planes formed by the ring atoms excluding the C atom bonded to the ethoxy carbonyl group have r.m.s. deviations of 0.0348 Å, the dihedral angle between the mean planes and benzenes ring is 58.18 (5)°. The molecular conformation is stabilized by intramolecular O—H···O hydrogen bond, generating an S(6) ring. The crystal structure is stabilized by intermolecular O—H···S and N—H···S hydrogen bonds. For a crystal structure related to the title compound, see: Li et al. (2011).

Related literature top

For the bioactivity of dihydropyrimidines, see: Atwal et al. (1989); Kappe et al. (1997); Brier et al. (2004); Cochran et al. (2005). For the bioactivity of organofluorine compounds, see: Konz (1997); Hass (2004). For a related structure, see: Li et al. (2011).

Experimental top

The title compound was synthesized refluxing for 3 h a stirred solution of 4-fluorobenzaldehyde (2.48 g, 20 mmol), ethyl 4,4,4-trifluoro-3-oxobutanoate(4.42 g, 24 mmol) and thiourea (2.28 g, 30 mmol) in 20 ml of anhydrous ethanol, the reaction catalyzed by sulfamic acid (0.6 g). The solvent was evaporated in vacuo and the residue was washed with water. The title compound was recrystallized from 50% aqueous ethanol and single crystals of (I) were obtained by slow evaporation.

Refinement top

Hydrogen atoms involved in hydrogen-bonding inetractions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were placed in calculated positions, with C—H(aromatic) = 0.95 Å and C—H(aliphatic) = 0.98 Å, 0.99 Å or 1.00 Å, and treated as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2009); cell refinement: CrystalClear (Rigaku, 2009); data reduction: CrystalClear (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom numbering scheme for (I), with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed line.
Ethyl 6-(4-fluorophenyl)-4-hydroxy-2-sulfanylidene-4-trifluoromethyl- 1,3-diazinane-5-carboxylate top
Crystal data top
C14H14F4N2O3SF(000) = 752
Mr = 366.33Dx = 1.598 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5440 reflections
a = 11.0091 (12) Åθ = 2.0–27.9°
b = 9.9741 (10) ŵ = 0.27 mm1
c = 14.6890 (16) ÅT = 113 K
β = 109.269 (12)°Prism, colorless
V = 1522.6 (3) Å30.20 × 0.19 × 0.12 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3627 independent reflections
Radiation source: rotating anode2979 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.042
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 2.0°
ω and ϕ scansh = 1413
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
k = 1313
Tmin = 0.947, Tmax = 0.968l = 1918
18960 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.050P)2]
where P = (Fo2 + 2Fc2)/3
3627 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H14F4N2O3SV = 1522.6 (3) Å3
Mr = 366.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0091 (12) ŵ = 0.27 mm1
b = 9.9741 (10) ÅT = 113 K
c = 14.6890 (16) Å0.20 × 0.19 × 0.12 mm
β = 109.269 (12)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3627 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
2979 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.968Rint = 0.042
18960 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.44 e Å3
3627 reflectionsΔρmin = 0.27 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.09867 (3)0.59272 (4)0.13111 (2)0.01692 (10)
F10.63627 (8)0.49595 (8)0.01023 (6)0.0223 (2)
F20.70354 (8)0.30439 (8)0.04289 (6)0.0208 (2)
F30.56928 (7)0.31300 (9)0.03576 (6)0.0211 (2)
F40.77930 (9)0.74276 (9)0.59153 (6)0.0287 (2)
O10.81420 (9)0.24372 (9)0.15081 (7)0.0161 (2)
H10.77780.22360.19100.024*
O20.64286 (9)0.28689 (10)0.25049 (7)0.0214 (2)
O30.55299 (9)0.49304 (10)0.22282 (7)0.0200 (2)
N10.89236 (10)0.43819 (12)0.10096 (8)0.0139 (2)
N20.96704 (11)0.54349 (13)0.24822 (8)0.0156 (2)
C10.97865 (12)0.52093 (13)0.16191 (9)0.0138 (3)
C20.78397 (12)0.37743 (13)0.12011 (9)0.0131 (3)
C30.67215 (13)0.37300 (14)0.02481 (10)0.0159 (3)
C40.74924 (12)0.46406 (13)0.19506 (9)0.0132 (3)
H40.72200.55510.16730.016*
C50.64259 (13)0.40290 (14)0.22563 (9)0.0154 (3)
C60.44550 (14)0.44909 (18)0.25374 (11)0.0270 (4)
H6A0.42970.35230.24000.032*
H6B0.36660.49850.21690.032*
C70.47442 (16)0.47361 (19)0.35960 (12)0.0333 (4)
H7A0.54920.42000.39630.050*
H7B0.39980.44790.37810.050*
H7C0.49310.56890.37360.050*
C80.87196 (12)0.47696 (14)0.28305 (9)0.0138 (3)
H80.90390.38490.30580.017*
C90.85100 (12)0.55238 (14)0.36593 (9)0.0136 (3)
C100.84025 (13)0.47892 (14)0.44373 (10)0.0160 (3)
H100.85060.38430.44490.019*
C110.81454 (13)0.54231 (15)0.51951 (10)0.0174 (3)
H110.80550.49240.57200.021*
C120.80260 (13)0.67954 (15)0.51632 (10)0.0183 (3)
C130.81342 (14)0.75668 (15)0.44131 (10)0.0216 (3)
H130.80510.85150.44170.026*
C140.83700 (14)0.69099 (14)0.36509 (10)0.0184 (3)
H140.84360.74140.31200.022*
H2A1.0172 (14)0.5927 (16)0.2825 (11)0.015 (4)*
H1A0.9054 (15)0.4242 (17)0.0489 (12)0.026 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01646 (18)0.01854 (18)0.01832 (18)0.00502 (13)0.00919 (14)0.00420 (14)
F10.0232 (4)0.0197 (5)0.0198 (4)0.0034 (3)0.0016 (3)0.0036 (3)
F20.0202 (4)0.0267 (5)0.0166 (4)0.0024 (3)0.0075 (3)0.0088 (3)
F30.0137 (4)0.0288 (5)0.0210 (4)0.0066 (3)0.0061 (3)0.0033 (4)
F40.0441 (6)0.0261 (5)0.0230 (5)0.0029 (4)0.0206 (4)0.0098 (4)
O10.0198 (5)0.0124 (5)0.0183 (5)0.0014 (4)0.0093 (4)0.0014 (4)
O20.0211 (5)0.0190 (5)0.0266 (6)0.0008 (4)0.0114 (4)0.0025 (4)
O30.0160 (5)0.0229 (6)0.0235 (5)0.0035 (4)0.0097 (4)0.0004 (4)
N10.0138 (6)0.0172 (6)0.0128 (6)0.0028 (4)0.0071 (5)0.0034 (5)
N20.0146 (6)0.0196 (6)0.0125 (6)0.0063 (5)0.0044 (5)0.0045 (5)
C10.0134 (7)0.0128 (6)0.0149 (7)0.0019 (5)0.0044 (5)0.0002 (5)
C20.0131 (6)0.0126 (7)0.0148 (6)0.0001 (5)0.0061 (5)0.0005 (5)
C30.0157 (7)0.0160 (7)0.0178 (7)0.0005 (5)0.0078 (6)0.0022 (5)
C40.0141 (7)0.0137 (6)0.0124 (6)0.0007 (5)0.0054 (5)0.0006 (5)
C50.0143 (7)0.0185 (7)0.0127 (6)0.0006 (5)0.0034 (5)0.0025 (5)
C60.0152 (7)0.0367 (9)0.0330 (9)0.0005 (6)0.0133 (7)0.0020 (7)
C70.0292 (9)0.0453 (11)0.0317 (9)0.0066 (8)0.0185 (8)0.0055 (8)
C80.0134 (6)0.0149 (7)0.0134 (6)0.0005 (5)0.0049 (5)0.0000 (5)
C90.0109 (6)0.0158 (7)0.0133 (6)0.0016 (5)0.0028 (5)0.0013 (5)
C100.0170 (7)0.0141 (7)0.0166 (7)0.0004 (5)0.0051 (5)0.0002 (5)
C110.0181 (7)0.0222 (7)0.0129 (6)0.0017 (6)0.0064 (6)0.0023 (6)
C120.0202 (7)0.0217 (8)0.0152 (7)0.0024 (6)0.0092 (6)0.0064 (6)
C130.0294 (8)0.0133 (7)0.0243 (8)0.0019 (6)0.0119 (6)0.0028 (6)
C140.0242 (8)0.0161 (7)0.0169 (7)0.0020 (6)0.0097 (6)0.0009 (6)
Geometric parameters (Å, º) top
S1—C11.6905 (13)C4—H41.0000
F1—C31.3381 (16)C6—C71.501 (2)
F2—C31.3428 (15)C6—H6A0.9900
F3—C31.3367 (15)C6—H6B0.9900
F4—C121.3678 (15)C7—H7A0.9800
O1—C21.4120 (15)C7—H7B0.9800
O1—H10.8400C7—H7C0.9800
O2—C51.2130 (16)C8—C91.5122 (18)
O3—C51.3252 (16)C8—H81.0000
O3—C61.4675 (16)C9—C141.3906 (19)
N1—C11.3504 (17)C9—C101.3950 (18)
N1—C21.4462 (16)C10—C111.3881 (19)
N1—H1A0.835 (16)C10—H100.9500
N2—C11.3345 (17)C11—C121.374 (2)
N2—C81.4668 (16)C11—H110.9500
N2—H2A0.785 (16)C12—C131.381 (2)
C2—C31.5296 (18)C13—C141.3936 (19)
C2—C41.5436 (17)C13—H130.9500
C4—C51.5167 (18)C14—H140.9500
C4—C81.5363 (18)
C2—O1—H1109.5C7—C6—H6A109.5
C5—O3—C6117.11 (11)O3—C6—H6B109.5
C1—N1—C2124.90 (11)C7—C6—H6B109.5
C1—N1—H1A114.4 (11)H6A—C6—H6B108.1
C2—N1—H1A120.7 (11)C6—C7—H7A109.5
C1—N2—C8123.93 (12)C6—C7—H7B109.5
C1—N2—H2A116.6 (10)H7A—C7—H7B109.5
C8—N2—H2A119.4 (10)C6—C7—H7C109.5
N2—C1—N1117.77 (12)H7A—C7—H7C109.5
N2—C1—S1120.74 (10)H7B—C7—H7C109.5
N1—C1—S1121.49 (10)N2—C8—C9111.83 (11)
O1—C2—N1109.59 (10)N2—C8—C4105.97 (10)
O1—C2—C3107.38 (11)C9—C8—C4113.17 (10)
N1—C2—C3107.50 (10)N2—C8—H8108.6
O1—C2—C4112.87 (10)C9—C8—H8108.6
N1—C2—C4108.58 (11)C4—C8—H8108.6
C3—C2—C4110.79 (10)C14—C9—C10119.37 (13)
F3—C3—F1107.59 (10)C14—C9—C8122.23 (12)
F3—C3—F2107.24 (11)C10—C9—C8118.35 (12)
F1—C3—F2107.32 (11)C11—C10—C9120.83 (13)
F3—C3—C2111.15 (10)C11—C10—H10119.6
F1—C3—C2111.82 (11)C9—C10—H10119.6
F2—C3—C2111.49 (10)C12—C11—C10117.96 (13)
C5—C4—C8109.66 (10)C12—C11—H11121.0
C5—C4—C2112.60 (11)C10—C11—H11121.0
C8—C4—C2106.91 (10)F4—C12—C11118.22 (12)
C5—C4—H4109.2F4—C12—C13118.43 (13)
C8—C4—H4109.2C11—C12—C13123.34 (13)
C2—C4—H4109.2C12—C13—C14117.84 (14)
O2—C5—O3125.76 (12)C12—C13—H13121.1
O2—C5—C4123.20 (12)C14—C13—H13121.1
O3—C5—C4111.03 (11)C9—C14—C13120.64 (13)
O3—C6—C7110.79 (13)C9—C14—H14119.7
O3—C6—H6A109.5C13—C14—H14119.7
C8—N2—C1—N14.3 (2)C2—C4—C5—O249.06 (18)
C8—N2—C1—S1175.06 (10)C8—C4—C5—O3109.10 (13)
C2—N1—C1—N23.4 (2)C2—C4—C5—O3132.01 (12)
C2—N1—C1—S1177.24 (10)C5—O3—C6—C791.06 (16)
C1—N1—C2—O199.95 (14)C1—N2—C8—C9161.16 (12)
C1—N1—C2—C3143.65 (13)C1—N2—C8—C437.41 (17)
C1—N1—C2—C423.75 (17)C5—C4—C8—N2176.87 (11)
O1—C2—C3—F359.68 (13)C2—C4—C8—N260.79 (13)
N1—C2—C3—F3177.53 (10)C5—C4—C8—C953.96 (15)
C4—C2—C3—F363.98 (14)C2—C4—C8—C9176.31 (10)
O1—C2—C3—F1179.95 (10)N2—C8—C9—C1444.36 (17)
N1—C2—C3—F162.21 (13)C4—C8—C9—C1475.23 (16)
C4—C2—C3—F156.28 (14)N2—C8—C9—C10138.31 (12)
O1—C2—C3—F259.90 (13)C4—C8—C9—C10102.10 (14)
N1—C2—C3—F257.94 (14)C14—C9—C10—C110.66 (19)
C4—C2—C3—F2176.43 (10)C8—C9—C10—C11176.75 (12)
O1—C2—C4—C554.01 (14)C9—C10—C11—C121.3 (2)
N1—C2—C4—C5175.72 (10)C10—C11—C12—F4178.98 (12)
C3—C2—C4—C566.45 (14)C10—C11—C12—C130.8 (2)
O1—C2—C4—C866.48 (13)F4—C12—C13—C14179.92 (13)
N1—C2—C4—C855.23 (13)C11—C12—C13—C140.3 (2)
C3—C2—C4—C8173.07 (10)C10—C9—C14—C130.5 (2)
C6—O3—C5—O20.9 (2)C8—C9—C14—C13177.79 (13)
C6—O3—C5—C4178.03 (11)C12—C13—C14—C91.0 (2)
C8—C4—C5—O269.83 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.842.062.7767 (13)144
O1—H1···S1i0.842.833.3796 (10)124
N1—H1A···S1ii0.835 (16)2.635 (17)3.4566 (12)168.1 (15)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H14F4N2O3S
Mr366.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)11.0091 (12), 9.9741 (10), 14.6890 (16)
β (°) 109.269 (12)
V3)1522.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.20 × 0.19 × 0.12
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2009)
Tmin, Tmax0.947, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
18960, 3627, 2979
Rint0.042
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.01
No. of reflections3627
No. of parameters227
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.27

Computer programs: CrystalClear (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.842.062.7767 (13)144
O1—H1···S1i0.842.833.3796 (10)124
N1—H1A···S1ii0.835 (16)2.635 (17)3.4566 (12)168.1 (15)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1, z.
 

Acknowledgements

This work was supported by the Foundation of Henan Province Education Committee, China (grant Nos. 2010B150026, 2009B150023).

References

First citationAtwal, K. S., Rovnyak, G. C., O'Reilly, B. C. & Schwartz, J. (1989). J. Org. Chem. 54, 5898–5907.  CrossRef CAS Web of Science Google Scholar
First citationBrier, S., Lemaire, D., DeBonis, S., Forest, E. & Kozielski, F. (2004). Biochemistry, 43, 13072–13082.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCochran, J. C., Gatial, J. E., Kapoor, T. M. & Gilbert, S. P. (2005). J. Biol. Chem. 280, 12658–12667.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHass, U. H. (2004). US Patent No. 2 004 033 897.  Google Scholar
First citationKappe, C. O., Fabian, W. M. F. & Semones, M. A. (1997). Tetrahedron, 53, 2803–2816.  CSD CrossRef CAS Google Scholar
First citationKonz, M. J. (1997). US Patent No. 5 683 966.  Google Scholar
First citationLi, G.-C., Wu, C.-Z., Guo, L.-L. & Yang, F.-L. (2011). Acta Cryst. E67, o1704–o1705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds